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Abstract⎯ This work presents a new methodology for evaluating electrical power systems static voltage stability. This me-
thodology is referred to a neural inference system based on a fuzzy ARTMAP neural architecture whose training is realized from 
a data base generated by simulation using a computational program: load flow, security margin and data base construction (con-
stituting the input/output of the neural network). This system presents precise results with faster answers, allowing the users to 
work with flexibility where structural modifications are required (real situations in system operation), when compared to other 
neural networks. To illustrate the proposed neural structure, results are presented considering a power system composed of 45 
buses, 73 transmission lines and 10 synchronous machines. 
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Resumo⎯ Este artigo apresenta uma nova metodologia para estimar a estabilidade de tensão de sistemas elétricos, a qual é refe-
rida como um sistema de inferência neural baseado em uma arquitetura ARTMAP fuzzy cujo treinamento é realizado com uma 
base de dados gerado por simulação de um programa computacional: fluxo de carga, margem de segurança, e construção de uma 
base de dados que se constitui na entrada/saída da rede neural. Este sistema apresenta resultados precisos com uma rápida respos-
ta permitindo aos usuários trabalhar com flexibilidade em situações de modificações estruturais (situações reais), comparando 
com outras redes neurais. Para ilustrar a metodologia proposta, apresentam-se resultados para um sistema de potência real com-
posto por 45 barras, 73 linhas de transmissão e 10 máquinas síncronas 

Palavras-chave⎯ Redes Neurais, Teoria da Ressonância Adaptativa, Sistemas Elétricos de Potência, Estabilidade de Tensão.

1    Introduction 

Angle and voltage stability are a very important investi-
gation procedure in electric power systems [Wehenkel, 
1997]. This procedure analyses and executes strategies 
to guarantee the energy supplying with quality and 
avoids or at least minimizes interruptions of electric 
energy supplying. Stability associated to angles corres-
ponds to transient stability, evaluating effects from per-
turbations that cause great and undesirable oscillations 
on the synchronous machines angles Voltage stability 
investigates the behavior of the voltage profile, special-
ly observing and identifying voltage problems from an 
increasing of the power consumption.  

Voltage stability can be approached in two forms: 
static and dynamic. The dynamic behavior is modeled 
by a set of non-linear ordinary differential equations 
[Vu, et al. 1995]. It is a complex analysis specially 
when dealing with large systems. A simpler form of 
voltage stability is referred to observe nodal voltage 
behavior considering the gradual increase of the system 
loading profile, i. e. the qualitative analysis of the op-
eration point. In this case, the analysis can be treated as 
a linear problem. The inferences on the system are 
based on analyzing the behavior of the balance point, 
mainly from analyzing the Jacobian (Jo) matrix of the 
nodal power equations which is a power flow problem 
formulated by Newton Raphson method [Arya, et al. 
2008; Jia and Jevasurya, 2000; Nan, et al. 2000; Sinha 
and Hazarika, 2000; Tiranuchit and Thomas, 1988]. 

Thus, from the analysis of the Jacobian Jo matrix, it 
is possible to determine the stability of the system. This 

analysis can be effectuated, for example using eigenva-
lue/eigenvector decomposition of the Jacobian matrix, 
tangent vectors, among other techniques. The behavior 
of the system for small perturbations can be analysed by 
the eigenvalues of the Jacobian Jo matrix. If all eigenva-
lues are real and positive, the system is stable for small 
perturbations. However, if there is one eigenvalue with 
real part negative, it is unstable. The problem occurs 
when the Jacobian matrix Jo becomes singular (there is 
at least one eigenvalue equal to zero). Therefore, the 
Jacobian Jo matrix determinant is also zero. This is the 
form that is frequently approached on the appropriated 
bibliographic references.  

This paper proposes to develop a neural system to 
execute the voltage stability diagnosis (static) of elec-
trical power systems. Neural networks are structures 
implemented in hardware and/or software, based on the 
human brain mechanisms and therefore able to learn 
with experience [Haykin, 1994]. To obtain the desired 
results, i.e. the network presents conditions to effectuate 
complex diagnosis, such networks must be formed by 
several neural unities (or processing elements), disposed 
in layers composing a complex interconnected arrange-
ment [Widrow and Lehr, 1990]. These interconnections 
are composed by weights which must be adjusted. The 
neural network processing is composed of two funda-
mental steps: training and analysis. The training phase 
requires much processing time while the analysis phase 
is processed almost without computational effort. 
Therefore, this is the principal justification to use neural 
networks to solve complex problems that needs fast 
solutions, as the applications in real time. The training 
phase is mainly executed with backpropagation proce-
dure [Widrow and Lehr, 1990], which is not so fast and 
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sometimes without convergence specially when work-
ing with huge data bank.  New neural structures have 
been approached to solve the problem of excessive 
processing time for training. Thus, the neural networks 
of ART (Adaptive Resonance Theory) family [Carpen-
ter, et al. 1992], that present the characteristics of stabil-
ity (capacity to learn by adjusting the weights) and plas-
ticity (capacity to continue learning including new pat-
terns without loosing the memory related to the pre-
vious patterns) are emphasized. 

This paper presents a neural system to execute the 
voltage static stability diagnosis. The neural network 
used is an ART-descendent architecture, i.e. a fuzzy 
ARTMAP including improvements to become more 
precise when compared to the original formulation 
[Carpenter, et al. 1992]. Some proposals for voltage 
stability analysis with neural networks are found on the 
literature: [Pandit, et al. 2007; Wan and Ekwue, 2000], 
among others. But, most of them are based on backpro-
pagation training, or similar techniques, whose asso-
ciated problems were previously described.  

The training criterion of this neural network is a 
security margin index (already developed) based on the 
sensitivity analysis of the determinant function of Jo 

matrix, which is calculated using the Kronecker [Gero-
mel, 1987] algebra concepts. This procedure is used in 
this paper to validate the proposed methodology (fuzzy 
ARTMAP neural network). Nevertheless, this concep-
tion can be modified to realize other security index that 
can produce less conservative results, e.g., based on the 
continuation methods (according to Arya et al., 2008).    
The security index is generated forming a data base to 
the execution of the training phase using the computa-
tional program named Simul [Ferreira, et al. 2006]. To 
obtain such indexes some modifications were included 
in the Simul program to generate random or pseudo 
random combinations of generation/load profiles simu-
lating a major quantity of operational situations [Ferrei-
ra, et al. 2006] and, consequently obtaining the corres-
ponding security indexes. This procedure of obtaining 
random generation/load profiles is used as a more real 
processing analysis, instead of those commonly used on 
the literature using the proportionality criterion of the 
referred profiles.   

Therefore, this paper presents a formulation of a 
new neural methodology to voltage stability analysis of 
electrical power systems. Considering the performance 
characteristics of this methodology (faster training, pre-
cision of the results, and flexibility to adapting to the 
topological diversities of the electrical network), it is 
possible to use in analysis of real electrical power sys-
tems.  

2   Proposed Methodology 

The proposed schema (neural system) to execute the 
voltage stability analysis for electrical power systems is 
presented as follows. Neural network processing is bas-
ically divided in two principal phases: (1) training or 

learning; (2) tests and diagnosis. The neural network 
used is a fuzzy ARTMAP architecture [Carpenter, et al. 
1992]. The training phase is executed using a teacher 
represented by a simulator (computational program) 
[Ferreira, et al. 2006] that effectuates electrical network 
calculus: network matrices, load flow and transient sta-
bility analysis. This program was also adapted to ex-
ecute the calculus associated to the static voltage stabili-
ty according to the criterion presented on Section 3, and 
the data base constituted of input/output patterns of the 
neural network training.  

The input data when available for executing the 
voltage stability analysis being a (P, Q, Z) vector is 
used associated to the (M) output to be inserted on the 
data base adapting the weights. The vector Z contains 
the binary information, which codifies the electrical 
network topology, the contingency data, etc.  

3   Static Voltage Stability Analysis Criterion 

The static stability analysis of electrical power systems 
consists of behavioral investigation of a model corres-
ponding to the linearized solution of power system equ-
ations [Tiranuchit and Thomas, 1988], except the refer-
ence bus:  
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where: 
ΔP  = vector of active power of busses PV and 

QP; 
ΔQ  = vector of reactive power of busses PQ; 
Δθ  = vector of angles on busses PV and PQ; 
ΔV  = vector of nodal voltages of busses PQ; 
Jo  Δ Jacobian matrix  
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 The matrices H, N, M and L are the sub 
matrices of Jo corresponding to ∂P/∂θ, 
∂P/∂V, ∂Q/∂θ and ∂Q/∂V, respectively. 

This paper investigates the static voltage stability 
using the security margin obtained by estimating the 
critical eigenvalue [Isoda, et al. 2008]. The critical ei-
genvalue λmin(Jo), which is defined as the least positive 
eigenvalue of the Jacobian matrix Jo, corresponds to the 
eigenvalue used for the voltage stability analysis, consi-
dering that it is the nearest one of the voltage collapse 
and therefore, presents the most possibility to become 
zero as the electrical demand increases. Monitoring 
λmin(Jo) is an important instrument of analyzing voltage 
stability of electrical power systems, according to the 
literature [Arya, et al. 2008; Jia and Jevasurya, 2000; 
Nan, et al. 2000; Sinha and Hazarika, 2000; Tiranuchit 
and Thomas, 1988]. Such security margin is estimated 
based on the sensitivity analysis of the determinant 
function of the Jo matrix, calculated from the Kronecker 
algebra concept [Isoda, et al. 2008] as follows:  

(1)
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 Therefore, the index  

M = 0
,
1
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is the security margin and represents the pessimist 
estimation (favorable to the system security) of the  
λmin(Jo) parameter and is used as the electric power 
systems voltage stability inference criterion by neural 
networks.  

4   Fuzzy ARTMAP Neural Network 

The fuzzy ARTMAP neural network [Carpenter, et 
al. 1992] is composed of two fuzzy ART modules 
interconnected by a mechanism called inter ART as 
described below. Firstly the Fuzzy ART module is 
described. Lines represent the vectors instead by 
columns as usual adopted on the literature for the 
ART descendent neural networks.  

The input data are denoted by vector 
=a ][ 1 Maa L  M-dimensional, and it is normalized 

to avoid proliferation of categories. Thus: 

a
aa =  

where: 
a  = normalized input vector; 
| a | = ∑

i
ai. 

The input vector is a 2M-dimensional one de-
noted by: 

I = ][ caa  ≡ ]......[ 11
c
M

c
M aaaa  

where: 
ca  = i

c
i aa −=1 . 

The activity vector of F2 is represented by 
],...,,[ 21 Nyyyy =  where N is the quantity of cat-

egories created in F2 . This way: 

 =y  1,   if node J of F2 is active  
=y  0,   on the contrary. 

The parameters used on the fuzzy ART network 
processing are:  choice  parameter  (α > 0),  training 
rate  (β ∈ [0,1])  and  the  vigilance  parameter        

(ρ  ∈[ 0,1]). Firstly, all the weights are equal to 1, 
indicating that there is no active category. The algo-
rithm that shows all procedures used on the ART-
MAP neural network is found on reference Lopes, et 
al. (2005). 

ARTMAP neural network [Carpenter, et al. 
1992] is a supervised neural network, i.e. based on 
input-output stimulus. It is composed of two fuzzy 
ART modules: ARTa and ARTb interconnected by 
associative memory inter ART module Fab, that has 
a mechanism named match tracking that maximizes 
the generalization and minimizes the error of the 
network.  

The input vector of ARTa network is represented 
by  ]...[ 1 aMaa=a ,  Ma-dimensional,  and  the  input 
vector of ARTb (that corresponds to the desired out-
put referred to the input pattern of ARTa network) is 
represented by ]...[ 1 bMbb=b  Mb-dimensional [Car-
penter, et al. 1992]. 

The parameters used on fuzzy ARTMAP net-
work are the same used on fuzzy ART network. The 
difference on fuzzy ART neural network is the vigil-
ance parameter of inter-ART module ρab (ρab ∈ 
[0,1]).  

ARTMAP neural network processes the two 
ART networks (ARTa and ARTb), and afterwards the 
resonance is confirmed in each network, as follows: 

• J = active category for ARTa network; 
• K = active category for ARTb network. 

The match tracking process verifies if the active 
category on ARTa corresponds to the desired output 
vector presented on ARTb . The vigilance criterion is 
given by [Carpenter, et al. 1992]:  

abb

ab
Jk

b

y
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ρ≥

∧
 

where: 
by = output vector of ARTb (activity pattern of F b

2 ). 
If (2) is not satisfied, the vigilance parameter of 

ARTa, is incremented minimally such as to exclude 
the current category and select another category to 
become active and entering again on the process un-
til (2) is satisfied. With resonance confirmed the 
weights of modules ARTa and ARTb are updated 
using the same criterion of fuzzy ART neural net-
work. The adaptation of fuzzy ART is effectuated as 
follows: 

1=ab
JKw   for k=K 

 
0=ab

JKw   for k≠ K. 

(2)
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4.1 Input Stimulus of the Fuzzy ARTMAP Neural 

Network 

The proposed neural structure aims to analyze the 
transient stability of electric energy systems, which 
corresponds to determine the security margin consi-
dering three phase short circuits with transmission 
line outages. The input pattern vectors of the neural 
network are defined as: 

X = [P  Q  Z ] 
where: 

X  = neural network input pattern vector; 
P  = [ P1   P2  . . . Pn];  
Q  = [ Q1  Q2  . . . Qn];  
Z = vector containing the information in binary 

code; 
Pi   = active power of the ith bus of the system; 
Qi  = reactive power of the ith bus of the system; 
n = number of busses of the system. 

The training execution – extract the knowledge 
based on input/output stimulus – is proceed present-
ing a set of data, X = [P Q Z] (input) and Y (output), 
constituting a set of training pair. It is the formation 
of vectors P and Q, for generation and load by a pro-
ceeding of random generation distribution (random 
dispatch to attend the demand) and also random load 
distribution (random demand) as shown below [Fer-
reira, et al. 2006]. The vector Z formed by informa-
tion (binary code) representing the topology of the 
electrical network, the contingency data, etc. 

Consider a system with a determined topology 
containing NB busses, where NG is the generation 
busses and the others are load busses (NL = NB − 
NG). Yet consider, that is desired to effectuate the 
generation dispatch to attend a variable demand tak-
ing as reference the base case: PGo, QGo, PLo and 
QLo,    
where: 
PGo = active power vector of the generators for 

the base case; 

QGo  = reactive power vector of the generators 
for the    base case; 

PLo = active power vector of the loads for the 
base case; 

QLo = reactive power vector of the loads for 
the base case.  

To generate a large variation of the demand, the 
criterion used is referred to a random distribution of 
the demand and consequently of the generation to 
attend the demand. Therefore, the generation is va-
ried in percents toward the base case (considering the 
generation/load profile of 100%). For example, with 
a 10% variation, several generation/load profiles can 
be realized, proceeding generation dispatches and 
defining the load of the system, with a random dis-

tribution of the generation and the load on the busses 
of the system according to the percent arbitrated  

The active power of the generation busses is de-
fined as [Ferreira, et al. 2006]:  

PGi = PGi
o + ΔPGi 

where: 

PGi  = active power on the ith generator fixed 
randomly (or pseudo-randomly); 

ΔPGi = PGo
total x Per x AGi / KG 

PGo
total = ∑

∈ )G(i Ω
PGo

i    

Ω(G) = set of generation busses; 
Per = percent of the demand variation (posi-

tive and negative values: for example, 
Per = +10% corresponds to 90% and 
110% of the base case, respectively; 

AGi = random number of a sequence of NG 
numbers generated from a given seed. 
Varying the seed a different sequence 
of values is obtained and this variation 
is within 0 and 1: AGi  ∈ [0,1];  

KG = 100 AGtotal 

AGtotal = ∑
∈ )G(i Ω

AGi.         

The reactive power of the synchronous machines 
is determined on the routine referred to the power 
flow (PV busses).  

In relation to the active loads, the variation pro-
files (variable demand curve) can be obtained by 
[Ferreira, et al. 2006]: 

PLi = PLi
0 + ΔPLi 

where: 
PLi  = active power on the ith load fixed ran-

domly; 
ΔPLi  = PLo

total x Per x ALi / KL  

PLo
total  = ∑

∈ )L(i Ω
PLi

o    

ALi = random number from sequence of NL 
number generated from a given seed, 
ALi  ∈ [0,1]. 

KL = 100 ALtotal     

ALtotal = ∑
Ω∈ )L(i

ALi
 .  

Ω(L) = set of load busses. 
 

The reactive loads are fixed considering a distri-
bution that preserves the power factor referred to the 
base case. This procedure tries to set a distribution 
with a inter relation level with the most plausible 
active power when compared to [Ferreira, et al. 
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2006]. However, it is also possible to search for oth-
er distribution forms of the active loads that will be 
investigated in another work.  

4.2 Output Stimulus of the Fuzzy ARTMAP Neural 
Network 

The output stimulus is the security margin (M). 
The training patterns correspond to the parameters: 
Xj   =  [ Pj  Qj   Zj] (inputs) 
Yj    =  [ M j]  (outputs) 
    j = 1, 2, . . . , np.   
where: 
M j = jth security margin represented by severity 

classes; 
np = number of pattern pairs for the training phase. 
The output, Mi, is codified by classes (in binary 
code), where each class expresses the severity grade 
of the contingencies. 

5   Applications 

Results are presented considering a power system com-
posed of 45 busses, 73 transmission lines and 10 syn-
chronous machines [Ferreira, et al. 2006]. The system 
diagram and the data of the synchronous machines and 
the transmission system are related on reference [Ferrei-
ra, et al. 2006]. The neural network training is executed 
considering a set of 700 generation/load profiles and 
respective security margins M.  Each profile corres-
ponds to a generation redispatch in relation to the base 
case, effectuated in a random way to attend the demand 
also fixed in a random way in each bus. The variation 
interval is within 65 and 135%, in relation to the total 
load of the system. Therefore, each profile is generated 
considering a percent toward the nominal state (base 
case) and a determined seed for the process of random 
sequence generation. Thus, for a same percent, different 
seeds can generate different generation dispatches for 
different load profiles. Afterwards the network training 
the tests (voltage stability analysis) are effectuated 
whose results are shown at Table 1. The results are pre-
sented in classes from 1 to 15. These classes are adopted 
to constitute the outputs in binary code, which is more 
adequate to use in neural networks of the ART family. 
Thus, the following definition is adopted for classes 1, 
2, ... ,15 (representation with 4 bits) corresponding to 0 
≤ M ≤ 0.1, 0.1 ≤ M ≤ 0.2, ..., 1.4 ≤ M ≤ 1.5, respectively. 
Therefore, the distances, which each generation/load 
profile is in relation to the voltage stability limit, can be 
inferred. Such intervals associated to the classes can be 
defined increasing or decreasing according to the user 
interests. In this case, the number of bits must be ad-
justed in function of the major or minor size of the in-
terval used. It is emphasized that the correct results of 
the neural network are greater than 85% considering the 
700 simulations effectuated. This result is superior to 
95%, when there is relaxing on a neighbor class since it 

corresponds to the most critical class, i.e. favorable to 
the system security. This percent certainly is going to 
increase while new patterns will be incorporated to the 
data base by the continuous training process. 
 
Table 1. Comparison of Fuzzy ARTMAP and Simul Methods. 

 

% Seed M  

by 
Simul 

M 

Simul Fuzzy 
ARTMAP 

67.5 123 .5994 6 6 
72.5 51 .7413 8 8 
77.5 614 .7096 8 8 
87.5 31 .6551 7 8 
92,5 123 .7003 8 7 
97.5 7116 .7134 8 8 
102.5 102 .6897 7 7 
112.5 74 .6694 7 7 
112.5 31 .7048 8 7 
117.5 123 .6722 7 7 
117.5 6691 .6183 7 7 
122.5 145 .6055 7 6 
122.5 221 .6528 7 7 
122.5 377 .5662 6 6 
127.5 7116 .4389 5 4 
127.5 8555 .5840 6 6 
132.5 123 .5873 6 6 
132.5 421 .5054 6 5 

 

6   Conclusions 

A new methodology for multimodal electric power 
system stability analysis is presented. It is a metho-
dology using a fuzzy ARTMAP network whose 
training is effectuated by a data base generate with 
simulations (using the computational program Si-
mul); load flow calculus as well as other parameters 
that were implemented to attend the needs of the 
proposed study. Considering the strategy of obtain-
ing this data base (defining the generation/load pro-
file randomly) a large variation of operational states 
is provided allowing simulating real operational 
states. The fuzzy ARTMAP architecture as well as 
other ART family architectures presents the characte-
ristics of plasticity that is an advantage in relation to 
other neural networks commonly used on the litera-
ture. 

Bibliographic References 

Arya, L. D., Choube, S. C. and Shrivastava, M. (2008). Tech-
nique for voltage stability assessment using newly devel-
oped line voltage stability index, Energy Conversion and 
Management, Vol. 49(2), pp. 267-275. 

Carpenter, G. A., Grossberg, S., Markuzon, N., Reynolds, J. 
H. and Rosen, D. B. (1992). Fuzzy ARTMAP: A neural 
network architecture for incremental supervised learning 



Anais do IX Congresso Brasileiro de Redes Neurais / Inteligência Computacional (IX CBRN) 
Ouro Preto 25-28 de Outubro de 2009                  ©Sociedade Brasileira de Redes Neurais 
 

of analog multidimentional maps, IEEE Transactions on 
Neural Networks, Vol.3(5), pp.698-713. 

Ferreira, W. P., Silveira, M. C. G., Lotufo, A. D. P. and 
Minussi, C. R. (2006). Transient stability analysis of 
electric energy systems via a Fuzzy ART-ARTMAP 
neural network, Electric Power Systems Research, 
Vol. 76, pp. 466-475. 

Geromel, J. C. (1987). Methods and Techiques For Decentra-
lized Control Systems Analysis and Design, Milano: 
Cooperativa Libraria Universitaria del Politecnico.  

Haykin, S. (1994). Neural Networks: A Comprehensive Foun-
dation, Upper Saddle River, New Jersey: Prentice-Hall. 

Isoda, L. Y., Lotufo, A. D. P., Lopes, M. L. M. and Minussi, 
C. R. (2008). Análise de Estabilidade de Tensão em Sis-
temas Elétricos Usando Uma Rede Neural ARTMAP 
Fuzzy. Tendências em Matemática Aplicada e Computa-
cional, TEMA, Vol. 9, No. 2, pp 243-253. 

Jia, Z. and Jeyasurya, B. (2000). Contingency ranking for on-
line voltage stability assessment, IEEE Transactions on 
Power Systems, Vol. 15(3), pp. 1093–1097. 

Lopes, M. L. M., Minussi, C. R. and Lotufo,A. D. P. (2005). 
Electric load forecasting using a fuzzy ART-ARTMAP 
neural network, Applied Soft Computing, Vol. 5, pp.235-
244. 

Nan, H.–K., Kim, Y.–K., Shim, K.–S. and Lee, K. Y. (2000). 
A new eigen-sensitivity theory of augmented matrix and 
its applications to power systems stability analysis, IEEE 
Transactions on Power Systems, Vol. 15(1), pp. 363-369. 

Pandit, M., Srivastava, L., Singh, V. and Sharma, J. (2007). 
Coherency-based fast voltage contingency ranking em-
ploying counterpropagation neural network, Engineer-
ing Applications of Artificial Intelligence, Vol. 20(8), 
pp. 1133-1143. 

Sinha, A. K. and Hazarika, D. (2000). A comparative study of 
voltage stability indices in a power system, Electrical 
Power & Energy Systems, No. 22, pp. 589–596. 

Tiranuchit, A. and Thomas, R. J. (1988). A posturing strategy 
against voltage instabilities in electric power systems, 
IEEE Transactions on Power Systems, Vol. 3(1), pp. 87-
93. 

Vu, K. T., Liu, C.-C., Taylor, C. W. and Jimma, K. M. (1995). 
Voltage instability: Mechanisms and control strategies, 
Proceedings of the IEEE, Vol. 83(11), pp. 1442-1455. 

Wan, H. B. and Ekwue, A. O. (2000). Artificial neural net-
work base contingency ranking method for voltage col-
lapse, Electrical Power & Energy Systems, No. 22, pp. 
349–354. 

Wehenkel, L. (1997). Machine-learning approaches to power-
system security assessment, IEEE Expert Intelligent Sys-
tems & Their Applications,Vol. 12 (5), pp.60-72. 

Widrow, B. and Lehr, M. A. (1990). 30 years of adaptive 
neural networks: Perceptron, Madaline, and backpro-
pagation, Proceeding of the IEEE, New York, 
Vol.78(.9), pp.1415-1442. 

 


