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Abstract—Diabetic retinopathy (DR) is a set of retinal and
vitreous changes caused by diabetes which causes visual acuity
loss in its later stages, and many patients remain undiagnosed
even when the disease is already causing damage. Diabetic
retinopathy can be diagnosed in its earlier stages by analysis of
a fundoscopy examination image, in which the ophthalmologist
searches for exudates and microaneurysms, which are early
lesions caused by DR. Ophthalmologists have several difficulties
in providing accurate and reliable diagnoses to all patients
examined. Thus, computer vision can assist ophthalmologists
in diagnosing this disease using procedures such as image
segmentation and classification. This work uses the YOLOv8
deep learning model to segment and classify DR retinal lesions in
fundoscopy examination images using the e-ophtha dataset. Four
models were trained, one segmenting and classifying exudates,
other microaneurysms, and the last two segmenting both lesions
together, one trained using the whole dataset, and the other
trained using only the lesion images of the dataset without the
healthy images. The segmentation results were quantitatively
measured using the sensitivity, intersection-over-union, and DICE
coefficient metrics. The exudates model obtained the best seg-
mentation results, with 95.37% mean sensitivity and intersection-
over-union and 97.62% mean DICE coefficient. The models were
able to classify all images correctly between two classes, lesion
and healthy, where images with one or more lesions segmented
were classified as lesion images, and images without lesions were
classified as healthy. The microaneurysms model obtained high
median metrics results compared to its mean results, indicating
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that it performs close to the state-of-the-art on at least half of
the testing dataset but performed worse in a few more complex
cases.

Index Terms—diabetic retinopathy, YOLOv8, image segmen-
tation, image classification, deep learning

I. INTRODUCTION

Diabetic retinopathy (DR) is the term used to describe a set
of retinal and vitreous changes caused by diabetes, which in
later stages can cause damage to visual acuity. DR is one of
the leading causes of irreversible blindness, affecting around
40% of people with diabetes [1]. DR may start to develop as
early as seven years before the diagnosis of type 2 diabetes,
and more than 60% of type 2 diabetic patients will have
some degree of retinopathy after 20 years of onset of diabetes
mellitus [2]. Due to the low visual acuity often being a late
symptom of DR, many patients remain undiagnosed even when
the disease is already causing severe retinal damage. It can be
detected by analyzing a fundoscopy examination image, where
microaneurysms (red dots) or exudates (yellow dots) indicate
the disease. Fundus imaging is an initial and commonly used
diagnostic method due to being non-invasive, cost-efficient,
and portable [3].

Kaur et al. [4] discuss several difficulties in the manual
diagnostic of DR, such as a large number of retinal fundus
images to be analyzed, which can cause ophthalmologists
to misinterpret abnormalities due to fatigue. Furthermore,
morphological changes in the retina are often subtle and small,
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TABLE I: Related works segmentation results review

Segmentation model Dataset Hard exudate Microaneurysm
SEN (%) DICE (%) IOU (%) SEN (%) DICE (%) IOU (%)

Modified U-Net [8] In-house and IDRiD 93.60 - - 89.20 - -
Modified U-Net [9] e-ophtha and IDRiD 99.88 99.98 - 99.88 99.98 -
Feature Fusion U-Net [10] IDRiD 87.55 91.38 84.14 59.33 71.88 56.10
Bayesian deep learning model [11] IDRiD 76.7 - - 46.40 - -
Nested U-Net [12] MESSIODOR and DIARETDB1 - - - 88.89 79.21 -
Custom CNN [14] IDRiD 89.10 - - 89.10 - -
Modified U-Net [15] IDRiD and DIARETDB1 - - - 80.49 86.51 76.61
Our method (YOLOv8) e-ophtha 95.37 97.63 95.37 80.47 86.32 80.47

making the analysis process tedious and time-consuming,
and may even cause observer variability [5]. Computer-aided
diagnostic assistance to an expert is a viable method to help
ophthalmologists overcome these daily difficulties, making the
fundoscopy image analysis process faster and the DR diagnos-
tics more accurate. Image segmentation and classification can
be beneficial, as they can show the ophthalmologist a previous,
fast indication of the possible presence and area of DR lesions
in the fundoscopy image, reducing the observer variability and
the chances of imprecise a diagnosis.

This work used the YOLOv8 deep learning model to
segment the DR lesions and classify the images to identify
the DR in fundoscopy images. There are still relatively few
research works on the YOLOv8 model for medical image
processing [6], even though it offers state-of-the-art results in
computer vision tasks [7]. Therefore, it is necessary to research
its capabilities in high-interest areas, such as medical image
processing.

In this work, section 2 discusses related works about DR
classification and lesion segmentation and other applications
using YOLOv8 for classification and segmentation, section
3 describes the used dataset and methodology to obtain and
evaluate the results, section 4 presents the obtained results
and the metric evaluations, and section 5 discusses the im-
plications and the impact of the obtained results and possible
methodology that future works could follow to improve the
understanding of the problem and its solution.

II. RELATED WORKS

Son et al. [8] obtained 93.60% and 89.20% sensitivity
in hard exudate and hemorrhage segmentation, respectively,
using a modified U-Net model trained on an in-house dataset
and tested in the e-ophtha dataset. Sambyal et al [9] as
too using a modified U-Net architecture, obtained 99.88%
sensitivity and 99.98% DICE score for exudate and mi-
croaneurysm segmentation, trained on e-ophtha dataset and
validated on IDRiD dataset, both datasets preprocessed. Xu
et al. [10] obtained 87.55% and 59.33% sensitivity, 84.14%
and 56.10% intersection-over-union, and 91.38% and 71.88%
DICE score for hard exudate and microaneurysm segmen-
tation respectively using Feature Fusion U-Net trained and
tested on preprocessed IDRiD dataset. Garifullin et al. [11]
obtained 76.7% and 46.4% sensitivity for hard exudate and
microaneurysm segmentation respectively, using a Bayesian

deep learning model trained and tested on luminosity and
contrast enhanced IDRiD dataset. Kundu et al. [12] obtained
88.89% sensitivity and 79.21 DICE coefficient scores in red
lesion segmentation using a Nested U-Net architecture based
on [13], trained and tested on Contrast Limited Adaptive
Histogram Equalization (CLAHE) preprocessed MESSIDOR
and DIARETDB1 datasets, with a sub-image classification
method for removal of false positives. Valizadeh et al. [14]
obtained 89.10% sensitivity in DR lesion segmentation using
a custom CNN after detection of the target region, trained and
tested on IDRiD dataset. Skouta et al. [15] obtained 80.49%
sensitivity, 76.61% intersection-over-union, and 86.51% DICE
score in hemorrhage semantic segmentation using a custom
U-Net trained on IDRiD dataset and tested on IDRiD and
DIARETDB1 datasets.

From the above studies, it can be concluded that it is possi-
ble to achieve satisfactory results on DR lesion segmentation
using the e-ophtha dataset for training, possibly even achieving
state-of-the-art results. A summary of the best segmentation
results from related work and the present work and information
regarding the segmentation model and the dataset is presented
in Table I.

To our best knowledge, there has been no work in the
literature using YOLOv8 for the segmentation or classification
of microaneurysms and exudates to detect diabetic retinopathy.
The studies that used YOLOv8 for localization, segmentation
and classification, with another purpose area, obtained satis-
factory results. Islam et al. [16] obtained 100% classification
accuracy using YOLOv8 to classify seven distinct varieties of
leafy vegetables, the highest result among all used models,
including YOLOv5 and YOLOv7. Phan and Nguyen [17]
obtained 94.00% accuracy using YOLOv8 to detect faults in
photovoltaic cells, 11% more than YOLOv7. Aboah et al. [18]
obtained 92.30% precision and 90.7% recall using YOLOv8 to
detect real-time multi-class helmet violation in traffic security
camera images, more than YOLOv5 and YOLOv7. Ju and
Cal [6] obtained 88.50% using YOLOv8 to segment bone
fractures in pediatric wrist trauma x-ray images. Further-
more, the YOLOv8-seg model has achieved state-of-the-art
results on various object detection, and semantic segmentation
benchmarks while maintaining high speed and efficiency [7].
Thus, YOLOv8 appears to have consistently better results
than its previous versions, and as it shows great potential
in image classification and segmentation problems, further

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

2



Fig. 1: Diagram of overall workflow process.

testing its capabilities in other undeveloped areas is of utmost
importance.

This work evaluates the YOLOv8 segmentation and classi-
fication deep learning models in the task of detection of DR.
Since we could not find previous works using YOLOv8 for
this task, this work provides a significant advancement to the
medical image processing area, especially the area of fundus
image processing for the detection of DR, as it provides results
of a yet unused deep learning model to this task and compares
it to results of well knows works in the area.

III. METHODS

The dataset was divided into training, validation and test
sets. 60% of the dataset was set aside for the training set,
30% for the testing set, and 10% for the validation set. Images
for each set were selected randomly. The division was done
as such to provide the model a relevant amount of images to
train, but it was necessary to use 30% of the dataset for testing
to be able to evaluate the model effectively. Furthermore, four
trainings were made: One with the exudate and healthy image
datasets (EX model), one with the microaneurysm and healthy
image datasets (MA model), one with only the exudate and
microaneurysm image datasets (LS-A model), and one with
the whole e-ophtha dataset, including exudate, microaneurysm
and healthy image datasets (LS-B model). The LS-A and
LS-B models were trained using exudate and microaneurysm
image datasets as the same class, and images containing both
exudates and microaneurysms had their ground truth masks
fused. Each sub-dataset, test, validation, and training has the
same lesion to healthy image ratio for each model. To train
it was used the YOLOv8 model. The overall process of
dataset preparation, segmentation and classification training,
and prediction and quantitative evaluation of the results is
shown in Fig 1.

The EX model has a considerably imbalanced dataset, with
only 47 exudate images and 260 background (without lesion)
images. The MA and LS-B models have a more reasonable
lesion-to-background image ratio in the dataset, since the
background set has less than twice as many images as the
lesion set. However, in LS-A and LS-B models, the exudate-
to-microaneurysm image ratio is also imbalanced, with 26

exudate images to 127 microaneurysm images and 21 images
with both exudates and microaneurysms.

Imbalanced datasets can introduce bias and hinder the
undestanding of different classes in data-driven algorithms, as
well as impact the generalization capabilities of the algorithm
[19]. Thus the exudate-to-background image ratio could be a
possible source of error in the trained models, especially when
applied to real world scenarios where the distribution of data
is more diverse.

A. Dataset

The e-ophtha dataset by [20] was used for this research. E-
optha is a database of color fundus images specially designed
for scientific research in DR. The e-ophtha dataset consists of
413 images altogether, of which 260 are without lesions, 148
contain microaneurysms and 47 contain exudates (21 images
contain both microaneurysms and exudates). The example of
each class’s image and ground truth mask samples from the
e-ophtha dataset is presented in Fig. 2.

B. Metrics

To quantitatively analyze the experimental results, the sensi-
tivity (SEN), DICE coefficient (DICE) and intersection-over-
union (IOU) metrics were used to evaluate the performance
in the task of segmenting the DR lesions. To calculate the
metrics, the true positive (TP), false negative (FN) and false
positive (FP) of each image were first calculated. The true
positive refers to the intersection of the true lesion area and
prediction lesion area, false negative refers to the intersection
of the true lesion area and predicted background area (normal)
area and false positive refers to the intersection of the true
background area and predicted lesion area. Equation (1) shows
the relation between the SEN metric and TP and FN areas.
Equations (2) and (3) show the relations of the DICE and
IOU metrics to TP, FP and FN areas.

SEN =
TP

TP + FN
, (1)

DICE =
2TP

2TP + FP + FN
, (2)
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IOU =
TP

TP + FP + FN
, (3)

(a) (b)

(c) (d)

(e) (f)

Fig. 2: E-ophtha image sample. (a) and (B) Exudate image
and mask. (c) and (d) Microaneurysm image and mask. (e)
and (f) Healthy image and mask.

The SEN calculates the area of overlap between predicted
and ground truth masks divided by the whole mask area that
should be identified as positive. It is helpful to evaluate the
performance in cases where false positives are not of concern,
but false negatives will incur high costs in the score. The DICE
coefficient evaluates a generalized performance of the model,
calculating twice the area of overlap of predicted and ground
truth masks divided by the total area of both masks. However,
a low DICE score can be caused by many false positives or
false negatives without distinction. The IOU calculates the area
of overlap between predicted and ground truth masks divided
by the unified area of both masks. It gives a similar but usually
lower score than the DICE coefficient. Regarding the above
commonly used metrics, the closer they are to 1, the better the
segmentation performance [10]. These metrics were chosen for
the main reason of penalizing false negatives.

C. YOLOv8

The YOLOv8 deep learning model by [21] was used for this
research. YOLOv8 is a state-of-the-art convolutional neural
network architecture for object recognition and is the latest
version of YOLO by Ultralytics at the time of writing.
YOLOv8 can perform detection, segmentation, classification,

pose estimation, and tracking. In this work, the segmentation
and classification features were used.

YOLOv8 can perform real-time object detection and im-
age segmentation. The preprocessing of images in real-time
applications is usually unviable due to hardware limitations.
Thus, this work evaluates the performance of YOLOv8 without
dataset preprocessing due to the possibility of the development
of real-time applications using YOLOv8 for diabetic retinopa-
thy lesion segmentation.

The model parameters used to train all four models were as
follows: batch size 8, image size 640 × 640 × 3, learning rate
0.01, and 50 epochs (using the best model for evaluation, not
the last). The model was trained with the YOLOv8n-seg model
as a base. YOLOv8n-seg is a segmentation model pretrained
in the COCO dataset.

IV. RESULTS

For each model, the SEN, IOU, and DICE coefficients were
measured between the ground truth mask and the predicted
mask for each image of the corresponding testing set. Then, the
mean and median of the metrics results of all images of each
model were calculated. The mean was chosen as it provides
the average result for all images tested, and the median offers
a comparative view to the mean to identify if the model
provides disparate results for different groups of images. All
models were evaluated for segmentation and classification at
confidence level (conf) = 0.0001, as that confidence level has
given the best results overall, except for the MA model, which
was evaluated at conf = 0.00001.

A. Segmentation

The EX model obtained mean 95.37% and median 95.40%
SEN, mean 95.37% and median 95.40% IOU, and mean
97.63% and median 97.65% DICE coefficient scores. An
example image EX model prediction and the corresponding
ground truth, marked over the original image, is presented in
Fig. 3.

The MA model obtained mean 80.47% and median 97.69%
SEN, mean 80.47% and median 97.69% IOU, and mean
86.32% and median 98.83% DICE coefficient scores. An
example image MA model prediction, and the corresponding
ground truth, marked over the original image, is presented in
Fig. 4.

(a) (b)

Fig. 3: EX model segmentation sample at conf = 0.0001. (a)
ground truth mask. (b) predicted mask.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

4



(a) (b)

Fig. 4: MA model segmentation sample at conf = 0.00001. (a)
ground truth mask. (b) predicted mask.

(a) (b)

(c)

Fig. 5: LS-A and LS-B models segmentation samples at conf
= 0.0001. (a) ground truth mask. (b) predicted mask for LS-A.
(c) predicted mask for LS-B.

The LS-A model obtained mean 75.52% and median
81.65% SEN, mean 75.52% and median 81.65% IOU, and
mean 84.46% and median 89.90% DICE coefficient scores.
The LS-B model obtained mean 68.96% and median 68.87%
SEN, mean 68.96% and median 68.87% IOU, and mean
79.81% and median 81.56% DICE coefficient scores. An
example image LS-A and LS-B model predictions and the
corresponding ground truth, marked over the original image,
is presented in Fig. 5.

The EX model obtained the best segmentation metrics
results by far, even being close to a state-of-the-art exudate
segmentation model, as its results were superior to most of
the related works models, even being trained in an imbalanced
dataset and without preprocessing to improve the model’s per-
formance. The EX model obtained higher metric values than
all related works’ models observed, with the sole exception of
the modified U-Net proposed by [9].

The LS-A model obtained better results than the LS-B
model. Still, both models obtained competitive results to the
related works observed, considering both hard exudate and
microaneurysm segmentation results. Since the LS-A and LS-
B results were average and the models don’t differentiate

TABLE II: Segmentation models metrics results

Model SEN (%) IOU (%) DICE (%)
Mean Median Mean Median Mean Median

EX 95.37 95.40 95.37 95.40 97.63 97.65
LS-A 75.52 81.65 75.52 81.65 84.46 89.90
LS-B 68.96 68.87 68.96 68.87 79.81 81.56
MA 80.47 97.69 80.47 97.69 86.32 98.83

between exudates and microaneurysms in fundus images, they
may not be the best choice for assisting professionals in
diagnosing DR. The MA model obtained a higher mean IOU
score than all microaneurysm segmenting models observed,
and its SEN and IOU mean scores were competitive with the
related works. However, the MA model obtained considerably
higher median metric values than the mean values, which can
lead to the conclusion that it performed close to the state-of-
the-art in more than half of the testing data, but some small
number of harder to segment images dragged the mean value
down. It is possible that with a preprocessing technique added
to the workflow, the MA model’s results can be improved
in these more complex cases since the microaneurysms are
very similar to the background of the fundus images [15]. The
metrics results for each segmentation model are presented in
table II.

Furthermore, the equal SEN and IOU metrics in every
model show that no false positives were predicted. This
indicates that, even if the model performance is already high,
it can still be improved to detect more lesions, as there may
be room to increase the segmented area without increasing the
number of FPs.

B. Classification

Considering classifying the images into two classes, lesion
and healthy, the EX and MA models could classify all images
correctly without any false positives or negatives. The EX and
MA models have 15 and 45 lesion class images respectively,
and 78 healthy class images in their testing datasets. The
LS-A model could classify all images correctly, but the LS-
B model classified two lesion images as healthy. The LS-A
and LS-B models have 53 lesion class images and 77 healthy
class images in their testing datasets. All models’ confusion
matrices, where images with one or more lesions segmented
were classified as lesion images, and images without lesions
were classified as healthy, are shown in Fig. 6.

Both EX, MA, and LS-A models were able to classify
every image correctly, which indicates a high precision of
classification of the YOLOv8 model, even if the MA and LS-
A model has considerably worse mean segmentation metrics
results compared to the EX model. The LS-B model classified
almost all images correctly. However, it misinterpreted two
lesion images as healthy images, which in medical imaging
can be a fatal error, as DR patients could be wrongly diagnosed
as healthy.
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(a) (b)

(c) (d)

Fig. 6: Confusion matrices of each model. (a) EX model at
conf = 0.0001. (B) MA model at conf = 0.00001. (c) LS-A
model at conf = 0.0001 (d) LS-B model at conf = 0.0001.

V. CONCLUSION

The analysis of fundoscopy examination images is important
in diagnosing diabetic retinopathy. In this work, the YOLOv8
segmentation model was able to segment exudates with great
results as compared to previous works techniques, even with-
out the use of preprocessing in the training dataset. The
model could also correctly classify all images between DR
affected and healthy, including exudate and microaneurysm
images. The model could also segment microaneurysms with
competitive results compared to previous works. However, it
scored a much higher median than mean in this task, indicating
that it performs close to the state-of-the-art in at least half of
the testing images but performs worst on a small number of
more complex cases.

It is clear from the results that YOLOv8 offers excellent
potential in medical image processing applications, as it out-
performed previous methods in the measured metrics. There-
fore, the presented method will help assist ophthalmologists in
diagnosing diabetic retinopathy by both classifying the images
and segmenting microaneurysms with high accuracy.

Using preprocessing to enhance red lesions in the images
could make the model consistently segment microaneurysms
with results similar to or better than previous works, as was
done with exudates. Further research in image preprocessing to
enhance YOLOv8 segmentation results is necessary to explore
all the model’s potential in the task of segmenting DR. Further
research must also be made to evaluate YOLOv8 segmentation
and classification in other DR image datasets, as well as
segment and classify more DR lesion classes to differentiate
various stages of the disease.
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