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José M. de Seixas
Signal Processing Lab, COPPE.

Universidade Federal do Rio de Janeiro
Rio de Janeiro - RJ, Brazil

seixas@lps.ufrj.br

Abstract—This paper discusses a way to enhance an acoustic-
based approach to obtaining the direction of arrival (DoA) of
a drone’s ego noise using a microphone array. We focus on
obtaining better time delay estimations (TDE) from a set of
possible candidates. Recently, a large number of works have
been put forward to detect and classify drones with different
techniques. However, more investigation is required to tackle
the drone DoA estimation problem using the time difference of
arrival between pairs of microphones for the case of strongly
corrupted audio signals, possibly by noise and multipath. The
main problem in a complex acoustic environment is accurately
estimating the time difference of arrival. With a traditional
approach, this task becomes nearly impossible without the line of
sight assumption, that is, whenever the highest cross-correlation
peak between signals does not correspond to the delay between
them. This paper uses genetic algorithms to search for the
correct delays between pairs of microphones among a set of
possible delays (primary and secondary delays). We define a
fitness function based on the concept of zero cyclic sum of
closed loops, i.e., when forming a closed loop, the sum of all
theoretical delays should equal zero. A drawback of closed
loops is that incorrect delays may result in a zero-sum; we
thus created a fitness function that considers all possible closed
loops of a given array. We exploited different approaches to
estimate the direction of arrival using the combination of genetic
algorithms and zero cyclic sum. In our experiments, the method
successfully found all correct delays in simulations, providing
strong evidence of its effectiveness when a correct delay exists
among multiple possible delays. Furthermore, in experimental
trials, it significantly enhanced the number of correct delays
detected, further validating its utility and potential in practical
scenarios.

Index Terms—small drones, DoA estimation, genetic algo-
rithms, zero cyclic sum

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) [1], also referred to as
drones, have gained immense popularity in civil [2], industrial,
and military applications [3]. These devices can perform a
myriad of tasks, e.g., delivery [4], surveillance [5], map-
ping [6], photography [7], and agriculture monitoring [8].
In recent years, small UAVs have improved greatly, e.g.,
increased range, speed, and payload capacity [9]. The dual-
use capabilities of small UAVs [10] enable them to be utilized
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by various actors for different purposes. Defense forces can
leverage the use of small UAVs to gain strategic advantage
over their enemies by conducting surveillance and reconnais-
sance missions and launching strikes over the enemies [11],
[12]. On the other hand, terrorists can easily adopt low-cost
drones to carry out attacks on targets [9], [11]. Also, criminals
can use them to commit crimes. It is, therefore, critical for both
public and private sectors to develop and implement effective
countermeasures against the malicious use of small UAVs [3].

A counter-drone system comprises two stages, e.g., threat
evaluation and weapon assignment [13]. A significant chal-
lenge is the drone threat evaluation step, i.e., drone detec-
tion [14]–[16] and parameter estimation such as DoA [17]–
[19], localization [20], [21], model [22], and payload addi-
tional weight [23].

Using different signals, a drone threat evaluation system can
detect and estimate drone parameters; for instance, radar [24],
radio frequency [25], optical [26]–[29], and acoustic sig-
nals [22], [30], [31]. Other works employ two or more sensors
to detect drones, e.g., optical and acoustic [32], acoustic and
RF [33], video and acoustics collected from a drone [34].
Extensive literature about drone detection and parameter esti-
mation can be found in [35]–[37].

Among all parameters that can be estimated from a drone,
the DoA is the most important to designate a weapon to
neutralize the possible threat. In this work, we contribute
to the acoustic-based drone DoA estimation problem. We
develop a method to estimate the direction of arrival in the
event of corrupted audio signals, i.e., when the signal-to-noise
ratio (SNR) is low and/or in the event of strong multipath.
This method uses primary and secondary peaks of the cross-
correlation, i.e., it chooses from a set of possible delays.

DoA estimation using acoustics has been extensively studied
in audio signal processing, and various methods have been
proposed for estimating the DoA of sound sources. Most
of the available approaches try to estimate the DoA from a
subset of delays (obtained from the major cross-correlation
peaks) [38], [39]. However, in some cases, almost all delays
from the primary peaks of the cross-correlation are incorrect,
making it impossible to estimate the DoA or enhance the
results using a subset of delays obtained from the largest
peaks. Another approach that searches not only for a subset
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of microphone pairs but also for the correct peaks of cross-
correlation functions was introduced in [40].

The quest for a consistent fundamental loop, or zero cyclic
sum (ZCS) [41] as seen in [42], usually employs a limited
number of secondary loops and/or a few cross-correlation
pairs, as in [40]. Therefore, the main contribution of our
method to the drone DoA estimation is the incorporation of
secondary peaks of the cross-correlations to decide the best set
of all possible N =M(M−1)/2 delays, M being the number
of microphones, to estimate the drone DoA. This simple yet
effective approach positively impacts minimizing the error of
the estimated DoA due to corrupted signals while maintaining
the expected good results for the case of uncorrupted signals.

Our method unleashes the TDE-based algorithms to esti-
mate drone DoA with an enhanced set of delays that includes
the secondary peaks of the cross-correlation with a heuristic
search based on genetic algorithms (GA) and a fitness function
based on ZCS. The use of GA comes from the fact that
an exhaustive search would not be feasible. Hence, we have
named our method GA-ZCS to reflect its unique approach to
the problem.

The rest of this paper is organized as follows. Section II
describes the problem and assumptions of the drone estimation
problem, data collection, drone acoustic signal, DoA estima-
tion, and time delay estimation problems. Section III describes
the method proposed herein to tackle the DoA estimation
problem. Section IV presents simulation and experimental
results, while Section V concludes the paper.

II. THE DRONE DOA ESTIMATION PROBLEM

A. Problem statement and assumptions

In this work, our focus is on addressing the challenging
task of estimating the direction of arrival (DoA) using delay
estimates obtained from audio signals emitted by a quadcopter
drone. These signals are characterized by a low SNR, indicat-
ing the presence of intense background noise and potential
multipath effects.

To conduct our simulations, we utilize the geometry of
a compact acoustic array consisting of seven microphones,
specifically the MiniDSP UMA-8 model [43]. By leveraging
this array, we calculate the theoretical delays of acoustic
front waves emitted by the drone, considering both zenith
and azimuth angles denoted as θ and ϕ, respectively. These
theoretical delays represent the ideal estimates in the absence
of background noise and multipath effects. Additionally, we
acknowledge that estimated delays might manifest as sec-
ondary peaks within a cross-correlation analysis.

To simulate real-world conditions, we construct a data
matrix denoted as VN×C . Each row of the matrix contains
a combination of theoretical delay and other random delays
that can occur due to factors such as multipath interference or
other acoustic events in the surrounding environment.

Moving on to the experimental phase, we gather two sets of
acoustic drone signals, each lasting 20 seconds, employing the
UMA-8 microphone array consisting of M = 7 microphones.
From these signals, we estimate potential delays and construct

the data matrix VN×C . Each row of this matrix contains
candidate delays, which are identified as peaks observed in
the cross-correlations of microphone pairs.

Consequently, our primary challenge lies in identifying the
correct delays among various cross-correlation peaks arising
from different microphone pairs. The simulations we con-
duct serve as a proof of concept for the proposed method,
while the experimental trials provide evidence of the benefits
this method offers in addressing the drone DoA estimation
problem. Notably, the actual drone signals employed in this
study were obtained during the hovering of a DJI Phantom 4
quadcopter.

B. Drone acoustic signal

Figure 1 provides a visual representation of the drone hov-
ering signal, showcasing 10,000 samples in the time domain.
Additionally, a spectrogram computed with a sample rate of
48 kHz is presented. It is worth noting that the drone ego noise
is primarily concentrated in the frequency range below 5 kHz.
However, under favorable conditions and when the drone is in
close proximity to the microphone array, it becomes possible
to capture drone noise in higher frequencies, reaching up to
13.5 kHz.

For a more comprehensive exploration of the acoustic char-
acteristics of drone noise, interested readers are encouraged
to refer to the extensive study presented in [44]–[46]. These
references delve into the intricacies of drone noise analysis
and provide valuable insights into the subject matter.
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Fig. 1. Acoustic drone signal emitted by a DJI Phantom 4. (a) Time domain
signal; and (b) Time-frequency representation.

C. DoA estimation with the GCC method

The Generalized Cross-Correlation (GCC) method is based
on the cross-correlation function, which measures the similar-
ity between two signals as a function of the time delay between
them [47]. In the case of multiple microphones, the GCC
method estimates the cross-correlation function between pairs
of microphone signals to obtain the TDE between the signals.
The basic principle is to find the time delay that maximizes
the cross-correlation function, rxixj (τ) defined as:

rxixj
(τ) = E[xi(k)xj(k − τ)], (1)

where E[·] is the expectation operator and τ is the delay
between two given sensors, xi and xj . From the peaks in
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the cross-correlation function, we find candidates for the time
delay between the signals, which in turn can be used to
determine the direction or location of the sound source.

The GCC is usually obtained as

r̂GCC
xixj

(τ) =
1

2π

∫ π

−π

ψ(ω)Xi(ejω)Xj(ejω) dω , (2)

The Generalized Cross Correlation with Phase Transform
(GCC-PHAT) normalizes the magnitude spectrum of the cross-
correlation function as follows:

ψPHAT(ω) =
1

|Xi(ejω)Xj(e−jω)| , (3)

such that

r̂PHAT
xixj

(τ) =
1

2π

∫ π

−π

Xi(ejω)Xj(ejω)

|Xi(ejω)Xj(ejω)| dω . (4)

Finally, the TDE is obtained as follows:

τ̂ij = argmax
|τ |≤τmax

|r̂PHAT
xixj

(τ)|, (5)

where τmax is the maximum possible delay (in number of
samples) imposed by the distance between microphones i and
j.

This normalization process effectively enhances the phase
information while suppressing the amplitude differences be-
tween the signals, resulting in improved time delay estimation.
By incorporating phase information, the GCC-PHAT method
achieves enhanced robustness to reverberation and noise com-
pared to the original GCC method [47].

After estimating the delays, we can minimize a least squares
(LS) cost function to obtain a closed-form solution for the unit
norm vector in the direction of the sound propagation. From
this vector, the direction of arrival, azimuth (horizontal angle)
and zenith (vertical angle, complement of the elevation), are
readily available, as seen, for instance, in [40].

Interpolation plays another crucial role in the GCC-PHAT
method, enhancing the accuracy and resolution of time delay
estimation. By utilizing interpolation techniques, the GCC-
PHAT method can estimate time delays with higher precision
and handle sub-sample time delay resolutions. However, this
technique is only effective if we are dealing with the correct
peak.

D. Time delay estimation problems

One common source of error in cross-correlation-based
time delay estimation is the presence of noise. When the
signals being correlated are contaminated by noise, it can
introduce spurious correlations and lead to incorrect time
delay estimates. The noise can distort the shape of the cross-
correlation function, resulting in erroneous peak positions or
false peaks that do not correspond to the true time delay.

Another factor that can cause inaccurate time delay esti-
mation is the presence of reverberation or multipath in the
signals. Reverberation can significantly affect the shape and
amplitude of the cross-correlation function, making it difficult

to accurately identify the true peak representing the time delay.
The reflections and multiple paths of sound propagation can
create additional peaks or distort the main peak, leading to
incorrect estimates.

Figure 2 illustrates several pertinent problems associated
with TDE. In Figure 2 (a), we observe an accurate TDE both
with and without interpolation, even in the presence of low lev-
els of background noise. Figure 2 (b) showcases the benefits of
interpolation, where a cross-correlation with fractional delays
in samples yields a precise estimation. Figure 2 (c) presents a
distorted function with a false main peak. Finally, Figure 2
(d) highlights a scenario with significant noise, wherein a
secondary true peak emerges.

The abundance of different peaks of the cross-correlations
involving drone noise instigates intriguing possibilities in the
context of experimental trials. These possibilities include ex-
ploring secondary peaks, leveraging the peaks of interpolation,
utilizing classical cross-correlation peaks, and considering
samples before and after the main peak. By delving into these
aspects, we can enhance our understanding and refine the TDE
methodology in practical scenarios.
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Fig. 2. Different time delay estimation problems. (a) Accurate time delay
estimation with and without interpolation (b) More accurate time delay
estimation with interpolation (c) distorted function with a false peak and (d)
secondary true peak.

III. THE PROPOSED METHOD

A. Genetic algorithms and zero cyclic sum

GA play a crucial role as a powerful heuristic search
technique in solving complex problems [48]. It is inspired by
the principles of natural selection and evolution, mimicking
the process of survival of the fittest to find global or local
optimal solutions.

One of the key advantages of genetic algorithms is their
ability to handle large solution spaces and navigate through
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complex landscapes of possibilities. Unlike traditional search
methods, GAs do not rely on explicit problem domain knowl-
edge or constraints. Instead, they explore the solutions space
by iteratively generating and evaluating a population of can-
didate solutions.

The size of the solutions space in this work denoted as S,
is determined by the formula S = CN , where C represents
the number of candidate delays and N = 21 for M = 7
microphones. For instance, if C = 2 the solutions space is
C2 = 2, 097, 152. As we increase the value of C, the solutions
space grows exponentially. When C = 3, the solutions space
expands to a massive 10,460,353,203 potential solutions. If
C = 4 the solution space would have 4,398,046,511,104
potential solutions. This number represents trillions of unique
combinations of four candidate delays that need to be consid-
ered.

These enormous solution spaces pose significant challenges
for traditional search methods, as exhaustively evaluating each
possible solution becomes computationally infeasible. This is
where genetic algorithms excel. By employing a heuristic
search approach, genetic algorithms can efficiently explore
these expansive solutions spaces and navigate toward local
or global optimal solutions without having to evaluate every
single possibility.

GAs leverage the concept of individuals represented as
chromosomes, where each chromosome encodes a potential
solution to the problem. These solutions are evaluated based
on the ZCS fitness function that quantifies their proximity to a
zero-sum. Through the use of selection, crossover, and muta-
tion operators, GAs promote the exchange and recombination
of genetic material between individuals, mimicking the genetic
diversity and variation found in natural evolution.

The method employs GA to efficiently identify the correct
delays from a multitude of incorrect delays, particularly in
situations with low SNR. The C candidate delays for each
cross-correlation function rxixj

are the elements of each row
of data matrix V denoted as {τij,1 τij,2 . . . τij,C}. For
M = 7, which implies in N = 21, the matrix VN×C with all
candidate delays, is defined as

V =




τ12,1 τ12,2 τ12,3 . . . τ12,C
τ13,1 τ13,2 τ13,3 . . . τ13,C
τ14,1 τ14,2 τ14,3 . . . τ14,C

...
...

...
...

...
τ67,1 τ67,2 τ67,3 . . . τ67,C



. (6)

The population, consisting of I individuals (or chromo-
somes), represents the collection of potential solutions to the
problem. Each chromosome consists of genes, denoted as g,
which can take values from 1 to C, according to the number
of candidate delays C. These genes allow for the exploration
of all possible delay candidates in the matrix VN×C . The

chromosome is represented as a column of the matrix PN×I :

P =




g11 g12 g13 . . . g1I
g21 g22 g23 . . . g2I
g31 g32 g33 . . . g3I

...
...

...
...

...
gN1 gN2 gN3 . . . gNI



, (7)

the matrix PN×I is a set of possible solutions, thus we create
a vector of delays using each column of PN×I , for instance
if P(:,1) = {1, 3, 2, . . . , 9} the corresponding vector of
delays, v, corresponds to

v = [τ12,1 τ13,3 τ14,2 . . . τ67,9]
T.

B. Fitness function

The fitness function stands as a crucial component within
the method, with the ZCS being employed for this purpose.
This function evaluates the sum of delays within specific sub-
sets that form closed loops, aiming to minimize the occurrence
of erroneous zero-sum outcomes. By considering all possible
subsets that create closed loops and summing their results, we
significantly reduce the likelihood of encountering a zero-sum
result without the correct delays.

To facilitate the computational calculation of the fitness
function, we have devised a method that involves the identifi-
cation and enumeration of closed loops based on the number
of delays. More specifically, when employing a M = 7
microphone array, we find that, with 3 delays, there are 35
closed loops. Similarly, with 4 delays, we observe 35 closed
loops. Moving on to 5 delays, we encounter 21 closed loops,
while 6 delays give rise to 7 closed loops. Finally, when
utilizing 7 delays, a single closed loop is formed. The total
number of closed loops, denoted as L, corresponds to 99 in this
context; L = 35+35+21+7+1 = 99. It is important to note
that the delay τ31, which closes the loop, can be determined
by taking the negative value of τ13. Similarly, τ75 can be
expressed as −τ57, and in general, any delay τji that closes the
loop can be written as τji = −τij . By utilizing this property,
we can compute all possible delays once and then manipulate
them to identify the correct value of τ that closes the loop. This
approach saves computational resources by avoiding redundant
calculations and facilitates the determination of the correct
delay for loop closure. The complete listing of all possible
closed loops for 3, 4, 5, 6, and 7 delays can be found in
Table I.

We can create a matrix DL×N based on Table I to be able
to sum all delays

D =




1 −1 0 0 0 0 1 0 . . . 0 0
1 0 −1 0 0 0 0 1 . . . 0 0
1 0 0 −1 0 0 0 0 . . . 0 0
...

...
...

...
...

...
...

...
...

...
...

1 0 0 0 0 −1 1 0 . . . 0 1



;

(8)
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TABLE I
ALL POSSIBLE CYCLIC PATHS IN A SEVEN MICROPHONE ARRAY

# delays Closed loops

3
τ12 τ23 τ31

...
...

...
τ56 τ67 τ75

4
τ12 τ23 τ34 τ41

...
...

...
...

τ45 τ56 τ67 τ74

5
τ12 τ23 τ34 τ45 τ51

...
...

...
...

...
τ34 τ45 τ56 τ67 τ73

6
τ12 τ23 τ34 τ45 τ56 τ61

...
...

...
...

...
...

τ23 τ34 τ45 τ56 τ67 τ72
7 τ12 τ23 τ34 τ45 τ56 τ67 τ71

each element of the resulting vector f = Dv is the sum of
all subsets such that the fitness function, denoted as f , is then
calculated as

f = fTf = ∥f∥2.
This fitness function captures the squared norm of the resulting
vector, encompassing the contributions from all subsets and
providing a measure of the fitness or quality of the estimation.
The GA-ZCS method is detailed in Algorithm 1.

Algorithm 1 Heuristic search using genetic algorithms with
zero cyclic sum fitness function (GA-ZCS)

for i = 1 : N do
Compute rxixj

, ij = 12 to 67
Obtain C candidate delays (larger peaks of rxixj

)
Vi,: ⇐ [τij,1 τij,2 . . . τij,C ]

end for
Create population PN×I of random integers [1, C]
for i = 1 : N do

vi ⇐ map τij,x in Vi,: according to P:,k

First evaluation of individuals PN×I

end for
while f > 10−15 OR k < 2000 do

vi ⇐ map τij,x in Vi,: according to P:,k

Crossover neighbor individuals
Mutate
f ← Evaluate individuals PN×I

PN×I ⇐ Select the best I individuals
Increment k

end while

IV. RESULTS

A. Simulation results

The initial evaluation of the proposed approach for drone
DoA estimation involved simulated delays, which approximate
the potential delays based on the utilized array geometry.
Figure 3 illustrates the evolution of the fitness function and

the number of matching delays with the theoretical 21 delays.
It is evident that the ZCS fitness function serves as a guiding
measure for the algorithm, leading to the enhancement of
individuals within the genetic algorithm. By using this fitness
function, the algorithm is directed towards improving the
accuracy of delay estimates by identifying the correct peaks
among the C = 10 possible delays for each cross-correlation
function. This facilitates the overall improvement of the algo-
rithm’s performance in estimating the delays more effectively.
However, it is important to note that the GA may converge to
a local minimum, and reaching the global minimum could be
a time-consuming process.
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Fig. 3. GA search progress with fitness function and number of correct delays
evolution. (a) 1600 iterations and the search stopped according to the fitness
function criteria (b) GA and the convergence to a local minimum.

B. Experimental results

After conducting simulation tests, we proceeded to test the
proposed method with actual drone noise signals. The signals
we evaluated were captured while the drone was hovering at
a distance of 30 and 280 meters from the microphone array.
We divided each signal into 100 segments of 200ms each,
allowing us to estimate the delays between sensor pairs. We
collected 6 candidate delays for each rxixj forming a matrix
VN×6.

Contrasting to simulations, where we had theoretical delays
among other delays, it is highly unlikely for the peaks of
an actual cross-correlation to correspond perfectly with the
theoretical delay. Therefore, we monitored the progress of
the GA by assessing the delay error (in samples), which
is calculated as

∑N
i=1 |v̂i − vi|, v̂ represents the vector of

estimated delays mapped by the GA, and v consists of the
theoretical delays.

Figure 4 illustrates the delay error for each analyzed win-
dow. Specifically, Figure 4 (a) showcases the delay error
progression for each window of 200 ms analyzed. Figure 4
(b) highlights the benefits of utilizing the GA algorithm in
mitigating large delay errors.

The results depicted in Figure 4 denote the minimum delay
error, i.e., the minimum possible error if we choose the
element of matrix V that minimizes the error of the TDE. The
simulation results prove that GA-ZCS can find all theoretical
delays, so one challenge is to develop a method that finds an
accurate delay for each pair of microphones.
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Fig. 4. Progress of GA search with fitness function, minimum delay error
in samples, and the error reduction highlighting the benefits of the heuristic
search. (a) Analysis of 100 windows using GA search progress while the drone
hovers in close proximity to the microphone array (30 m); and (b) Analysis
of 100 windows with the drone hovering at a distance of 280 m from the
microphone array.

Introducing a signal enhancement technique as a step in
this method may enhance the signal of interest, specifically
the drone signal, in each channel. This enhancement would
lead to a peak in the cross-correlation function associated with
the drone. By applying signal enhancement techniques, we
can potentially improve the detectability and accuracy of the
drone signal, thereby enhancing the performance of the time
delay estimation method. Exploring such signal enhancement
techniques holds promise for further improving the robustness
and effectiveness of the overall approach.

V. CONCLUSIONS

We utilized genetic algorithms with a zero cyclic sum
fitness function to tackle the time delay estimation problem.
Our results revealed that obtaining a single accurate time
delay estimate out of the ten candidate delays enabled the
method to achieve the optimal solution. This emphasizes the
effectiveness of genetic algorithms in mitigating the time delay
estimation problem in the context of drone signals. We are
currently investigating a more advanced approach to enhance
the cross-correlation function of drone signals. Furthermore,
we provided an explanation for the experimental results falling
short of reaching the optimal solution. By comparing the delay
error between the traditional delay estimation method (peak
of the cross-correlation) and GA-ZCS, we observed that GA-
ZCS has the potential to make a significant contribution to
the field of delay estimation. This highlights the promising
nature of exploiting a set of candidate delays to minimize the
error in time delay estimation of drone acoustic signals. As
the next step, we plan to collect more acoustic drone signals
with different background noise levels and distinct multipath
effects. This will allow us to further validate and refine our
method.
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