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Abstract—The design of new steel grades is a continuous
pursuit in the metallurgical industry, aiming to develop lighter
and stronger materials for diverse industries. This study explores
the use of an ensemble of artificial neural networks, named E-
ANN, to model the relationships between chemical composition,
process parameters, and mechanical properties of five types of
steels. Auto-Keras, an automated machine learning framework,
is employed to identify the best configurations for the ANNs
and create the ensemble model. The best ANN, named B-ANN,
obtained through the same AutoML process, and the one model
ANN generated by Auto-Keras, named ANN, are used as a
benchmark to evaluate the E-ANN performance. The results
obtained show that the E-ANN model is competitive in terms
of predictive capability. Sensitivity analysis provides insights into
the influence of input parameters on mechanical properties, while
Shapley Value analysis highlights the relative importance of these
parameters. The findings contribute to the understanding of steel
behavior and provide guidance for steel design processes. This
study demonstrates the effectiveness of E-ANN in predicting
mechanical properties and emphasizes the value of data-driven
techniques and automated machine learning in steel design.

Index Terms—Steel, Prediction of mechanical properties, Data-
driven model, Automated Machine Learning

I. INTRODUCTION

The design of new grades of steel is a recurring theme in the
metallurgical industry, with researchers relentlessly seeking
to create lighter and stronger steel to meet the requirements
of various industries. Achieving the desired characteristics
involves altering the chemical composition and process tem-
peratures, which can be a complex and challenging task [23].
As a result of the intricate nature of variable relationships in

the field, many insights and mathematical equations have been
derived from experimental data. While vast amounts of data
are available from production lines and testing, interpreting
this data can be difficult due to the erratic and highly variable
environments in which it is collected [3].

When it comes to the choice or development of steel, it
is essential to consider the desired mechanical behavior, as it
determines how the steel will respond to the applied forces.
In this work, the properties of tensile resistance (TS), yield
strength (YS), and elongation (EL) will be addressed. As
these mechanical properties are directly related to the internal
organization of steels, they are dependent on the chemical
composition and process parameters employed in their pro-
duction [20]. Each type of steel has unique characteristics
regarding its internal structure, hardening mechanisms, and
alloy element adhesion [7], which increases the complexity
of predicting their mechanical properties. In this study, data
from five types of steels were considered, namely: Interstitial
Free (IF), Bake Hardening (BH), Dual-Phase (DP), Transfor-
mation Induced Plasticity (TRIP), and High Strength Low-
Alloy (HSLA), which requires a careful and detailed analysis
of the specific characteristics of each material for a reliable
design model.

To overcome these challenges, data-driven techniques such
as Artificial Neural Networks (ANNs) have become increas-
ingly popular. ANNs have the ability to learn and generalize
from large datasets, enabling them to capture both linear and
nonlinear patterns that traditional modeling techniques may
not discern [1]. Therefore, to ensure the best generalization
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of the data, it is essential to find the most appropriate set of
parameters and architecture for the problem [23]. Failure to do
so can result in poor performance, overfitting, or underfitting
of the model, leading to inaccurate predictions and unreliable
results.

To assist in the choice of hyperparameters, a field has
stood out in the machine learning area, namely Automated
Machine Learning (AutoML). Its objective is to automate the
entire process of model creation, training, and deployment.
One of the main techniques used in AutoML is Neural Ar-
chitecture Search (NAS), which seeks the best neural network
architecture through search space exploration and performance
evaluation. The use of NAS has presented promising results
in various areas, especially in image recognition [5].

Even after optimizing the ANN parameters depending on
the complexity of the input data and therefore their rela-
tionships, the results generated by the ANN can suffer from
the poor generalization of input space regions, resulting in
considerable errors. To reduce this problem, some authors
[2], [8] have resorted to using ensembles of ANN, with this
structure formed by ANNs already trained, and the final result
as a function of each of the networks. Thus, the combination of
these networks with different parameters can distribute errors
throughout the input space and give the model better accuracy,
resulting in better predictions [2]. It is important to highlight
that the TS, YS, and EL mechanical properties being predicted
are in a continuous domain. Thus, a multivariate regression
problem is characterized.

The objective of this paper is to apply and evaluate the
performance of an ensemble of ANNs, named E-ANN, created
based on the best configurations of multiple runs of Auto-
Keras [10], an open-source AutoML framework developed in
Python. The ensemble will be used to model the relationships
between the chemical composition, process parameters, and
mechanical properties of IF, BH, DP, HSLA, and TRIP steels.
To establish a benchmark for comparison, it will be used
two models, the best ANN model, named B-ANN, obtained
through the same parameter optimization process employed to
create the ensemble, and an ANN model which is the first
neural network generated by Auto-Keras.

In a recent study, [21] proposed the modeling of IF steels
using ANNs. Different activation functions were used, and
the hyperparameters were optimized using the Auto-Keras
library as NAS. The best ANN for each activation function
was selected and compared using the performance metrics
mean absolute error (MAE) and mean squared error (MSE). In
the present study, instead of using only the best configuration
found by Auto-Keras, the top five ANNs were selected to form
an ensemble of ANNs. Additionally, the data generalization
was performed for five different types of steels: IF, BH, HSLA,
DP, and TRIP.

The remainder of this paper is organized as follows: Section
II and III discuss the theory and background related to
this paper. Section V presents the proposed method and the
experimental setup used. Section VI presents the proposed
experiments considered for this study. Section VII shows the

results achieved and its analysis and discussion, and finally,
the conclusion is shown in Section VIII.

II. BACKGROUND

A. Artificial Neural Networks and Ensemble

ANNs have emerged as a powerful tool for data analysis
and decision-making in various fields. ANNs are inspired by
the structure of biological neural networks and are composed
of multiple layers of interconnected artificial neurons, where
their effectiveness highly depends on the proper selection of
model parameters, such as the number of layers, the number
of neurons per layer, and activation functions [1].

These structures can be used to capture complex patterns
and relationships between input and output, using a large
amount of data [3]. However, they are also susceptible to
problems such as overfitting and learning instability, which can
result in a low capacity for model generalization and accuracy
[22].

Ensemble techniques aim to improve the performance of
machine learning models by combining multiple individual
models and providing a single result. Typically, these models
are trained independently and then combined to generate the
final result. For classification problems, the most common
technique is to follow the majority of results, while for re-
gression problems, the technique used is usually the arithmetic
mean of the results [13].

The combination of multiple ANNs can be beneficial for
improving the final model. Each ANN has its own parameters,
structures, or datasets and therefore its own way of general-
izing patterns in relation to the database [18]. The techniques
employed in crafting these ANNs are strategically designed to
impart a broad spectrum of diversity to the resultant models.

As a result, each ANN with its own characteristic might
exhibit a more significant error concerning specific regions
within the input space [8]. By forming an ensemble, it is
possible to balance these errors and use the information
contained in each ANN to generate an average response with
higher accuracy and better overall model performance.

III. STEELS

Steels are renowned for their exceptional strength, dura-
bility, and versatility, making them a widely utilized group
of alloys in various industries. Steel can be classified into
different types, each possessing unique characteristics, includ-
ing distinct forms of hardening. These forms of hardening
play a crucial role in enhancing the mechanical properties of
steel, allowing it to meet specific performance requirements
in diverse applications [7].

1) Interstitial Free Steels (IF): Are known for their high
formability. This is due to their chemical composition, which
does not contain interstitial elements such as carbon and
nitrogen, resulting in a highly ductile material that can be
molded into complex shapes without cracking or rupturing
[19]. Thus, the absence of these interstitial elements makes
IF steels highly malleable, making them widely used in the
automotive industry for external body components.
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During the IF steel manufacturing process, the addition of
niobium or titanium is common to minimize the presence
of carbon and nitrogen as interstitial solutes. These elements
have the ability to stabilize the carbon and nitrogen atoms,
preventing them from being incorporated into the crystal
structure of the steel [17]. Additionally, it is crucial to maintain
tight temperature control during the reheating and hot rolling
phases. These steps are critical in determining the crystallo-
graphic structure and grain size of the material [19], which
directly influence the final properties of the steel.

2) Bake Hardening Steels (BH): This is a type of low-
carbon steel that has its strength and hardness increased
through a heat treatment process, due to the diffusion of carbon
atoms to form an atmosphere around dislocations which will
result in fixing these dislocations and, in turn, increasing the
strength [15].

The addition of alloying elements such as niobium, titanium,
molybdenum, and vanadium can affect the dissolution of
carbides during annealing, which in turn can have a signif-
icant effect on the amount of carbon present in the solution.
However, the impact of these elements on carbide formation
depends on both the carbide dissolution temperature and the
strength of the carbon bonding energy [16]. The balance
between these factors can lead to a variety of microstructures
and final material properties.

3) High Strength Low-Alloy Steels (HSLA): It is a type
of steel that aims to provide improved mechanical properties
and/or greater resistance to atmospheric corrosion compared
to conventional carbon steels. These properties are achieved
through various hardening techniques such as grain refine-
ment and precipitation strengthening [11], which are further
enhanced through the addition of small amounts of alloying
elements in their composition, such as aluminum, vanadium,
niobium, or titanium.

4) Dual-Phase Steels (DP): It is a type of steel known for
its high combinations of tensile strength, elongation as well
as higher fatigue resistance.

The manufacturing process of dual-phase steels necessitates
high control over phase transformations, which represent dis-
tinct states characterized by specific chemical compositions,
types of atomic bonds, and arrangements of elements. These
phase transformations are strongly influenced by the steel’s
heat treatment history. Each phase within the steel exhibits
distinct and unique properties, contributing to the overall
performance of the material [12].

5) Transformation Induced Plasticity Steels (TRIP): Are a
class of advanced metallic materials with superior mechanical
properties due to their ability to undergo phase transformations
during plastic deformation, resulting in a unique combination
of high strength and ductility [7].

This phase transformation takes place as a result of the
alloying elements redistributing within the material, leading to
the formation of a stable crystalline structure that enhances its
strength. Additionally, the presence of a stable austenitic phase
imparts TRIP steels with increased energy absorption capacity

during deformation, making them well-suited for applications
demanding high strength and toughness [6].

IV. MECHANICAL PROPERTIES

The range of available steel types, along with various
composition approaches, is primarily motivated by the pursuit
of enhancing their unique properties. In the context of this
study, we focus our attention on essential mechanical prop-
erties, namely: yield strength (YS), tensile strength (TS), and
elongation (EL).

Fig. 1: Stress-Strain Curve.

To better comprehend the investigated properties, we can
utilize Fig. 1, which depicts a standard stress-strain curve for
steel testing.

1) Yield Strength: It can be defined as the maximum stress
value within the material’s elastic regime [4]. In other words,
up to this stress level, any deformation experienced by the
material is reversible upon the removal of the applied load.

2) Tensile Strength: It can be defined as the maximum
stress point required to further deform the material, which
is now in the plastic regime [4], resulting in permanent
deformations that do not revert to the original size upon load
removal.

3) Elongation: It can be defined as the amount of defor-
mation sustained by the material in the plastic regime until its
complete fracture.

Each of these properties holds significance within a project.
In mechanical forming, for example, tensile strength and
elongation are important, since they are necessary for the
material to undergo maximum deformation [9], thus operating
within the plastic regime. However, in most other engineering
applications, Yield Strength takes precedence in design, as the
aim is to work within the material’s elastic range [4], without
inducing significant deformations.

V. PROPOSED APPROACH AND DATASET

An overview of the proposed approach is shown in Fig. 2.
Initially, data is extracted from the steel production process and
subsequently stored in a database including all relevant data
points. Next, the data is processed and balanced so that every
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type of steel has a considerable representation in the dataset.
Then, hyperparameter tuning is performed using AutoML with
the Auto-Keras framework. This process leads to the creation
of a multivariate ensemble regression model composed of the
5 best ANNs generated by the Auto-Keras. The number of
ANN models that will be part of the final ensemble model
was defined empirically. After creating the ensemble model,
named E-ANN, the next step is to determine the methodology
for merging the individual predictions into a single value for
each mechanical property. In this work, the fusion decision
is to average the output of all ANN models present in the
ensemble. Finally, the accuracy of the model is measured.

Fig. 2: Proposed Approach Flowchart.

The database was collected using real data from the steel
production process. To ensure that every type of steel had
adequate representation in the dataset, the authors utilized an
ad-hoc filter method suggested by steel specialists. Despite
the unequal distribution of steel types, the ANNs should be
capable of generalizing the data, given that each steel type has
a sufficient amount of representative data.

In order to perform a fair and unbiased comparison of
different neural network models, it is necessary to evaluate the
models on an impartial dataset. To accomplish this, a cross-
validation procedure was performed in conjunction with the
Auto-Keras library. The procedure involved randomly dividing
the dataset into k parts (or ”folds”). In each iteration of the
cross-validation, one fold was used as the test set, and the
others were used as the training set.

For each fold, an E-ANN model was created and the results
were aggregated and statistically analyzed to evaluate the
robustness of the observed differences between the models.

The consolidated dataset contains 27160 rows and 29
columns, including process parameters and chemical composi-
tion that have a direct impact on the prediction outcomes and
are shown in detail in Table II. In this case, we are dealing
with a multivariate problem, as we are predicting multiple
mechanical properties: yield strength (YS), tensile strength
(TS), and elongation (EL). Table I provides an overview
of the current distribution of data for each steel type after
the consolidation process. In the above-mentioned table, DP
and TRIP steel types have been grouped together due to the
remarkable similarity in their chemical properties.

VI. PROTOCOL OF EXPERIMENTS

In this study, we aim to assess the effectiveness of utilizing
an ensemble of ANNs in predicting the mechanical properties
of 5 types of steel, BH, DP, TRIP, HSLA, and IF.

Steel Type Count
BH 9223

DP-TRIP 4529

HSLA 7569

IF 5839

TABLE I: Distribution of Steel Types

Variable Description

Esp Real Actual Thickness

Red Frio Cold Reduction

Larg Real Actual Width

TRPL Reduction Temperature

TB Outlet Temperature Hot-Rolling

TA Inlet Temperature Hot-Rolling

C Carbon

Mn Manganese

P Phosphor

Si Silicon

S Sulfur

Ni Nickel

Al Aluminium

Cr Cromium

Nb Niobium

Mo Molybdenum

Ti Titanium

V Vanadium

B Boron

N Nitrogenium

Forno-Veloc Oven Speed

SPM Med Skin Pass Medium

P3 Med Pyrometer Medium Temperature (Point 3)

P4 Med Pyrometer Medium Temperature (Point 4)

P10 Med Pyrometer Medium Temperature (Point 10)

P12 Med Pyrometer Medium Temperature (Point 12)

P13 Med Pyrometer Medium Temperature (Point 13)

P15 Med Pyrometer Medium Temperature (Point 15)

P16 Med Pyrometer Medium Temperature (Point 16)

TABLE II: Input Variables
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The E-ANN model represents an ensemble of the top five
neural networks selected from a total of 100 neural networks
generated by Auto-Keras. The selection process for the five
best neural networks was based on their MAE performance.

The proposed model is evaluated against two other models,
all generated using AutoML. The B-ANN model uses the
best neural network chosen from the 100 neural networks
generated by Auto-Keras. This selection is based on the
model’s performance, considering the MAE metric. The ANN
model, in turn, is built for each fold of the cross-validation,
being one neural network generated by Auto-Keras.

Two performance metrics, namely Mean Absolute Error
(MAE) and Mean Squared Error (MSE), were calculated to
evaluate the model’s performance on the validation dataset.
The Mean Absolute Error measures the average absolute
difference between the predicted and actual values, providing
an indication of the average magnitude of the errors. On the
other hand, the Mean Squared Error calculates the average
squared difference between the predicted and actual values,
giving more weight to larger errors.

By analyzing these metrics, and comparing all models pre-
sented, it is possible to comprehensively evaluate the perfor-
mance of the ensemble of ANNs in predicting the mechanical
properties of different steel types.

VII. RESULTS AND ANALYSIS

This project was developed on Python3 with Tensor-Flow
and Auto-Keras as the main libraries. An Intel(R) Core(TM)
i9-9900K CPU @3.60 GHz, 62 GB RAM, equipped with an
NVIDIA Geforce Titan V 12 GB, was used in experiments.

In this section, the authors intend to compare performance,
sensitivity, and interpretability in order to better understand the
behavior of the algorithms. The results were taken from the
exact same test dataset for all models and the training of all
models was conducted by harnessing the maximum processing
power of available GPUs, thereby parallelizing the process
effectively. For this study, the cross-validation procedure was
conducted considering the dataset divided into 10 parts (or
“olds”).

Figure 3 shows one example of E-ANN hyperparameters for
the five best ANNs configurations suggested by Auto-keras for
one cross-validation fold. The best configuration is used as the
B-ANN model.

A. Model Performance

Concerning the model loss of the ANN for the training
and validation data, Figure 4 illustrates that the best ANN
does not suffer from overfitting or underfitting. Even though
Figure 4 only displays the performance of the B-ANN model,
it is important to note that the other ANNs used to form the
ensemble exhibit similar behavior.

The results for the cross-validation experiment can be seen
in Figure5. This graph depicts the progression of MAE and
MSE metrics for each model in a 10-fold cross-validation
experiment.

Fig. 3: Example of E-ANN hyperparameters for the five best
Artificial Neural Networks suggested by Auto-Keras.

Fig. 4: Training and validation loss/accuracy of training epochs
using the NAS architecture.

When evaluating the selected metrics (MAE and MSE), it
becomes evident that the E-ANN model outperforms the other
two models in terms of performance. The results consistently
demonstrate a reduction in mean absolute error (MAE) and
mean squared error (MSE) compared to the B-ANN and ANN
models. This improvement can be attributed to the weighted
combination of the outputs from the top five neural networks
in the E-ANN model, enabling a better capture of data nuances
and patterns.

On the other hand, the ANN model proves to be unques-

Fig. 5: Performance Comparison of Models in 10-Fold Cross-
Validation
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tionably inferior to the other two models. This is because the
ANN model is based on a single execution of Auto-Keras,
whereas the E-ANN and B-ANN models are created from mul-
tiple executions. This inferiority highlights the importance of
performing multiple Auto-Keras runs and exploring different
initializations to obtain a more reliable and generally better
result.

B. Sensitivity Analysis

To gain insights into the relationship between input param-
eters and mechanical properties, numerical experiments were
performed using sensitivity analysis. This analytical technique
evaluates how uncertainties in model inputs contribute to the
variability in the output, facilitating a deeper understanding of
the factors influencing the results. By systematically modifying
one parameter while keeping all other variables unchanged, the
effects of different input parameter combinations can be com-
pared across multiple models. This systematic approach allows
for a comprehensive assessment of how individual variables
impact the overall mechanical behavior of the materials under
study.

Fig. 6: Sensitivity analysis of ’C’ for the E-ANN and B-ANN
models

Fig. 7: Sensitivity analysis of ’Mn’ for the E-ANN and B-
ANN models

Figure 6 illustrates the relationship between the percentage
of Carbon in the steel composition and the corresponding
mechanical properties. The graph shows a clear trend where an
increase in carbon percentage results in higher values of tensile

resistance and yield strength and a decrease of elongation,
which is expected by the literature [20]. This indicates that
a higher carbon content contributes to the steel’s overall
strength.

Figure 7 illustrates the relationship between the percentage
of Manganese in the steel composition and the corresponding
mechanical properties. Which is also supposed to have an
increase in the steel strength according to the literature [19].

Although the graphs demonstrate the expected behaviors for
the analyzed properties, it is crucial to emphasize that the
magnitude of variations for each chemical element depends
significantly on the other chemical elements present in the
system, as well as the process parameters. However, it is
noticeable that both models exhibit similar patterns for the
majority of the considered range of values. Despite being a
local analysis, this comparison between the prediction models
can be considered valid and helpful in understanding the rela-
tionships between the chemical elements and the mechanical
properties.

C. Importance of Input Parameters

To gain a deeper understanding of the overall influence of
input parameters on the mechanical properties, a tool derived
from cooperative game theory was applied, known as Shapley
Value analysis (SHAP) [14]. This approach allows us to
calculate the contribution of each feature to the model output
by assessing their distributional impact. By applying SHAP,
we can discern the relative importance of each input parameter
in determining the resulting mechanical properties, providing
valuable insights into the global impact of these parameters.

Based on Figure 8, it is clear that in the B-ANN model,
manganese emerges as one of the most influential elements,
whereas carbon does not appear among the top influential fea-
tures. However, in the case of the E-ANN model, manganese
retains its high importance, and carbon is included in the list
of most influential features.

Figure 8 shows only the top 20 most influential features out
of a total of 29 features.

Fig. 8: SHAP values for a) B-ANN Model, b) E-ANN Model

When comparing these findings with those presented in
[21], a noteworthy reduction in the significance of carbon is
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observed in both models. This decline can be attributed to the
inclusion of additional steel types, such as DP, BH, TRIP, and
HSLA, alongside IF. Consequently, the combination of steels
with different levels of complexity assigns greater importance
to alloy elements and process temperatures, which play a
crucial role in hardening and phase transformation, ultimately
defining the specific type of steel under consideration. As a
result, these factors exert a greater influence on the model,
superseding the relative importance of carbon.

VIII. CONCLUSION AND FUTURE WORK

The utilization of AutoML frameworks, such as Auto-Keras,
revolutionizes machine learning applications by enabling effi-
cient exploration of the vast search space of neural network
architectures. Additionally, AutoML facilitates the creation of
ensembles, where multiple trained models are combined to
enhance performance and accuracy. By automating the entire
process, from model creation to training and deployment,
AutoML optimizes the workflow and contributes to its growing
popularity, making it accessible and applicable in a wide range
of real-world scenarios.

Overall, our study provides compelling evidence of the
effectiveness of using an ensemble of ANNs to predict the
mechanical properties of various steel types. The ensemble
model surpassed the performance of the single ANN model,
as evidenced by superior performance metrics in the testing
dataset.

Furthermore, the ensemble approach provided valuable in-
sights into the intricate relationships between input parameters
and mechanical properties, demonstrating that the model is
sensitive to the inclusion of new types of both simple and
complex steels, each with distinct hardening mechanisms.

Future works involve the analysis of different fusion deci-
sions in the ensemble output.
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