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Abstract—Missing values and class imbalance are issues fre-
quently found in databases from real-world scenarios, including
cancer classification. Impacts on the performance of Machine
Learning (ML) models can be observed if these issues are
not properly addressed prior to the analysis. In this paper, a
combined solution with missing data imputation using kNN and
cluster-based undersampling using k-means is proposed, focusing
on pancreatic cancer classification. Different data subsets were
generated by combining different preprocessing methods and the
performance was analyzed using a ML analysis pipeline from
a previous study. This pipeline implements ten ML classifiers,
including Random Forest (RF), Support Vector Machine (SVM)
and Artificial Neural Network (ANN). All data subsets presented
a significant improvement (p<0.05 with Student’s T-Test) in
the performance of most ML algorithms when compared with
the results obtained when the pipeline was first evaluated.
Results suggest that kNN and k-means can be used in the
data preprocessing phase to overcome missing values and class
imbalance issues and improve the classification accuracy.

Index Terms—Machine Learning, k-means clustering, kNN,
undersampling, missing data imputation, classification

I. INTRODUCTION

Pancreatic cancer is the seventh leading cause of cancer
death in both genders, having similar incidence and mortality
rates (495,773 new cases and 466,003 deaths registered in
2020, according to [1]). Projections indicate that pancreatic
cancer will become the third leading cause of cancer death by
2025, surpassing breast cancer [1]. Apart from pancreatic can-
cer inherent characteristics that confer an aggressive behavior
and a highly metastatic potential to these tumors, diagnosis
continues to be a challenge due to the absence of sensitive
methods for early detection [2].

Artificial intelligence (AI) applications in healthcare have
grown significantly in the past few years, mainly driven by the
progress of analytical methods and the increased availability
of data associated with medical care. Al methods, including
Machine Learning (ML), can provide relevant information
from patients’ data and help support better clinical decisions

[3].
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However, there are some challenges associated with the use
of cancer-related real-world data in ML models. Since the
number of healthy individuals is usually much higher than
the number of cancer patients, this discrepancy generates an
issue known in ML as class imbalance. In class imbalance, one
class is represented by a large number of samples, whereas
the other class (usually the class of interest) is represented by
only a few samples [4]. This disparity between the two classes
leads to bias toward the majority class, causing impacts on
the classification performance of the minority class [5]. Also,
data quality is a major concern while working with cancer
registries. Since the data generally relies on patient medical
records, unknown or missing values occurrences are frequent
[6]. Therefore, overcoming some of these challenges becomes
really important to build reliable ML models that represent the
diversity and complexity of real-world data.

In the present study we aimed to evaluate different methods
to solve class imbalance and missing values problems in a
pancreatic cancer dataset and its impacts on the classification
performance of different ML algorithms. The remainder of this
paper is organized as follows: Section II presents an overview
of class imbalance and missing data values issues, in addition
to a summary of some ML algorithms; Section III presents
the research methodology; Section IV presents the results, and
Section V describes the conclusions based on our findings.

II. THEORETICAL BACKGROUND

A. The class imbalance problem

Class imbalance is a common challenge to many real-world
application areas, including healthcare [7] [8]. A practical class
imbalance case is cancer classification, since the number of
non-cancer cases (the majority class) is usually much higher
than the number of cancer cases (the minority class). The
discrepancy becomes especially evident when dealing with
less frequent cancer types, such as pancreatic cancer (incident
rate of 2.6%) [1]. In machine learning, the deficit in the
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number of the minority class can limit the model and lead
to misclassification [9].

Different strategies have been applied to solve the class
imbalance problem. In particular, data-level approaches, which
consist of applying data preprocessing methods in order to
reduce the imbalance ratio, are among the most common
strategies [4]. This process can be done by either decreasing
the number of majority class instances (undersampling) or
increasing the number of minority class instances (oversam-
pling) [5]. Undersampling has been reported in the literature
as a better choice than oversampling since oversampling may
increase the possibility of overfitting. However, depending on
the method used, undersampling can also lead to underfitting
[8].

In order to overcome the limitations of undersampling,
cluster-based methods have been proposed to make sure useful
data is not removed from the majority class [4] [5] [8]. Clus-
tering algorithms explore the structure of the data distribution
and define grouping rules for data with similar characteristics
[10]. Regarding those algorithms, the k-means algorithm is one
of the most widely used for data analysis. K-means clustering
is an unsupervised learning method that, based on a given &,
executes the following steps: 1) divide the data points into
k clusters; 2) calculate the centroid of each cluster; and 3)
reassign the data point based on the closest centroid [11]. The
k-means algorithm application has been reported in different
application domains [12] [13]. In the undersampling context,
studies have shown the k-means algorithm usage as a single
strategy or combined with other clustering-based techniques

(4] [8].

B. The missing data values problem

Datasets with missing values are frequent and can have
significant impacts on data analysis. Missing values can hap-
pen due to a series of reasons, e.g. unanswered questions in
a questionnaire, data loss for unpredictable factors or high
costs associated with data obtention [14]. The problems caused
by missing values during the ML analysis include: increase
in process time; complications while handling and analyzing
the data; and bias introduction [15]. Properly addressing this
issue becomes crucial when dealing with missing values in
the minority class, since it is important to assure the data is
representing the diversity observed in real-world use [7].

Different approaches for dealing with missing values can
be applied, which includes machine learning methods, such as
kKNN. kNN (k-nearest neighbors) is a non-parametric method
widely used for classification and regression analysis. In this
method, k closest neighbors are identified based on the training
data and used as a further reference for test data prediction
[16].

C. ML classifiers

This subsection provides a brief description of the ML
algorithms that will be explored in the subsequent sections
of the present study.

Logistic Regression (LR) - LR is a statistical model widely
used for binary classification problems. Based on a given set
of inputs, this method uses a logistic (Sigmoid) function to
model the output, returning values between 0 and 1 [17].

Decision Tree (DT) - DT is a non-parametric supervised
learning algorithm applied in different areas, such as machine
learning, image processing, and pattern identification [18]. A
DT presents a hierarchical structure composed of nodes and
branches. In general terms, the process starts with a root node,
and then a divide-and-conquer strategy is conducted to identify
the optimal split points and generate decision nodes. The
process is recursively repeated until leaf nodes are generated,
representing all the possible outcomes within the dataset [19].

Random Forest (RF) - RF is a supervised ML algorithm
broadly used in classification and regression problems. Sim-
ilarly to the DT method, RF is also a tree-based algorithm,
which recursively splits the given dataset into two groups until
a determined stopping condition is fulfilled. However, instead
of generating a single tree, the algorithm averages predictions
based on many individual trees [20].

Naive Bayes (NB) - NB is a probabilistic classification
algorithm based on the Bayes’ theorem. This method has been
applied in many real-world situations and it is widely used
especially for its simplicity, accuracy and good performance
when compared to other methods [21].

Extreme Gradient Boosting (XGB) - XGB (also known as
XGBoost) is a ML algorithm that uses gradient-boosting deci-
sion trees to make predictions. This model was first proposed
by [22] and can be applied to both classification and regression
problems. XGB takes advantage of the multithreading of the
CPU for parallel computing, which speeds up its execution
[23].

Light Gradient Boosting Machine (LGB) - LGB (also
known as LGBoost or LightGBM) is a gradient-boosting
decision tree algorithm, similarly to XGB. LGB is a high-
precision and high-performance method used in ranking and
classification problems [24].

Support Vector Machine (SVM) - SVM is a popular su-
pervised learning algorithm that is used for classification,
regression and outliers detection. The main goal of SVM is to
find the choice limit (or hyperplane) in a n-dimensional space
that can separate the data points in different classes [25].

Artificial Neural Network (ANN) - ANN is a ML com-
putational model inspired by the human brain. This method
is composed of several single processing elements, called
neurons [25]. ANN has been applied in large scale problems,
including studies related to cancer clinical practice [26] [27].

III. METHODOLOGY

The goal of the present study is to understand how we
can overcome class imbalance and missing values issues in
large datasets in order to select meaningful samples and
increase the classification accuracy. In order to evaluate this,
the methods already established by [28] were used, but the
data preprocessing step was changed. Keeping the exact same
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methods for the other parts of the process allowed us to
compare the performance of the ML models in both scenarios.

A. Dataset

PCLO (Prostate, Lung, Colorectal and Ovarian) Cancer
Screening Trial was a randomized and controlled study per-
formed by the National Cancer Institute in the United States
between November 1993 and July 2001. The main goal of
this study was to evaluate the efficiency of certain procedures
for early detection for prostate, long, colorectal and ovarian
cancers and included approximately 153,000 men and women.
Self-administered questionnaires were used to collect data on
healthy history, demographics and other lifestyle aspects of
the patients [29].

Based on the data available, two populations were consid-
ered in the present study: the first population included people
that had the pancreatic cancer diagnosis confirmed during the
PCLO trial (n=807), while the second population represented
healthy controls (n=100,819).

B. Feature selection

In reference to the previous study performed by [28], 19
features related to patients’ health history and habits were
selected to evaluate the dataset, as following: panc_cancer
(primary case of pancreatic cancer confirmed during the PCLO
trial), cig_stat (current cigarette smoking status), cig_stop
(number of years since stopped smoking), cig_years (total
number of years the participant smoked), pack_years (number
of packs smoked during the total smoking period), bmi_curr
(current value of body mass index), bmi_curc (current value
of body mass index based on World Health Organization stan-
dard categorization), diabetes_f (ever had diabetes), panc_fh
(pancreatic cancer family history in first-degree relatives),
fh_cancer (cancer family history in first-degree relatives),
bmi_20 (body mass index at age 20), bmi_50 (body mass
index at age 50), asp (regular use of aspirin in the past 12
months), ibup (regular use of ibuprofen in the past 12 months),
gallblad_f (ever had gallbladder stones or inflammation), age
(age at trial entry), race7 (race/ethnic background), marital
(marital status) and sex (sex of the participant).

C. Data preprocessing

The algorithm used for data preprocessing was implemented
using Python (version 3.10) and included the following li-
braries: NumPy (version 1.21.5), pandas (version 1.4.4) e
scikit-learn (version 1.0.2).

Due to class imbalance present in the PCLO dataset, under-
sampling methods were used to rebalance the class distribution
and match the healthy control population size used by [28].
The first step of the process was to remove most of the
records with missing values, reducing the population by 5%
(from 100,819 to 95,719). Samples related to non-smokers
patients with the attribute cig_stop empty were the exception,
since the number of years since the patient stopped smoking
is not applicable in this case; these samples were kept and
the attribute filled with the patient’s age. After that, two

methods were used to select healthy controls: 1) random
selection; and 2) k-means clustering. In the present study,
multiple clusters were generated using k-means (k=4,298) and
the sample closest to the centroid was selected to represent
each group.

A different approach was used when preprocessing pancre-
atic cancer population data. All 807 records were maintained
and the KNN (k-nearest neighbors) algorithm was used to
input missing values, based on the mean value from k nearest
neighbours in the training set. In this study different data
subsets were generated by changing the number of neighbors
(k=3 and k=10) used to input missing values, aiming to
validate the impacts of this variation on the final analysis.

After the combination of different techniques described
above, 4 subsets of data were generated and used for sub-
sequent analysis. Details are present in Table 1.

TABLE I
DATA SUBSETS GENERATED BASED ON DIFFERENT
PREPROCESSING METHODS

Healthy control pop. Pancreatic cancer pop.

Data No. of Undersampling No. of Missing values

subset | samples method samples input method
S1 4,600 Random selection 807 kNN
k=3
S2 4,600 k-means 807 kNN
k=3
S3 4,600 Random selection 807 kNN
k=10
S4 4,600 k-means 807 kNN
k=10

D. Data analysis

In order to evaluate the impacts of the techniques described
in subsection C in the final results, subsequent analyses were
performed using the ML analysis pipeline created by [28].
This pipeline, which uses different Python libraries (e.g. scikit-
rebate, xgboost) and runs as a Jupyter Notebook application,
is publicly available at [30] and can be executed in a new
dataset with small modifications.

The pipeline is composed of 4 main stages:

o Preprocessing and Feature Transformation;

o Feature Importance and Selection;

o ML Modeling;

o and Post-Analysis.

During the Preprocessing and Feature Transformation stage,
an exploratory analysis is performed to assess some data
aspects, including data dimensions, feature types, class imbal-
ance and feature correlations. After that, a basic data cleaning
is executed, followed by a K-fold Cross Validation (CV)
partitioning. In K-fold CV, a training sample is divided into K
smaller subsets and, while (K - 1) subsets are used to build the
model, the remaining subset is used for validation. The process
is repeated K times until all subsets are used for validation
[31]. In this study, K-fold CV was used with K = 10.

The next step is the Feature Importance and Selection,
which evaluates the feature importance prior to the ML al-
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gorithm execution and removes irrelevant features for each
k training set when required. The last part is only important

when analyzing datasets with a large number (>50) of features TABLE I
- BALANCED ACCURACY (WITH STANDARD DEVIATION)
[28], so it is not relevant to the present study. AVERAGE OVER 10-FOLD CROSS-VALIDATION FOR EACH

Once the previous steps are completed the next stage is the DATASET AND ML ALGORITHM COMPARED WITH THE
ML Modeling, the core of the pipeline. This ML modeling is RESULTS OBTAINED BY [28]
composed of 9 different algorithms: Logistic Regression, Deci- T
sion Tree, Random Forest, Naive Bayes, XGBoost, LGBoost, Algo- [28] S1 S2 S3 S4
Support Vector Machine, Artificial Neural Network and ExS- rithm
TraCS (version 2.0.2.1). ExSTraCS is a Learning Classifier IR (88;;5;) (8(7;8?) (83332) (835) (88322)
System (LCS) developed to solve complex classification and DT 06745 1 07728 | 07248 | 07634 | 07262
prediction challenges by combining a series of heuristics [32]. (0.0262) | (0.0193) | (0.0254) | (0.0198) | (0.0327)
This pipeline includes the analysis of ExSTraCS performance RF %%2;3 (067081066) ((%24913) (8-(7);‘]‘2) (8-8‘3‘2‘6‘)
before apd after applying Quick Rule Filtering (QRF), a rule- NB 0.6053 05719 0.6462 05784 0.6559
compaction procedure [33]. (0.024) | (0.0217) | (0.0328) | (0.0283) | (0.0339)
After each ML algorithm is executed, average CV perfor- XGB | 06854 | 07838 | 0756 | 0.7722 | 0.7459
i luated by calculating some classification metrics 00276) | (0.017) | (0.0376) | (0.0274) | (0.0381)
mance 1s evaluated by g - LGB | 06851 | 0.7821 | 07522 | 0.7728 | 0.7522
that includes balanced accuracy, F1-Score, precision, recall, (0.0295) | (0.0225) | (0.0362) | (0.0211) | (0.0378)
and Receiver Operating Characteristic (ROC) area under the SVM | 0.6761 0.7758 0.7364 0.7737 0.7364
. (0.0218) | (0.0202) | (0.0266) | (0.0221) | (0.0421)
curve (AUC). Balanced accuracy is the average of recal.l .and NN 0582 216 026G T 07998
specificity, calculated based on the number of true positives (0.0301) | (0.0289) | (0.0334) | (0.0176) | (0.0306)
(TP), true negatives (TN), false positives (FP) and false LCS 0.6668 0.7666 0.7204 0.7644 0.7201
negatives (FN), as shown in Eq. (1) and Eq. (2), respectively (0.0191) | (0.0285) | (0.033) | (0.0258) | (0.0329)
. . . . LCS 0.5579 0.7067 0.7126 0.7139 0.71
[32] F1-Score is a measure hlghly used in different ML with (0.0164) (0.0326) (0.0327) (0.0301) (0.0257)
areas in both binary classification and multiclass cenarios, QRF

and represents the average between precision, represented in
Eq. (3), and recall [34].

SNTP
recall = =——"——— 1
TP+ FN b
SSTN TABLE III
specificity = —=—————— ) F1-SCORE (WITH STANDARD DEVIATION) AVERAGE OVER
S>TN+> FP 10-FOLD CROSS-VALIDATION FOR EACH DATASET AND ML
ALGORITHM COMPARED WITH THE RESULTS OBTAINED BY
. >.TP 3) (28]
recision = ———=—"———
P SSTP+5 FP ST
. T . Algo- 28 S1 S2 S3 S4
The Post-Analysis, the last stage of the pipeline, summarizes ritﬁ?n (28]
the metrics obtained for each algorithm and generates a series LR 0.4221 0.523 0.4894 0.5239 0.4958
of files and graphs to facilitate the performance comparative (0.042) | (0.0233) | (0.0348) | (0.0336) | (0.0286)

DT | 04183 | 04915 | 05173 | 04895 | 05344
0.0352) | (0.0236) | (0.0773) | (0.0319) | (0.0728)
RE | 04272 | 05131 | 05558 | 05158 | 05687
IV. RESULTS 0.04) | (0.0206) | (0.0402) | (0.0344) | (0.047)
NB | 03383 | 02761 | 04241 | 02874 | 0443

(0.0474) | (0.039) | (0.0655) | (0.0518) | (0.0655)

analysis for all algorithms.

Tables II and III summarize average balanced accuracy and

F1-Score, respectively, for each dataset and ML algorithm XGB | 04317 | 05054 | 03555 | 05039 0546
used in the present study, also making a comparison with the (0.0363) | (0.0184) | (0.0477) | (0.044) | (0.0465)
averages obtained by [28]. Averages below the results from LGB (8-33%) (ggggg) (205(3)2)9 (8838;) (8'8‘5‘23)
[28] are highlighteq in req, while averages al?ove the results SYM | 04231 0526 05404 | 035302 | 05333
from [28] are highlighted in green (p<0.05 with Student’s T- (0.0298) | (0.0223) | (0.0525) | (0.0274) | (0.0564)
Test). ANN 0.2908 0.5717 0.5986 0.5913 0.6048
. (0.0649) | (0.0625) | (0.0671) | (0.0346) | (0.0554)

Results presept in tables II gnd IIT show that,. fo.r all subs.ets, IS 04313 0.4860 0.4649 04879 04893
most ML algorithms had their performance significantly im- (0.027) | (0.0339) | (0.0263) | (0.0257) | (0.0513)

proved (p<0.05 with Student’s T-Test) when compared with LCS | 02188 | 0.5817 0.594 0.5953 0.59

with (0.0486) (0.065) (0.0654) | (0.0582) | (0.0506)

the results from [28]. Within each data subset, it was not QRF

possible to determine the top performer algorithm because
most of them presented similar averages. Subsets S2 and
S4, generated using k-means as the undersampling method,
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performed consistently well when compared with [28] (p<0.05
with Student’s T-Test) for all ML algorithms. However, in-
creasing kNN k value (k=3 for S2 and k=10 for S4) did not
have a significant impact on the results.

These findings are consistent with other studies that have
shown that imputation methods, including kNN, are reliable
methods for missing values estimation and can help improve
the classification performance [14] [35] [36] . A study realized
by [36] randomly inserted missing values in an existing dataset
to evaluate kNN imputation accuracy and obtained a 89.5%
accuracy rate using this method. Reference [14] compared
different imputation techniques in a breast cancer dataset and
kNN presented the highest accuracy averages to 4 out of 7 clas-
sifiers analyzed when compared to other imputation methods.
Similarly, k-means algorithm usage for undersampling, alone
or combined with other cluster-based techniques, has also been
reported in the literature as an alternative to increase sample
diversity and reduce underfitting [33] [16].

In general, subsets S1 and S3 also presented better results
when compared with [28], using random selection as the
undersampling method. The exception is the Naive Bayes
method, which presented worse performances for both metrics
when compared with [28] (p<0.05 with Student’s T-Test).
Reference [28] solved the class imbalance problem in the
PCLO dataset by selecting only healthy controls with available
genotyping data (n=4,298). This selection criteria led to sam-
pling bias (e.g. 85% males, high number of smokers), which
may have impacted the performance of the ML algorithms
present in the pipeline. Although random selection was used
in the present study, sampling bias was not observed in the
populations generated using this method; also, the combination
with kNN for missing values imputation may justify the
increased performance overall. Random sampling has a high
level of uncertainty, since it can generate clean instances and
result in a highly performant model, or can potentially lead to
a loss of important information, disrupting the training process
and model performance [37].

Figure 1 brings a new perspective to the results by showing
a comparative analysis of the ML algorithms for all data
subsets based on the precision/recall curves. Similarly to what
was observed with the other metrics, all subsets presented
positive results for most ML algorithms in the pipeline, with
similar averages between the highest performing algorithms.
The exception is also the Naive Bayes method, which pre-
sented the most inferior performance when compared to the
other ML algorithms (p<0.05 with pairwise Mann-Whitney U-
test). Since Naive Bayes model assumes that features are inde-
pendent [21], correlated features used for classification in this
study (e.g. cigarette smoking status, number of years smoked)
could have caused a negative impact on the performance.

V. CONCLUSIONS

In this study we analyzed the impacts of missing data
imputation and cluster-based undersampling methods in the
performance of different ML algorithms for pancreatic cancer
classification. k-means and random selection methods were
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Fig. 1. Precision/recall curves showing ML algorithms performance in the

5, data subsets S1 to S4, generated with different combinations of undersampling
and missing values imputation methods. Includes precision/recall AUC and
average precision score (APS).
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used for healthy control population undersampling, while kNN
was used to input missing values in the pancreatic cancer pop-
ulation. Performance was analyzed using the ML algorithms
pipeline created by [28]. The results presented show that all 4
subsets, generated using different preprocessing methods, had
significant performance improvements for most ML algorithms
when compared with results from [28]. Our findings suggest
that the methods explored in the present study can be a good
alternative to improve the classification accuracy.
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