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Abstract—Lower respiratory infections, including tuberculosis
(TB) and pneumonia, rank among the top 10 leading causes of
death worldwide. Chest radiographs (CXRs) are recommended
as a screening and triage tool and computer-aided detection
(CAD) softwares are an alternative to analyzing CXR. Continual
learning (CL) is an option to obtain models that can identify
multiple diseases by continuously learning a diverse range of
radiological signs associated with each disease. In this work, we
tested a CL model, Learning Without Forgetting, in learning
pneumonia and TB detection using synthetic images of TB
to enlarge the dataset, produced by two different Generative
Adversarial Networks (GANs) and incorporated in the training
process using different approaches. After learning TB detection,
the model’s performance in pneumonia detection has improved.
Also, a potential improvement in TB detection was observed when
synthetic data was used to fine tune the fully-connected layers of
the model.

I. INTRODUCTION

Lower respiratory infections rank among the top 10 lead-
ing causes of death worldwide [1]. Tuberculosis (TB) and
pneumonia, including pneumonia resulting from SARS-CoV-2
infection, are listed among the most frequent lower respiratory
infections [2].

TB is a contagious disease and the leading cause of death
from a single infectious agent, ranking above HIV/AIDS and
malaria [3].

Pneumonia is a form of acute respiratory infection that
affects the lungs, specifically the alveoli, and may be caused
by several infectious agents, including viruses, bacteria and
fungi. Gas exchange may be impaired by fluid filling alveoli

or thickening of the blood-gas barrier. Pneumonia is the single
largest infectious cause of death in children worldwide [4].

Although Chest radiographs (CXRs) are a recommended
tool for screening and evaluating diseases of the thorax [5],
their use is limited due to a lack of radiologists in many
high burden countries [6]. Costs for the health system and the
patient are also barriers to the use of CXR in many of these
countries. Since March 2021, the WHO included the use of
computer-aided detection (CAD) software in the TB Screening
Guidelines as an alternative to analyzing digital CXR for TB
screening and triage in individuals aged 15 years old and above
[7].

However, most available CADs’ output is the probability
of having TB or not, while a clinician needs to know the
cause of the cough or fever (or any other symptom that could
be diagnosed by the CXR) of the patient, not only if TB
is probable or not. Similarities in some radiological signs
among TB, pneumonia and other lung diseases highlights the
importance of training a CAD model to distinguish between
multiple diseases. Furthermore, considering the diverse range
of radiological signs associated with each disease, it is crucial
for the CAD model to continuously learn to detect them.

The paradigm of continual learning (CL) is an option
to achieve these goals, since different tasks can be learned
while keeping the efficiency obtained in the previous tasks.
The acquired knowledge can also be used to obtain better
performance in new tasks [8]. Each task can be related, for
example, to a different disease detection. The learning process
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can be guided in stages to obtain greater efficiency, using
feedback from doctors.

A common limitation in training CAD models for healthcare
applications is the availability of labeled data [9]. These
models often consist of numerous parameters that need to
be adjusted, requiring a large quantity of training data. To
address this challenge, strategies can be employed to enlarge
the dataset.

We have previously shown in [10] that two CL models,
Learning without Forgetting (LwF) and Efficient Lifelong
Learning Algorithm (ELLA), were able to retain knowledge
about pneumonia detection and were also able to learn TB de-
tection. In [11], synthetic images of TB were produced by two
different Generative Adversarial Networks (GANs) to enlarge
the dataset and were incorporated in the training process of
LwF using only one approach. In this work, we use different
approaches for incorporating these images to the training. The
main goal was to measure whether the performance in TB
detection improves as compared to using only real data, while
retaining a good performance in pneumonia detection, and if a
different approach can improve the previously obtained results.

The paper is structured as follows: Section II illustrates the
CL paradigm by explaining diverse implementation strategies.
Section III explores CL applications in the field of Medicine.
Section IV provides a description of the LwF algorithm used
in the experiments, along with an overview of related extended
works. Section V details the conducted experiments, including
pseudo-algorithms and the employed data. Section VI analyzes
the achieved results from the experiments. Finally, section VII
concludes the paper.

II. CONTINUAL LEARNING

The CL paradigm can be applied, in practice, by using
different methods. For better understanding, they can be cat-
egorized into three main groups: replay, regularization-based
and parameter isolation[12]. Some strategies may be a mix of
different methods or may use a method that does not fit into
either of the groups.

Replay methods involve either storing samples or generating
synthetic samples from previous tasks. They are then presented
to the model during the learning of new tasks, in order to
reduce forgetting. An important method in this family is the
iCarl [13], which learns new classes incrementally and stores
samples from previous classes to use during training.

Regularization-based methods add a penalty term in the loss
function against deviations that could lead to poor performance
in previous tasks. Two important examples are the LwF
algorithm [14], which will be further explained in Section IV,
and Elastic Weight Consolidation [15]. The latter penalizes
changes in the model’s parameters which are responsible
for good performance in previous tasks. One advantage of
methods in this group is that they do not require storing data
from previous tasks.

Parameter isolation methods are based on the addition of
task-specific parameters to the network. This approach helps
alleviate the stability-plasticity dilemma, since the specific

parameters enable the learning of new tasks while preserving
knowledge from previous tasks. However, a drawback of these
methods is that the models tend to expand over time, requir-
ing increasingly more computational resources. An important
example in this group is the progressive neural network [16].

With the advance of the CL paradigm, a specific library
based on pyTorch, called Avalanche, was developed for fast
prototyping, training and reproducible evaluation of CL algo-
rithms [17].

III. CONTINUAL LEARNING IN MEDICINE

In recent years, there have been significant advancements
in deep learning models for medical image analysis. However,
there are challenges due to changes in image data distribution
caused by various factors, such as different scanner manufac-
turers, imaging settings and local population characteristics
[18]. Applying CL in this scenario helps to handle these
changes, although it can also reinforce structural biases [19].
Due to this advantage, the number of works focusing on CL
applications in medicine has been growing over the past few
years.

Experiments involving mammography and lung CT
databases demonstrate that CL can improve disease detection
performance over time. This occurs because the system can be
exposed to images with varying characteristics, enabling it to
progressively learn and interpret a wider range of patterns[20].

CL has been applied in many image segmentation problems,
such as: segmentation of hippocampus images [21]; prostate
structures and brain tumor 3D images [22]; biomedical glottis
images [23], wound images [24] and cardiovascular magnetic
resonance [25]. It has also been applied in physiological signal
processing [26].

The advances in the CL application in medicine come
along with ethical challenges [27]. For example, the models
may establish wrong associations, leading to conclusions that
may be dangerous to the patient’s health. The success of CL
application also depends on clinicians’ ability to understand
and make good use of the outputs of the models. Another
challenge is that it can be difficult to explain the decision
about a diagnosis or treatment plan, once the explainability of
machine learning models is limited.

IV. LEARNING WITHOUT FORGETTING

The LwF algorithm [14] is built upon a Convolutional
Neural Network (CNN) with the Alexnet architecture [28]. The
LwF network has a subset of parameters θs, shared among all
tasks, encompassing all layers except for the last one. Addi-
tionally, there are task-specific parameters θo, corresponding
to the last layer of the network.

When a dataset associated with a new task is introduced, it
is presented to the network, and the corresponding outputs
yo from the last layer of each previous task are recorded.
Subsequently, parameters θn specific to the new task are added
to the output layer, establishing connections with all neurons
in the preceding layer, and initialized with random values.
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During the training of the networks, a modified loss function
is employed, which penalizes both errors in the classification
of the new task and deviations from the recorded outputs yo:

OF = λoLold(yo, ŷo) + Lnew(yn, ŷn) +R(θ̂s, θ̂o, θ̂n) (1)

Where:

Lold(yo, ŷo) = −H(y′o, ŷ
′
o) = −

l∑

i=1

y′o
(i)logŷ′o

(i) (2)

Lnew(yn, ŷn) = −yn.logŷn (3)

y′o
(i) =

(y
(i)
o )1/T

∑l
j=1(y

(j)
o )1/T

(4)

ŷ′o
(i) =

(ŷ
(i)
o )1/T

∑l
j=1(ŷ

(j)
o )1/T

(5)

And:

R(θ̂s, θ̂o, θ̂n) is a regularization term;
λo is a loss balance weight; the higher the value, the more

importance is given to the performance in previous tasks, to
the detriment of the new task;

ŷn is the last layer output corresponding to the new task;
yn is the vector of labels for the new task;
ŷ
(i)
o is the current last layer output corresponding to the

previous task i;
y
(i)
o is the recorded last layer output corresponding to the

previous task i;
1 is the number of labels;
y′o

(i) and ŷ′o
(i) are modified versions of the current and

recorded output;
T is a parameter that controls the weight given to output

values in the modified version.

Several works were published extending the LwF algorithm.
In [29] and in [30], the authors use different CNN architectures
on the task of detecting different types of cancer. They also
used simple data augmentation techniques, such as rotation,
shifting and cropping. In [31], a task selector network is
introduced, in order to decide which of the learned tasks is
more suitable to classify a new element during the model
operation. The authors in [32] analyze the impact of inter-task
similarity in LwF’s performance and show that, when tasks
have low similarity, a memory budget of 1% the size of the
training data can significantly help to retain knowledge from
previous tasks.

V. APPLICATION OF THE LEARNING WITHOUT
FORGETTING ALGORITHM TO DISEASE CLASSIFICATION

TESTS

The conducted experiments are an extension of the works
presented in [33], [10] and [11]. They involved the learning of
two different tasks: pneumonia detection, using the Stanford

public dataset [34], and tuberculosis detection, using the
Shenzhen public dataset [35].

The Stanford dataset was undersampled in the same way as
in [33], [10] and [11], according to the following criteria:

• Only 2 classes: “Normal” and “Pneumonia”.
• Images present in the reduced set available for download

(11 GB, while the full set has 439 GB).
• Front images and AP view.
• Similar amount of images in both classes.
Table I shows the number of images per class that were

used in the experiments.

TABLE I
NUMBER OF IMAGES PER CLASS.

Class Quantity
Non-Tuberculosis (Shenzhen) 326

Tuberculosis (Shenzhen) 336
Normal (Stanford) 1070

Pneumonia (Stanford) 1065

Given that the LwF model is built upon a CNN, it involves a
significant number of parameters that need to be learned from
data. Consequently, a substantial amount of training data is
required to mitigate biases in the model. Therefore, two GANs
were employed to produce synthetic data for training TB
classification, augmenting the collected dataset. The synthetic
production in this work is an extension of the work in [36].

The first GAN is called Wasserstein’s GAN (WGAN) [37].
This GAN introduces a metric that controls the training, so that
the synthetic data created by the generator model are consistent
with the probability density function associated with real data.

The second one is called Pix2Pix, that is a conditional
GAN [38]. This GAN generates synthetic data that preserves
a region of interest from a real image, while generating its
surroundings. In the context of this work, the region of interest
refers to a lung segmentation.

In the scope of this work, only synthetic images of TB
were generated. Considering that the model needs to retain
knowledge of pneumonia detection after learning TB, the per-
formance in this task was also evaluated after the incorporation
of synthetic data.

Six different experiments were made, introducing in differ-
ent ways during the training process the synthesized images.
Also, the models were trained without synthetic images for
comparison, totalizing seven experiments, which are described
below.

• 1. Training only with real images (reference);
• 2. Training with real images and fine tuning the entire

model with synthetic images generated by Pix2Pix (re-
sults presented in [11]);

• 3. Training with real images and fine tuning only the
fully-connected layers with synthetic images generated
by Pix2Pix;

• 4. Training with real images and fine tuning the entire
model with synthetic images generated by WGAN (re-
sults presented in [11]);
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• 5. Training with real images and fine tuning only the
fully-connected layers with synthetic images generated
by WGAN;

• 6. Training simultaneously with real images and synthetic
images generated by Pix2Pix, which will be called an
”altogether” training;

• 7. Training simultaneously with real images and synthetic
images generated by WGAN.

Figure 1 illustrates the described training scheme.

Fig. 1. Training scheme for Continual learning. Pneumonia detection is
learned first and classified with the specific last layer in green. TB is learned
secondly, sharing the CNN layers except for the last one, in orange, that is
task-specific. The TB synthetic images are presented thirdly to finetune the
model for experiments 2 to 5, and presented together with TB real data for
experiments 6 and 7. Adapted from [11] and [14]

The main objective of the experiments was to analyze the
impact of using synthetic data in training, and also the impact
of the different configurations in which they can be introduced
in the training processes.

The fine tuning stage of experiments 2 to 5 was conducted
using a learning rate of 1e-4, while during the training with
real images, the learning rate was of 1e-3.

The altogether training, from experiments 6 and 7, was
conducted as follows: during each training epoch, batches
exclusively with real images and exclusively with synthetic
images were presented alternately and proportionally to the
number of available images. For example, if there were 10
times more synthetic images than real images, for each 10
batches with only synthetic images, 1 batch with only real
images was presented. The gradients were also weighted in
order to handle the imbalance in the number of images. Using
the same example, gradients from the batches with real images
were weighted 10 times more than gradients from the batches
with synthetic images.

For all the experiments, the cross-validation method with
stratified k-folds technique [39] was used, with k=10. This
method gives an estimate of the uncertainty in the results
due to a limited sample. Also, for all the experiments, the

operating point during TB detection training was set so that
the sensitivity in the validation set was 90%, given the minimal
accuracy for TB triage defined by the WHO of 90% sensitivity
and 70% specificity [40]. The steps for training with only real
images are described in Algorithm 1.

Algorithm 1 LwF’s training and evaluation using cross-
validation with k-folds, k=10 - only real images

for each itask do
Divide dataset from task i in 10 folds
for each ifold do

Separate ifold as a test fold
for each jfold different from ifold do

Separate jfold as a validation fold
Train LwF model with the other 8 folds
Apply model to all data, except for ifold, and

save the results in validationResults
end for
Get the model which gave the highest SP index from

validationResults
Apply this model to all dataset and save the results

in allResults
end for
Get the model which gave the highest SP index from

allResults
Establish this model as operation, to learn the following

task
end for

The production of synthetic data, for both Pix2Pix and
WGAN, used the same 10-fold data partition employed to train
the LwF model. Otherwise, synthetic images generated from
real images that belong to the test fold could be inadequately
presented in the train fold for LwF, biasing the training.
Algorithm 2 describes the training procedure for experiments
2 to 5 and Algorithm 3 describes it for experiments 6 and 7.

Algorithm 2 LwF’s training and evaluation using cross-
validation with k-folds, k=10 - fine tuning with synthetic
images

Get the 10 trained models that resulted from the training
process described in Algorithm 1
for each imodel do

Get the train, validation and test folds with real data that
were used when imodel was trained

Get set with synthetic data that were generated with the
same train fold

Finetune LwF model with the synthetic data. During
training, use the validation fold with real data for validation.
end for

Table II and Table III display the sensitivity, specificity and
SP index concerning the pneumonia detection task and the TB
detection task, respectively. The results refer to the application
of the models on the test folds. The SP index [41] is a function
of the two former indexes, as shown in Equation 6.
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Algorithm 3 LwF’s training and evaluation using cross-
validation with k-folds, k=10 - altogether training

for each itask do
Divide dataset from task i in 10 folds
for each ifold do

Separate ifold as a test fold
for each jfold different from ifold do

Separate jfold as a validation fold
Separate the other 8 folds for training
Get set with synthetic data that were generated

with the same train fold
Train LwF model with alterning batches of real

and synthetic data
Apply model to all data, except for ifold, and

save the results in validationResults
end for
Get the model which gave the highest SP index from

validationResults
Apply this model to all dataset and save the results

in allResults
end for
Get the model which gave the highest SP index from

allResults
Establish this model as operation, to learn the following

task
end for

SP =

√
√
sens ∗ spec ∗ sens+ spec

2
(6)

Table II additionally presents, in its first row, the results
when the model has learned only pneumonia detection. Other
rows present the results when the model has already learned
TB detection, for experiments 1 to 7.

Figures 2 and 3 present the same results as Table I and II,
but only for the SP Index, in a graphical manner.

In order to evaluate the statistical significance of the ob-
tained results, p-values were calculated using two Hypothesis
Tests. The first one evaluates whether pneumonia detection
changed after learning TB detection, for the 7 experiments:

H0: The SP Index mean for pneumonia detection after
learning TB is not different from the SP Index mean before
learning TB.

H1: The SP Index mean for pneumonia detection after
learning TB is different from the SP Index mean before
learning TB.

P-Value was 0.0002 for experiment 1, 0.0003 for experiment
1, 0.0005 for experiment 3 and 0.0001 for experiments 4 to 7.

The second one evaluates whether TB detection changed
with the synthetic data incorporation, for the 6 experiments
involving synthetic data:

H0: The SP Index mean for TB detection after incorporating
synthetic data is not different from SP Index mean only with
real data (experiment 1 - reference).

H1: The SP Index mean for TB detection after incorporating
synthetic data is different from SP Index mean only with real
data.

P-Value was 0.9 for experiment 2, 0.65 for experiment 3,
0.97 for experiment 4, 0.0008 for experiment 5, 0.078 for
experiment 6 and 0.0018 for experiment 7.

TABLE II
RESULTS FOR PNEUMONIA DETECTION WITH LWF BEFORE LEARNING

AND AFTER LEARNING TB DETECTION, FOR THE 7 DESCRIBED
EXPERIMENTS - APPLICATION OF THE MODELS ON THE TEST FOLDS.

Case Sensitivity Specificity SP Index
Before learning TB 79.4 +- 4.1 75.0 +- 5.5 77.1 +- 2.2
Training only with TB real
images (reference)

85.0 +- 6.9 84.5 +- 5.2 84.7 +- 4.8

fine tuning with pix2pix
(all layers)

84.1 +- 7.0 85.0 +- 5.1 84.5 +- 4.7

fine tuning with pix2pix
(only fully connected lay-
ers)

84.4 +- 7.2 84.5 +- 5.2 84.4 +- 5.0

fine tuning with WGAN
(all layers)

83.4 +- 5.3 84.9 +- 5.6 84.1 +- 3.7

fine tuning with WGAN
(only fully connected lay-
ers)

89.1 +- 5.7 77.2 +- 4.3 83.0 +- 2.8

Training altogether, real
images + pix2pix

85.7 +- 6.9 84.4 +- 3.6 85.0 +- 4.6

Training altogether, real
images + WGAN

88.4 +- 6.5 81.8 +- 4.6 85.0 +- 4.5

Fig. 2. SP Indexes for pneumonia detection with LwF, before and after
learning TB detection, across the seven described experiments. Dots indicate
mean SP Index; lines show ±1 standard deviation.

VI. DISCUSSION

The results in Table II support the interpretation that knowl-
edge for pneumonia detection was preserved in all experi-
ments. Additionally, the performance in pneumonia detection
was enhanced after training for TB detection in all experi-
ments. This can be more clearly observed in Figure 2, that
shows that SP Index for experiment 0 (before learning TB) is
below the SP Indexes for experiments 1-7. The first Hypothesis
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TABLE III
RESULTS FOR TB DETECTION WITH LWF FOR THE 7 DESCRIBED

EXPERIMENTS - APPLICATION OF THE MODELS ON THE TEST FOLDS.

Experiment Sensitivity Specificity SP Index
Training only with TB real
images (reference)

89.3 +- 4.8 71.8 +- 9.5 80.2 +- 4.9

fine tuning with pix2pix
(all layers)

88.4 +- 5.0 72.2 +- 11.9 79.9 +- 5.6

fine tuning with pix2pix
(only fully connected lay-
ers)

89.6 +- 4.6 69.7 +- 12.5 79.1 +- 5.8

fine tuning with WGAN
(all layers)

90.8 +- 6.2 70.6 +- 14.1 80.1 +- 6.7

fine tuning with WGAN
(only fully connected lay-
ers)

89.0 +- 5.5 85.5 +- 7.1 87.1 +- 2.3

Training altogether, real
images + pix2pix

91.4 +- 6.2 59.8 +- 16.8 74.2 +- 8.9

Training altogether, real
images + WGAN

87.5 +- 7.3 57.9 +- 15.0 71.4 +- 5.8

Fig. 3. SP Indexes for TB detection with LwF across the seven described
experiments. Dots indicate mean SP Index; lines show ±1 standard deviation.

Test suggests very strong evidence of this enhancement, as p-
values are lower than 0.001 [42].

These findings indicate that the knowledge acquired for
TB detection positively influenced pneumonia detection. One
potential explanation, to be probed further, is that there are
similarities between those tasks that enable improvements in
one by training for the other.

Considering the results displayed in Table III, the mean
SP Index for TB detection is higher than the reference case
only for experiment 5. However, the second Hypothesis Test
suggests little or no evidence that experiments 2 to 4 result
in poorer outcomes in TB detection, given that the p-value
is above 0.1. The p-values associated with the experiments
with the altogether training (6 and 7) indicate weak evidence
and strong evidence, respectively, for inferior outcomes in TB
detection.

On the other hand, fine tuning with synthetic images

generated by WGAN, when the convolutional layers were
freezed during fine tuning (experiment 5), resulted in a SP
index mean 7% higher than the reference. Figure 3 highlights
the superior results achieved in Experiment 5, with a higher
mean and lower deviation. Additionally, the p-value lower than
0.001 indicates very strong evidence for an improvement in
TB detection, which indicates a promising technique to be
incorporated on the training.

VII. CONCLUSION

This work presented an application of the CL paradigm
to pneumonia and TB detection through CXR images, us-
ing the LwF algorithm. GANs were employed to produce
synthetic images for TB task. These synthetic images were
incorporated to the training by using different approaches,
in six experiments. Additionally, a reference experiment was
conducted using only real images, resulting in a total of seven
experiments.

After learning TB detection, the model’s performance in
pneumonia detection improved, which hints at the algorithm’s
capability of sharing knowledge between tasks, as previously
shown in [10] and [11].

The incorporation of synthetic data showed a potential to
improve the model’s performance, but not with all approaches.
A potential improvement was observed when synthetic data
was used to finetune the fully-connected layers of the model.
However, poor results were obtained when they were incor-
porated in training together with the real data (”altogether
training”).

This is a promising result for improving the clinical utility
of CADs. Proposals for future work include hyperparameter
optimization in the presented approaches, aiming at improving
results obtained especially in the “altogether” training. Also,
synthetic data may be produced and utilized also in the
pneumonia detection task, which is expected to also enhance
performance of the model, with special interest in the assess-
ment of potential mutual benefits for both detection tasks.
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[5] G. Frija, I. Blažić, D. P. Frush, M. Hierath, M. Kawooya, L. Donoso-
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