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Abstract— This paper discusses the use of self-organizing maps (SOM) for decision-making in multiobjec-
tive design problems. Estimates of the Pareto-optimal solutions for a given problem are mapped onto a two-
dimensional grid, where the distance between solutions is a measure of their similarity in the parameter space. By
comparing the clustered points and the color grade of those points in the maps, the designer is able to visualize
the similarity of the solutions in both the parameter and objective spaces, hence identifying redundant points.
With the use of this technique, one is able to work with clusters of solutions instead of individual points, which
can simplify the decision-making step.
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Resumo— Este trabalho discute o uso de mapas auto-organizativos (MAO) como ferramenta de aux́ılio para
tomada de decisões em problemas de projeto multiobjetivo. Estimativas das soluções Pareto-ótimas para um
determinado problema são mapeadas sobre uma malha bidimensional, no qual a distância entre as soluções
representa uma medida da similaridade das mesmas. Através de comparações entre as posições e cores dadas
a cada ponto neste mapa é posśıvel obter uma visualização da semelhança destas soluções, tanto em termos de
parâmetros de projeto quanto de performance nos diversos objetivos do problema, o que possibilita a detecção de
pontos redundantes e o tratamento de conjuntos de soluções ao invés de pontos individuais, simplificando assim
a etapa de tomada de decisões em um determinado projeto.
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1 Introduction

In the design of electromagnetic devices it is usual
to have many conflicting objectives, such as device
size, energy efficiency, or cost. Due to the very na-
ture of such multiobjective problems, there is no
single solution that is optimal for all objectives in
the vast majority of cases. Instead, multiobjec-
tive optimization algorithms usually return a set
of nondominated points, which are estimates of the
Pareto-optimal solutions.

The existence of these nondominated points is due
to the absence of a priori preferences or prior-
ities among the multiple objectives in the prob-
lem, which generates the need of an a posteri-

ori decision-making step in order to complete the
design process of a given device. However, the
decision-making may become a very difficult task,
particularly in cases where the problem has many
variables or many objectives. For instance, it is
common to have many solutions representing small
variations of a same basic design. In this context,
clustering methods can be useful when dealing with
the estimates of the Pareto-optimal solutions in the
decision-making step.

A self-organizing map (SOM) (Kohonen, 1995;
Haykin, 1999) is a kind of artificial neural net-
work capable of mapping points from a high-

dimensional space onto a low-dimensional, typ-
ically two-dimensional, representation or feature
space. This technique also performs the clus-
tering of similar solutions, using a given similar-
ity metric and a neighborhood function to pre-
serve the topological properties of the input space.
These features make the use of SOM for decision-
making in optimization problems an interesting
choice, since it provides a low-dimensional view of
high-dimensional data, thus helping the analysis
and decision-making over the estimates returned
by multiobjective optimizers. In fact, this tool has
already been explored for mono-objective problems
(Igarashi, 2005) with promising results.

In this work we present the use of the self-
organizing mapping technique as a tool for sim-
plifying the decision-making process in multiobjec-
tive optimization problems. This is achieved by
clustering similar solutions into a two-dimensional
grid. The SOM algorithm is applied to the esti-
mates of the Pareto optimal solutions found by a
general-purpose multiobjective optimization algo-
rithm. By combining the information provided by
the color maps, which represent the similarity of
the various solutions, the designer is able to gain
some qualitative understanding about the problem,
as well as to identify clusters of redundant solu-
tions. With this approach, it is possible, for exam-
ple, to choose just one point from a given cluster
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for a detailed analysis, instead of having to perform
the time consuming task of analyzing all solutions.
The proposed methodology has the potential of re-
ducing the complexity of the decision-making pro-
cess, as well as improving it through visualization.

2 Self-Organizing Maps

Self-organizing maps (SOM) are techniques for
clustering and data visualization that provide a
mapping of points from a high-dimensional space
to a two-dimensional grid, preserving topologi-
cal properties of the input space, that is, similar
points are placed in the neighborhood of each other
(Igarashi, 2005).

Given a set P composed of m0 points in an n-
dimensional space, with each dimension normal-
ized to the interval [0, 1], the SOM algorithm starts
by the generation of an m x m grid, where each
node represents an n-dimensional normalized ran-
dom vector ~bk (called weight vector). For each
point ~pi from the input set P , the best matching

node (or winning node) ic, i.e., the node contain-
ing the vector with the smallest Euclidean distance
from (highest similarity to) ~pi is found. After that,
all weight vectors in the neighborhood of ic are
changed according to the following rule:

~bk+1 ← ~bk + gt

(

~pi −~bic

)

, (1)

with the decayment term gt ∈ {0, 1} as defined be-
low. In this work we employ a square neighborhood
with side w, centered at the best matching node ic.
At the end of the first iteration, the solutions from
P are mapped to the vector grid. The iterative cy-
cle then continues, with P being mapped onto the
~bk field obtained from the previous iterations in or-
der to refine the mapping. The values for w and g
for a given iteration t are calculated as suggested
in (Igarashi, 2005):

wt = 1 + 2r (1− t/T ) , (2)

gt = α (1− t/T ) exp
(

−d2
j,ic

/2σ2
t

)

, (3)

with:

σt =
√

m/M1 +
(

√

m/M2 −
√

m/M1

)

t/T, (4)

where r is a constant that determines the initial
size of the neighborhood, T is the maximum num-
ber of iterations, α is a constant for the learning
rate, M1 and M2 are user-determined constants
that influence the evolution of gt, and dj,ic

is the
lateral distance between the best-matching node
~bic

and an excited node ~bj . After T iterations, the

vector field represents a map of the input points
onto the two-dimensional grid, where the distance
between two points is a measure of their similarity
in the original n-dimensional space.

A more detailed explanation of the concepts behind
the SOM equations can be found elsewhere in the
literature (Haykin, 1999; Kohonen, 1995; Igarashi,
2005) and will not be given here for the sake of
brevity.

3 SOM and Multiobjective Optimization

Problems

In multiobjective optimization problems, it is im-
portant to deal with the information available from
both the parameter and objective spaces. The first
provides information on the similarities of the solu-
tions in terms of their design characteristics, while
the second provides information on the relative per-
formances of different solutions in terms of the var-
ious objectives of the problem. Thus, for applying
the SOM to the solutions of multiobjective opti-
mization problems, it is necessary to combine the
information contained in both spaces. In this work,
we generate p different maps, where p is the num-
ber of objectives in the problem. With these maps,
which are generated using the same grid, the de-
signer can get qualitative understanding of the so-
lutions, as well as to detect redundant optima.

The procedure for using SOM in multiobjec-
tive problems is quite simple: initially, the 2-
dimensional grid is generated by following the steps
explained in Section 2, with P being the set of
estimates of the Pareto-optimal set found by any
appropriate multiobjective optimization algorithm.
This grid is then used for constructing the maps for
the objectives. For each node vector of the grid, the
closest sample Pc is determined. Then, the normal-
ized value of the i-th objective function at Pc is at-
tributed to the position of~bk in the grid. Therefore,
if two points are similar in both spaces, they are
going to be closely mapped on the two-dimensional
grid, and will also be in regions of similar color in
each map. By analyzing the similarities among the
maps, the designer is then able to select only one
solution from a given cluster of redundant points,
so reducing the number of candidate solutions to
be considered in the decision-making process.

4 Results

4.1 Analytical Problem

For testing the proposed approach, we start with
an analytical problem with two objective functions
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in the R
2 space, in order to allow for the visual ver-

ification of the information provided by the maps
on the actual parameter and objective spaces. The
problem consists in the minimization of the func-
tions:

f1(x, y) = x,

f2(x, y) = (1 + 10y)

[

1−
(

x
1+10y

)2

−
(

x
1+10y

)

sin (8πx)
]

(5)

with x, y ∈ [0, 1]. This problem has been solved
in (Guimarães et al., 2007) using the multiobjec-
tive clonal selection algorithm (MOCSA). This al-
gorithm was able to sample the Pareto front with
36 nondominated points. The distribution of the
solutions over the parameter and objective spaces
is shown in Fig. 1.

(a) Space of Parameters

(b) Space of Objectives

Figure 1: Nondominated points in the space of pa-
rameters and the space of objectives. Notice that
the Pareto front for this problem is discontinuous
in both spaces, with gaps along the x axis and the
function f1 axis.

We applied the SOM algorithm over the nondom-
inated points found for this problem, with the fol-
lowing parameters: m = 40, α = 0.6, r = 20,
M1 = 8, M2 = 25, and T = 75. After the itera-
tive cycle, a map for each objective was generated
according to the procedure described in Section 2.

All tests were performed on an AMD Athlon 64 X2 Dual
Core (2.20GHz, 3.25GB RAM) PC running Matlab 7.6.0
(R2008a).

Fig. 2 shows the generated maps for this problem.
1.

(a) Map for f1

(b) Map for f2

Figure 2: Maps for each objective. It is interesting
to see that the map for objective f1 presents crisp
boundaries between the different colors, while the
one for f2 has more smooth transitions. This is
due to the gaps on the values of f1, which can be
seen in Fig. 1(b).

By looking at the maps generated, it is possible
to extract some qualitative information about the
problem. First, it can be easily seen that the color
transitions are very abrupt in the map for f1, and
very smooth in the map for f2. This indicates that
the different clusters present very different values
for the first objective, but not so much for the sec-
ond. There are four distinct colored regions in map
f1, which correspond to four main clusters with
respect to objective f1. The smoothness in the
color transition in the map for f2, however, indi-
cates that the performance of the points in this ob-
jective does not present big gaps in the objective
space. This can be checked by examining Fig.

By focusing, for example, in the points highlighted
by black ellipses in Fig. 2, more information about
this particular cluster can also be obtained. For
instance, observe that the seven points contained
in this particular cluster present almost the same
color (white) on the f1 map, and a reasonably
smooth range of colors on the f2 one. From these
characteristics we can infer that the first objective
function is very stable over this cluster, while the
second one presents a smooth variation of values,
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which is confirmed by an examination of Fig. 1(b).

4.2 Electromagnetic Design

In this section, we investigate the results obtained
by applying the SOM technique to the design of a
superconducting magnetic energy storage (SMES)
device. We have worked on a 3-parameter version
of this problem, consisting on the minimization of
the three objectives (Guimarães et al., 2006) stated
in equations (6) - (8).

f1 =
(Bstray)

2

10−3
, (6)

f2 =
|Energy − Eref |

Eref

, (7)

f3 = {|J |+ 6.4 (|Bmax| − ξ)− 54}
2
, (8)

Here Bstray is the strayed magnetic flux density;
Energy is the energy stored by the device; Eref =
180MJ is the desired value for Energy; Bmax and
J are the maximum magnetic flux value and the
current density at the outer coil of the device; and
ξ is a safety parameter defined by the designer.
The dimensions of the inner coil are considered con-
stant. For more details on the parameter limits and
other characteristics of this problem, see reference
(Guimarães et al., 2006).

As we can see in equations (6-8), F1 accounts for
the minimization of the stray field generated by
the device; F2 is a function that represents the de-
viation of the energy stored by the device from a
given reference value; and F3 aims to produce a
solution that is close to the quench limit (in order
to avoid the sub-utilization of the superconducting
material), but considering a prescribed safety level
ξ.

Furthermore, this problem presents a constraint:

Bmax +
J − 54

6.4
≤ 0, (9)

which is very similar to the objective F3, and is
applied for guaranteeing that devices violating the
superconducting state will not be allowed in the
optimization process.

This problem has been solved using the MOCSA
algorithm (Guimarães et al., 2006) with niching in
both the parameter and objective spaces, as sug-
gested in (Ávila et al., 2004). At the end of the
optimization run, the algorithm returned 197 non-
dominated points as estimates of the Pareto set.
These points were used for generating the three
100 x 100 maps shown in Fig. 4. The SOM pa-
rameters used were m = 100, α = 0.6, r = 50,

M1 = 8, M2 = 20, and T = 75, as recommended
in reference (Igarashi, 2005).

From the generated maps, it is possible to identify
a number of clusters of similar points. It is also
possible to see that there are no discernible color
gaps, i.e., the Pareto set for this problem seems to
be reasonably connected.

Let us now consider the two highlighted clusters
in Fig. 4. Table 1 shows three points from each
cluster. From this table, it is clear that the points
in each cluster present a high degree of similarity
both in the parameter and the objective spaces,
and can therefore be considered redundant.

We can see from the maps that the points in clus-
ter 1 present reasonably good (low) values for the
objective f1, good values for f2, and a poor perfor-
mance for objective f3. Points in cluster 2 present
very good performance for f1 and reasonably good
for f2, and a very poor performance for f3. It is
interesting to notice that the points belonging to
cluster 1 present a performance on f1 almost as
good as those in cluster 2, and “win” for objectives
2 and 3. By using this kind of information, the
designer can select a given cluster and discard an-
other, based, for example, on subjective criteria or
other project requirements not included in the op-
timization process. In the present case points from
cluster 1 seem more attractive than those in cluster
2, unless objective f1 had a much greater impor-
tance than the other two objectives (which is not
the case for the problem under consideration). Fig.
3 shows the field contour plot for a sample point
from each cluster.

Figure 3: Field plots for sample solutions from the
selected clusters
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Table 1: Sample Points from the Selected Clusters
Cluster r2 h2 d2 F1 F2 F3

1 2.75 2.09 0.12 0.50 0.26 1.75
1 2.72 2.19 0.12 0.40 0.27 1.52
1 2.76 2.06 0.12 0.50 0.25 1.80
2 3.29 0.86 0.19 1.10 0.02 1.17
2 3.30 0.85 0.19 1.10 0.01 1.12
2 3.30 0.80 0.19 1.30 0.01 1.05

5 Conclusion

We have explored the use of the self-organizing
maps for decision-making in multiobjective design
problems. By clearly displaying information con-
tained in the parameter and objective spaces, this
technique presents itself as a helpful tool for as-
sisting the designer in the choice of the configura-
tion that will be actually implemented, among the
large number of nondominated solutions usually re-
turned by multiobjective optimization algorithms.
The SOM can also provide qualitative understand-
ing about the solutions found and can, potentially,
be used to analyze the behavior of the objectives in
respect to changes in the variables. One limitation
of the presented technique is that for problems with
a large number of objectives, the analysis of the
similarities among the many maps generated can
become a cumbersome task. Suggestions for future
works include the investigation of the fusion of all
objectives into a single map, and the exploration
of quantitative metrics for analyzing the detected
clusters.
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