Título: Modelagem de Variáveis Espectrais para Determinar as Condições Hídricas de Cafeeiros
Autores: Deyvis Cabrini Teixeira Delfino, Renan Teixeira Delfino, Margarete Marin Lordelo Volpato, Vania Aparecida Silva, Danton Diego Ferreira
Resumo: O potencial hídrico e um importante indicador utilizado para estudar as relaçoes h ídricas nas plantas, pois reflete o nível de hidratação de seus tecidos. Tradicionalmente, esse indicador e medido diretamente por meio de um equipamento chamado Bomba de Scholander, embora esse processo seja complexo e demorado. Contudo, ha várias varíaveis numéricas que descrevem as propriedades das plantas e que podem ser adquiridas a partir dos índices de refletancia das folhas. Essas variaveis apresentam relações diretas e indiretas com o potencial hídrico. Neste estudo, o objetivo e explorar varíaveis espectrais para estimar o potencial hídrico em cafeeiros, utilizando ferramentas de inteligência computacional. Para isso, foram medidas assinaturas espectrais por meio de miniespectrometro em lavoura de cafe localizada em Diamantina, cidade localizada no estado de Minas Gerais. Os dados contemplados abrangem o período de 2014, 2015 e 2016. Ademais, os dados apresentam dois grupos de manejo da lavoura, irrigado e sequeiro. Atraves da plataforma de desenvolvimento de algoritmo MATLAB foram desenvolvidas quatro técnicas de Machine Learning: Rede Neural Artificial tipo MLP (Multi-Layer Perceptron), Arvore de Decisão, Random Forest e KNN (K-Nearest Neighbor). Foram implementados para as quatro técnicas dois métodos distintos, estimação e classificação. Os resultados expõem que as redes neurais artificias foram superiores em ambos os métodos, com raiz do erro quadrático médio ( RMSE) de 0,4361 e o coeficiente de determinação (R 2 ) de 0,6923 para estimador e acurácia global 73,3% para o classificador
Palavras-chave: Cafeicultura, Aprendizado de Maquina, Potencial hídrico, Análise de Dados
Páginas: 7
Código DOI: 10.21528/CBIC2023-076
Artigo em pdf: CBIC_2023_paper076.pdf
Arquivo BibTeX: CBIC_2023_076.bib