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Abstract—Novelty detection, also known as anomaly detection,
plays a crucial role in identifying new or abnormal instances
within a dataset. Traditional autoencoder models have been ef-
fective in learning compact representations of data, but they often
struggle with capturing fine-grained local variations in complex
and high-dimensional datasets. To address this limitation, we pro-
pose a novel learning method called Local Autoencoders (LAEs)
for novelty detection. LAEs incorporate local information into
the encoding and decoding processes, enabling more precise and
detailed reconstructions. In this paper, we present preliminary
results on evaluation of LAEs considering benchmark datasets
for time series novelty detection and compare their performance
against traditional (i.e., global) autoencoder and nearest neighbor
learning method. The results demonstrate LAEs’ competitive
performance in detecting novel instances, surpassing (in several
cases) traditional autoencoders. The proposed LAEs present
a promising avenue for further exploration in the field of
novelty detection, leading into new opportunities for research
and practical applications.

Index Terms—Local learning, Autoencoders, Novelty detection,
Time series

I. INTRODUCTION

In recent years, the field of artificial intelligence has wit-
nessed remarkable advancements, especially in the area of
deep learning. Autoencoders, a class of neural networks, have
emerged as a powerful tool for unsupervised learning and
dimensionality reduction [1]. They have been successfully
applied in various domains, ranging from computer vision [2],
[3] and natural language processing [4] to anomaly detection
[3], [5]–[10]. Autoencoders have gained significant attention
due to their ability to learn compact representations of input
data by encoding and decoding it through a bottleneck layer
(i.e., latent space). They are composed of two main com-
ponents: an encoder network that maps the input data to a
latent representation and a decoder network that reconstructs
the input from the latent space. The training objective of an
autoencoder is to minimize the reconstruction error.

Autoencoders have demonstrated exceptional performance
in numerous applications. In computer vision, they have been
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employed for image restoration [11], image denoising [12],
video surveillance [2], and feature extraction [1]. In natu-
ral language processing, autoencoders have been utilized for
sentiment analysis [13] and document forgery detection [14].
Additionally, they have proven valuable in anomaly detection
tasks, where they can learn to reconstruct normal instances
and identify outliers in the data [1]. Despite their successes,
traditional autoencoders face challenges when dealing with
large-scale and high-dimensional datasets. The global nature
of their encoding and decoding processes often leads to a loss
of fine-grained details and fails to capture local variations in
the data.

To address these limitations, we propose a new learning
method called Local Autoencoders (LAEs). LAEs incorporate
local information into the encoding and decoding processes,
allowing for a more specific and less costly reconstruction
of the input data. By leveraging local data clusters, LAEs
enhance the expressive power of autoencoders and improve
their performance in tasks like dimensionality reduction and
novelty detection. Novelty detection consists of the task of
identifying new or anomalous data in a data set. These new
data, generally called anomalies or outliers, present divergent
characteristics to a given set of data referred to as ordinary or
normal. This paper presents preliminary findings of applying
the Local Autoencoder (LAE) model in novelty detection. Ad-
ditionally, the proposed method shows potential for exploration
in diverse domains and applications.

The structure of this paper is organized as follows. Sec-
tion II discusses the problem of novelty detection and the
challenges associated with it. In addition, we introduce the
autoencoder neural network, and discuss the state-of-the-art
of autoencoders applied on novelty detection applications.
Section III provides a comprehensive overview of the proposed
Local Autoencoders (LAEs), describing their architecture and
the incorporation of local information into the encoding and
decoding processes. Section IV details the experimental setup
and the dataset used to evaluate the performance of LAEs
in the context of novelty detection. Section V presents the
preliminary results obtained, demonstrating the effectiveness
of the proposed model in detecting novel instances. Finally,
Section VI concludes the paper, highlighting the contributions
of this work and discussing avenues for future research.
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II. AUTOENCODERS IN NOVELTY DETECTION

Novelty detection involves the task of identifying new
or anomalous instances within a dataset. These novel data
observations, often referred to as anomalies or outliers, exhibit
distinctive characteristics compared to the normal or ordinary
data points. Simply put, any observation that deviates from
the group of normal observations is considered a novelty.
It is worth noting that in the literature, the terms anomaly
and outliers are symbolic and interchangeable. According to
[15], outliers are observed data points that significantly differ
from the distribution of other data and can be categorized as
either noise or anomalies. Noise refers to irrelevant data that
should be discarded as it may degrade the performance of the
detection model. On the other hand, anomalies or news repre-
sent outliers that provide new and valuable information to the
model, such as a new class or concept change. Autoencoders
have been widely used for anomaly and novelty detection in
various domains. In this section we present a brief review on
the state-of-the-art of this research field.

A. Methods and frameworks

In this section, we highlight several research papers that
have made contributions to the field by proposing techniques
and frameworks based on autoencoders. Building upon these
advancements, our work adds to the existing body of knowl-
edge in novelty detection area, focusing specifically on the
paradigm of local learning.

In [16] a new framework named as U-Transformer-based
anomaly detection framework (UTRAD) is introduced. Deep
pre-trained features are represented using transformer-based
autoencoders, enabling stable training and precise anomaly
detection and localization. UTRAD utilizes a multi-scale pyra-
midal hierarchy with skip connections and outperforms other
state-of-the-art methods on industrial and medical datasets.

In the deep learning field, a notable work was conducted by
[17]. This work introduces a novel deep learning framework
for linear systems with time-invariant parameters to address
faults in sensor data used for structural and infrastructural
monitoring. By employing a Convolutional Neural Network
(CNN) for fault detection and a suite of Convolutional Autoen-
coder (CAE) networks for data reconstruction, the framework
achieves high accuracy in fault detection, localization, and
data reconstruction for both single and multiple sensor faults.
Furthermore, the authors in [18] address the use of deep
learning techniques, particularly autoencoders (AEs), for fault
detection and diagnosis (FDD). They highlight the common
drawback of AEs in misclassifying faulty samples that resem-
ble normal patterns. To overcome this, they propose a source-
aware autoencoder (SAAE) that incorporates faulty samples
during training, providing flexibility in balancing recall and
precision, the ability to detect unseen faults, and applicability
to imbalanced datasets. They design a fault detection network
using a bidirectional long short-term memory (BiLSTM) with
skip connections, and introduce a deep network combining
BiLSTM and a residual neural network (ResNet) for fault
diagnosis, aiming to avoid input feature order randomness.

They present a comprehensive comparison between exist-
ing techniques and their SAAE-ResNet method using the
Tennessee-Eastman process, demonstrating the superiority of
their proposed FDD approach.

In the time series domain, a work carried out by [19]
discusses the challenges in multivariate time series classifi-
cation due to the reliance on hand-engineered features, which
can be subjective and time-consuming. To address this, the
authors propose a framework based on deep learning, specifi-
cally stacked LSTM Autoencoder Networks, for unsupervised
feature extraction. The compressed representations obtained
from the LSTM Autoencoders are then used for classification
using Deep Feedforward Neural Networks. The framework
is applied to sensor time series data in the process industry,
focusing on detecting the quality of semi-finished products and
predicting the next production process step. Real-world data
from the steel industry is used to validate the effectiveness of
the proposed approach.

B. Applications
The work conducted by [20] proposes the usage of un-

supervised ensemble autoencoders connected to a Gaussian
mixture model (GMM) for robust anomaly detection in high-
dimensional and sparse data. The ensemble autoencoder cap-
tures attention-based latent representations and reconstructed
features to identify outliers related to cyberattack anoma-
lies. Another interesting work presented by [21] rely on
autoencoder network models (including traditional, deep, and
deep convolutional autoencoders) for automatic fish species
identification.

In [22], the authors combine particle filters and autoencoders
for structural damage detection and localization in the field of
Structural Health Monitoring (SHM). Autoencoders capture
damage-related features from vibration measurements, while
particle filters estimate hidden states related to damages. The
algorithm is robust to changing environmental conditions and
offers a valuable tool for decision-making in structural health
assessment.

The study outlined in [2] introduces a Gaussian Mixture
Variational Autoencoder-based method for video anomaly de-
tection and localization. The method learns feature representa-
tions of normal samples as a Gaussian Mixture Model, allow-
ing the scoring of anomaly for test patches. Appearance and
motion anomalies are combined using a two-stream network
framework. The method demonstrates superiority over state-
of-the-art approaches on popular benchmark datasets.

There are numerous other works in both application and
technique proposals that have been introduced and are note-
worthy to mention, such as:

• Deep Autoencoding Gaussian Mixture Model (DAGMM)
on multi- or high- dimensional data [23];

• Stacked autoencoders-based adaptive subspace model
(SAEASM) is proposed for hyperspectral anomaly de-
tection [24]; and

• A framework named Adaptive Adversarial Latent Space
(AALS) for novelty detection [25].
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III. LOCAL AUTOENCODERS

A. Local learning

Consider a training set X = {xi}ni=1 composed of n data
points, where each data point is a d-dimensional vector, that
is, xi ∈ Rd represents de i-th vector. Local modeling is a
multimodel approach which creates a discriminant function of
the form [26]

g(x) =
K∑

i=1

hi(x)gi(x), (1)

where K is the number of partitions, as hi(x) is a function
that gives a notion of locality for the i-th model, represented
by the function gi(x). As mentioned in the previous section,
there are several local learning approaches in the literature.
Specifically, the type of local modeling addressed in this paper
is called cluster-based local modeling with hard partitioning
(CLHP) [27]. During CLHP training phase, the whole data set
X is divided into K partitions by a clustering algorithm. Then,
for each cluster Ci ⊂ X we build a classification model so
that each model in the set {gi}Ki=1 has only seen the data of its
associated partition. Considering that the subsets are disjoint,
it can be said that CLHP does a hard partitioning of the data
set. After fitting, the prediction applied on out-of-sample data
points rely on first searching for the closest local region, and
then using its respective local detector to predict the output.

Selecting regions in CHLP depend on prototypes that rep-
resent a local region, and we use dissimilarity measures (e.g.,
Euclidean distance) to the K-means prototypes for finding the
closest local region.

B. Local autoencoders (LAE)

Local autoencoders (LAE) encompass a clustering-based
local model characterized by a two-stage framework, namely
local partitioning and local learning. The schematic repre-
sentation of the LAE model training process is depicted in
Figure 1, while Algorithm 1 delineates the steps for training a
LAE model. As mentioned before, local partitioning involves

the utilization of a prototype-based clustering algorithm to
construct a model capable of grouping data based on their
features’ similarities. Subsequently, the phase of local learning
commences, and each data point within each cluster serves as
input for the training of a localized autoencoder model. The
cluster-based model, also referred to as the local partitioning
model, plays a pivotal role in orchestrating the training process
by delineating k distinct local regions.

Note that the proposed technique can be explored in two
applications: data compression and reconstruction; and novelty
detection. Regarding data compression, it will be evaluated
if the proposed local autoencoders affects the reconstruction
error. As for the case of novelty detection, there is a further
step that must be considered in training: the computation of
a local threshold (θ). As describred in Algorithm 1, for each
local autoencoder LAEi, a threshold θi must be computed. As
shown in Figure 1, the thresholds are computed based on the
localized reconstruction error which may be computed by the
Euclidean distance between the original instance xi and the
reconstructed one, represented by is given by x′

i as described
in Equation (2):

eij = ||xij − x′
ij ||22, (2)

where eij is the reconstruction error of the j-th instance on
i-th local cluster. Note that j = {1, . . . , n1}, where ni denotes
the number of instances in i-th local cluster.

Therefore, for each local cluster i a reconstruction error
vector is given by

ei =




ei1
ei2
...

eini


 . (3)

As for the threshold, it was computed as following

θi = f(ei) = mean(ei) + std(ei), (4)

where mean(ei) and std(ei) stand for the mean and standard
deviation applied on the i-th local cluster reconstruction error.

Local partitioning
(e.g., K-means)

Autoencoder 1

kth local
training set

2nd local
training set

1st local
training set

Trained local
partitioning model

Trained local
autoencoder 1

Trained local
autoencoder 2

Trained local
autoencoder k

1st local reconstructed
training set

2nd local reconstructed
training set

kth local reconstructed
training set

Autoencoder 2

Autoencoder k

Fig. 1: Training process of local deep autoencoders.
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Algorithm 1 Local autoencoder for novelty detection

Require: Training dataset X , number of local regions k
Ensure: Local-based Deep Autoencoder

1:
2: Local partitioning:
3: 1. Train a clustering-based model to segment the training data into k subsets.
4: 2. Define the k local subsets: {X1, . . . ,Xk}.
5:
6: Local training:
7: for i← 1 to k do
8: 1. Train ith local autoencoder (LAEi) to fit on the Xi subset.
9: 2. Reconstruct all instances from Xi subset using the local trained model.

10: 3. Compute the reconstruction errors for all instances.
11: 4. Compute the novelty local threshold θi based on the reconstruction error distribution.
12: end for
13:

It is important to mention that we arbitrarily selected the
Equation (4) for computing the threshold. Nevertheless, there
are several other ways of computing it [28]. Furthermore, it
is worth noting that for the novelty detection applications,
the way in which the detection threshold is calculated is of
paramount importance. However, as the focus of this work
is to show preliminary results on the autoencoder architecture
based on local learning (proposed in this paper), we decided to
use the same threshold calculation for all local autoencoders.

IV. EXPERIMENTATION SETTINGS

Within this section, we detail the experimental settings
that were employed to assess the proposed method. In the
experiment, we have evaluated the LAE considering several
datasets from UCR repository [29]. The datasets used in this
stage are described in Table I.

It is important to mention that each dataset described in
Table I refers to a binary classification problem. For treating
these datasets as an one-class classification problem (i.e.,
novelty detection) we have considered the class with greater
quantity of samples as the background (or normal) class, as
the other will be considered a novelty class. Additionally,
a baseline multi-class based algorithm, known as k-nearest
neighbor (KNN), was used in order to evaluate the overall
performance of the autoencoder based models. In this phase
of the experiment, our goal was to assess the novelty detection
effectiveness of the proposed technique in comparison to the
conventional autoencoder. Additionally, we aimed to compare
its predictive capabilities with a baseline method: KNN. To
address this, an evaluation was conducted employing detection
measures including accuracy, precision, recall, and F1-score.

Moreover, we conducted an experiment to investigate how
increasing the number of local regions in LAE impacts its
performance. To achieve this objective, we trained several
LAE models, systematically varying the parameter denoting
the number of local regions (k) from 2 to 9. Subsequently,
we computed metrics to observe the evolution of model
performance with the increment in the number of regions.

This experiment was exclusively carried out on the Wafer
dataset, as its purpose was to highlight a limitation associated
with the use of local models. Specifically, it aimed to empha-
size that local models are inherently influenced by the manner
in which clusters are established, particularly with regard to
the availability of an adequate number of samples within a
cluster for effective learning model fitting.

V. RESULTS

In this section, we present and discuss the results obtained
from computer experiments. To assess the disparity in recon-
struction outcomes between GAE and LAE, a comparison
was made by plotting the difference between their respective
reconstructions, as depicted in Figure 2. The visual examina-
tion reveals noticeable distinctions in the reconstructed data.
However, it becomes challenging to quantitatively gauge the
extent of these differences and their implications in terms of
anomaly detection.

To assess the predictive performance, we have utilized
detection metrics encompassing accuracy, precision, recall,
and the F1-score. These metrics were utilized to quantify
the performance of GAE and LAE in terms of their ability
to identify anomalies. By employing these measures, a more
comprehensive understanding of the comparative effectiveness
of GAE and LAE in anomaly detection can be obtained.

The results presented in Table II we can observe that
across the evaluated datasets, the consistent trend indicates
that 1-NN outperforms both LAE and GAE in terms of F1-
score. It is important to note that 1-NN is a multi-class
classification method, while GAE and LAE are one-class
classifiers, relying solely on data from one class. The 1-
NN algorithm consistently demonstrates strong performance,
as evidenced by its consistently high F1-scores across the
datasets. In comparison, LAE exhibits relatively lower F1-
scores than 1-NN but demonstrates better performance than
GAE in most cases. GAE, on the other hand, generally exhibits
the lowest F1-scores among the three algorithms.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

4



TABLE I: UCR Datasets used in experiment

Dataset n instances n features n classes target indices n normal instances n anomaly instances n train n train normal n test
BeetleFly 40 512 2 [1] 20 20 20 10 20

Coffee 56 286 2 [1] 29 27 28 14 28
ECGFiveDays 884 136 2 [1] 442 442 23 14 861

ItalyPowerDemand 1096 24 2 [1] 549 547 67 34 1029
ProximalPhalanxOutlineCorrect 891 80 2 [0] 605 286 600 194 291

Wine 111 234 2 [1] 54 57 57 30 54
Wafer 7164 152 2 [-1] 6402 762 1000 97 6164

(a) Normal series (global reconstruction) (b) Normal series (local reconstruction)

(c) Abnormal series (global reconstruction) (d) Abnormal series (local reconstruction)

Fig. 2: Global vs. local time series reconstruction on Coffee dataset.

These findings highlight the effectiveness of the 1-NN algo-
rithm for anomaly detection tasks, benefiting from its multi-
class classification approach. However, it is worth considering
the inherent differences in the methodologies employed by 1-
NN, LAE, and GAE. The observed variations in performance
can be attributed to the contrasting characteristics and under-
lying principles of these algorithms.

When comparing LAE with GAE, it can be observed
that LAE generally outperformed GAE in terms of F1-score.
LAE (k=2) consistently achieved higher F1-scores across the
datasets, indicating its better ability to balance precision and

recall in anomaly detection. On the other hand, GAE showed
lower F1-scores, suggesting that it may struggle in accurately
identifying anomalies compared to LAE (k=2). The perfor-
mance difference between LAE and GAE can be attributed
to their underlying algorithms. LAE utilizes a local learning
approach, which takes into account the density of data points
in each local cluster. This allows for better discrimination
between normal and anomalous instances.

The Table III presents the performance metrics for various
algorithms based on their accuracy, precision, recall, F1 score,
and error rate.
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TABLE II: Model performance on UCR time series datasets

Dataset Model Acc. (%) Prec. (%) Rec. (%) F1 (%) Error (%)

BeetleFly 1-NN 75.00 100.00 66.67 80.00 25.00
GAE 55.00 10.00 100.00 18.18 45.00

LAE (k=2) 65.00 30.00 100.00 46.15 35.00

Coffee 1-NN 100.00 100.00 100.00 100.00 0.00
GAE 67.86 46.15 75.00 57.14 32.14

LAE (k=2) 60.71 38.46 62.50 47.62 39.29

ECGFiveDays 1-NN 79.67 91.59 73.82 81.75 20.33
GAE 43.67 82.01 46.25 59.14 56.33

LAE (k=2) 42.97 80.84 45.83 58.50 57.03

ItalyPowerDemand 1-NN 95.53 94.93 96.06 95.49 4.47
GAE 61.61 82.26 58.13 68.12 38.39

LAE (k=2) 68.61 80.51 64.94 71.89 31.39

ProximalPhalanx1 1-NN 80.76 54.35 78.12 64.10 19.24
GAE 54.64 94.57 40.65 56.86 45.36

LAE (k=2) 52.92 95.65 39.82 56.23 47.08

Wafer 1-NN 99.55 98.65 97.19 97.91 0.45
GAE 64.65 72.03 19.38 30.54 35.35

LAE (k=2) 89.68 79.85 51.40 62.54 10.32

Wine 1-NN 61.11 59.26 61.54 60.38 38.89
GAE 53.70 85.19 52.27 64.79 46.30

LAE (k=2) 48.15 74.07 48.78 58.82 51.85

TABLE III: Model performance on Wafer dataset

Algorithm Acc. (%) Precision (%) Recall (%) F1 (%) Error (%)
1-NN 99.55 99.65 99.84 99.75 0.45
GAE 76.25 75.29 97.53 84.98 23.75

LAE (k=2) 83.86 82.16 99.69 90.08 16.14
LAE (k=3) 82.97 81.41 99.38 89.50 17.03
LAE (k=4) 82.28 80.56 99.48 89.03 17.72
LAE (k=5) 88.03 86.96 99.56 92.84 11.97
LAE (k=6) 90.07 89.33 99.49 94.14 9.93
LAE (k=7) 89.23 88.27 99.61 93.60 10.77
LAE (k=8) 86.26 84.94 99.59 91.69 13.74
LAE (k=9) 87.62 86.49 99.58 92.57 12.38

In summary, the results reveals that:
• The 1-NN algorithm demonstrates high accuracy, preci-

sion, recall, and F1 score, all above 99%. It achieves
excellent performance with a low error rate of 0.45%.
This suggests that instance-based algorithms perform
remarkably well in classifying these dataset.

• The GAE algorithm shows lower overall performance
compared to 1-NN. Although it achieves a reasonable
accuracy of 76.25%, its precision, recall, and F1 score are
comparatively lower, indicating some misclassifications.

• LAE (k=2) to LAE (k=9): These algorithms, with varying
values of k (from 2 to 9), demonstrate consistent per-
formance improvement compared to GAE. They achieve
accuracy ranging from 82.28% to 90.07%, precision
ranging from 80.56% to 89.33%, recall ranging from
99.38% to 99.61%, and F1 score ranging from 89.03% to
94.14%. These results indicate that increasing the number
of regions may improve the detection performance of
a local model. Nonetheless, as the granularity of local
regions increases, there is a proportional reduction in the
quantity of data within each respective region, impacting
the model’s ability to learn with the available data.

Overall, the LAE algorithms outperform the GAE algorithm
in terms of accuracy, precision, recall, F1-score, and error
rate. However, it is worth noting that further evaluation and
comparison with other algorithms are necessary to determine
the significance of these results. Additionally, it would be
beneficial to investigate the computational complexity and
scalability of these algorithms to assess their practical appli-
cability in larger datasets.

It is worth mention that these results should be interpreted in
the context of the specific classification problem and the data
used for evaluation. Further analysis, including consideration
of other metrics and validation methods, is recommended for
a comprehensive evaluation of the model’s performance.

VI. CONCLUSIONS

This paper presents a novel autoencoder method based on
a local learning approach. The method consists of two main
steps: utilizing a cluster-based algorithm to define local data
regions and training local autoencoders. Initially, the proposed
method is evaluated through experiments conducted on bench-
mark datasets, specifically in the domains of data compression
and novelty detection. The obtained results showcase the
method’s competitive performance compared to conventional
autoencoders, its effectiveness in mitigating the adverse effects
of noisy data, and its ability to enhance predictive accu-
racy. However, further investigation is necessary to assess the
method’s performance on larger datasets and address potential
limitations associated with defining local regions.

It should be noted that this paper provides preliminary
results and lacks comprehensive experimentation incorporating
cross-validation techniques and larger datasets. Additionally,
we intend to explore alternative approaches for defining
local clusters and examine various methods of combining
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the outputs of local models to compute the reconstruction.
Moreover, future research efforts will focus on optimizing
the determination of local partitions and devising appropriate
validation metrics for local models. Furthermore, our intention
is to subject the proposed method to evaluation within more
realistic scenarios, applying it to address genuine problems
involving time series novelty detection.
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