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Abstract—Energy consumption forecasting is a valuable tool
for management decision-making that can lower expenses and
enhance efficiency in a power system. Several time series predic-
tion models can address this issue, ranging from statistical models
to complex neural networks. With the purpose of increasing
prediction accuracy, we tackle the problem of time series sta-
tionarity by considering an Autoregressive (AR) and Multilayer
Perceptron (MLP) model. This paper presents a comparative
analysis of both models regarding different deseasonalization and
detrending methods, which converts the time series to stationary.
This is a necessary condition for linear statistical models such as
Autoregressive (AR). Our focus is to investigate whether it also
improves neural network performance and which stationarity
method produces the best result. For this study, we address an
energy consumption series from the southeast region of Brazil.
The computational results reveal that removing the trend by
differencing and removing seasonality by normalization leads to
the lowest errors.

Index Terms—Energy consumption prediction, Auto-regressive
Model, Neural Networks, Time Series, Stationarity, Seasonality,
Trend.

I. INTRODUCTION

Energy consumption and demand time series prediction are
tasks associated with multiple applications. For instance, mon-
itoring and forecasting energy consumption over time can help
preventing energy deficits, while industries can use it to secure
the best energy contracts with powerhouses. To accomplish
prediction tasks, we can employ a number of approaches,
including linear statistical methods, nonlinear filters and neural
networks (including deep learning paradigms) [1]-[4].

Classical linear models, which are commonly understood
under the aegis of the Box & Jenkins methodology, include:
autoregressive (AR), moving average (MA), autoregressive
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and moving average (ARMA) models; autoregressive inte-
grated moving average (ARIMA) models [5] and variants
such as seasonal autoregressive integrated moving average
(SARIMA) and seasonal autoregressive integrated moving
average with exogenous factors (SARIMAX) models; and the
Holt-Winters approach [6], [7]. Linear methods for time series
forecasting are widely used in the literature, and can even
outperform more complex machine learning models in some
cases [8], [9].

However, a clear drawback is that they do not encompass
nonlinear relationships. To address this limitation, we may
resort to neural network models, such as Multilayer Perceptron
(MLP), Extreme Learning Machines (ELM). Additionally,
deep learning models such as Temporal Convolutional Neural
Networks (TCN) and Long-Short Term Memory (LSTM) are
also utilized to capture complex temporal patterns [10]-[14].

One requirement for employing linear models is stationarity,
a condition that can be reached or approximated by eliminating
the trend and seasonal components from the time series. This
process can be done through various techniques, such as
differencing, curve fitting, moving average and normalization
[13], [15]. Stationarity can also be desirable when nonlinear
models (e.g., neural networks) are employed [16], [17].

The problems of energy consumption and demand predic-
tion have been addressed in a number of works in the literature,
but a systematic analysis of the impact of deseasoning and
detrending in their context should be investigated. Therefore
the roles these procedures play in the performance of a repre-
sentative nonlinear predictor, a Multilayer Perceptron (MLP),
are compared to an Autoregressive (AR) as baseline.

The structure of this paper is as follows: section II brings an
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explanation of the key concepts regarding time series; sections
IIT and IV describe the methodology, elucidating the models
and their respective parameters, as well as the deseasolization
and detrending methods employed, along with the evaluation
metrics; finally, section V presents and discusses the results,
while section VI summarizes our conclusions and perspectives.

II. MAIN CONCEPTS
A. Stationarity

A time series can be seen as a sample of a discrete-time
random process, which is composed of a sequence of random
variables {z:,,k > 0}. The process is said to be strict-sense
stationary if the following equality holds for all ¥ € NT, and
for all A € Z:

fIL‘tl yees Tty (xla ceey xk) = fl‘tl+A,-»-,iEtk.+A (xla ceey xk) (1)

In practical scenarios, it is often very stringent to ensure that
a general joint distribution be invariant. When it is possible to
deal exclusively with first- and second-order statistics, wide-
sense stationarity (WSS) can be used as an alternative. WSS
is based on the following conditions:

E{xzi} =p 2
E{ziyr xi} = (1) 3)

where 4 is a constant value is 7(.) is the autocorrelation
function [5], [18], [19].

According to (2) and (3), the statistical mean of the random
process must remain constant over time, and the autocor-
relation must depend only on the time difference between
points. From (3), it is possible to state that the variance of
the process must also be constant. Assuming that the process
is also ergodic [18], we can employ a time series (i.e. a single
realization of the underlying stochastic process) to estimate
the required statistics.

B. Autocorrelation Function (ACF)

The objective of the autocorrelation function is to measure
the correlation between a time series and a delayed version
thereof. It helps to identify any significant patterns or rela-
tionships between past observations and future values within
the time series data. The normalized autocorrelation at lag %
is defined by Equation (4) [5]:

P El(we — p)(esr — p)]
VE[(xe — n)?B[(wen — p)?]
C. Fartial Autocorrelation Function (PACF)

The partial autocorrelation function (PACF) provides valu-
able insights into determining the order of a linear model,
especially the AR. By analyzing the PACF, we can identify
the direct influence of each lag on the current observation,
allowing us to determine the appropriate lag order for autore-
gressive (AR) models.

Partial autocorrelations can be described as functions of
the autocorrelations as in Equation 5. Consider ¢y; the j-th
coefficient in an autoregressive representation of order k:

4)

Pj = Gr1pj—1+ o+ Ph(k—1)Pj—k+1 + PrkPj—k

5
i=1,2,..k )

The last coefficient ¢y, is called the partial autocorrelation
function of a process {z;} at lag k. Actually, ¢5; from Equa-
tion 5 are the regression coefficients of the linear regression z;
on z;_1...2¢4— [5]. Therefore, the partial autocorrelation can
be defined as the correlation between the residuals from two
linear regressions as Equation 6:

Grk = corr(zy — Z, Z—k — Zi—k) (6)

where Z; is the best linear predictor of z; based on its past
coefficients z;_1...2¢_k.

D. Decomposition

A time series decomposition can be additive or multi-
plicative, depending on the statistical nature of the data [6].
Considering the energy consumption time series x; to be
additive, it can be written as a sum of three components, as
shown in Equation (7):

Ty =My + 8¢ +ay @)

where m; represents the trend, which is related to the long
term dynamics, §; is the seasonal component, which describes
patterns that repeat periodically over time, and a; is the noise
component. The variable a; can be considered approximately
stationary, while m; and §; are non-stationary components, as
they cause the mean and variance to vary over time [5].

III. MODELS
A. Autoregressive (AR) Model
A given process x; is called an auto-regressive process of
order p, abbreviated as AR(p), if [5]:
Tt = G181+ o + GpTrp t et ®

where e; is a Gaussian white noise which represents the
estimation error and ¢; are constant coefficients.

B. Multilayer Perceptron (MLP)

A Multilayer Perceptron (MLP) performs a nonlinear map-
ping of a set of inputs by means of one or more intermediate
layers of neurons followed by a (typically) linear output layer.
As indicated by Equation (9), each neuron can be thought
of as a linear combiner followed by a nonlinear memoryless
function f(-) [20]:

Uj:f<zaz'jfﬂi>, j=1,...,n 9)
i=0

where v; is the output of the j-th neuron, x is the input vector
of dimension m, a;; are the weights relative to each input x;
and neuron j, and n is the size of the hidden layer.
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Considering only one hidden layer, the outputs v; of each
neuron are linearly combined, resulting in Equation (10):

Yr = Zbkjvj = biif (Zaijxi> Jk=1,...,r (10)
Jj=0 Jj=0 i=0

where by; is the weight that corresponds to the output of
neuron j and the k element of the output vector.

The MLP is trained by optimizing the weights a; and b,
at each step, with respect to a cost function quantifying the
discrepancy between the network output values and the target
(desired) values, typically the mean squared error (MSE). For
a time series, the input vector is formed by lags, and the output
attempts to estimate future samples.

IV. METHODOLOGY

In this paper, we employed the AR model and the MLP
to evaluate the significance of the stationarization process.
We performed a comparative analysis of classical methods for
removing trend and seasonality during preprocessing stage.

A. Removing Trend

1) Curve Fitting: finding a polynomial function that
approximates the trend. Then, remove the fitted curve from
the time series [15].

2) Differencing: calculates the difference between each
point and its previous value. First order differencing removes
the linear trend, because it can be considered as equivalent to
taking the first order derivative, making the time series trend
constant. [5], [19]

B. Removing Seasonality

Upon analyzing the daily energy consumption time series,
we identified two primary seasonal patterns. The first is annual
seasonality, which is due to variations in energy consumption
across different seasons. The second is weekly seasonality,
which is due to differences in consumption patterns between
weekdays and weekends. Considering this, we employed the
following methods:

1) Moving Average: it seeks to estimate the seasonal
component of a time series in order to remove it from the
forecasting process, resulting in a subtraction with respect
to the original series [13], [15]. Given that we are working
with daily measurements spanning multiple years, the moving
average is computed separately for each day of the year
to remove the annual trend, and for each day of the week
to remove the weekly trend. Equation (11) indicates both
calculations:

1< 1 —
,a(i = — 5 Ti.dy ﬂw = — g L w
n 4 m “
=1 =1

where [i4 is the mean regarding each day of the year and fi,,
is the mean regarding each weekday. Considering %y and @,
as the average of all values of [ig and fi,, respectively, the
seasonality can be approximated by Equation (12):

(1)

8 = fua—Ua, 8 = fuw — Ua (12)

Finally, the time series without seasonality can be expressed
as follows:

thﬂft—étD—éyv

13)

2) Normalization: it aims to eliminate the seasonal com-
ponent by subtracting the mean and dividing by the standard
deviation of the data, in this case for each day of the year
which the data belongs using Equation 14 and following for
each weekday using Equation 15:

D Tid— fld

D — 14
Zi.d E 14)
D A
25— [
A = H (15)

C. Model parameters

For both models, the dataset was divided into training with
6126 data points, and test set with 736 values. The training
set covers the period from 01/01/2002 to 11/25/2020, and the
test set covers from 11/26/2020 to 12/31/2022 (in the mm-dd-
yyyy format). For the MLP, the last part of the training set
was separeted into validation set, spanning from 10/22/2018
to the end.

1) Autoregressive (AR) Model: The training set was used
to estimate the model parameters, and the test set was used
to compare the predictions based on the trained model. The
only hyperparameter that required adjustment was the number
of lags, which we determined using the PACF.

2) MLP: The training set was utilized to experiment with
different combinations of hyperparameters, specifically the
learning rate and the number of neurons in the hidden layer.
The tested learning rate values were 0.001, 0.005 and 0.01, and
the tested number of neurons were 10, 50, 100 and 200. Each
model was then validated with hold-out using the validation
set, where we obtained the best models for each detrending
and deseasonality method. Then, we trained each model again
using the set of hyperparameters that resulted in the lowest
MSE. Finally, we evaluated the model’s performance by
comparing the predicted outputs, scaled back to the original
scale, considering the test set.

D. Evaluation Metrics

To evaluate and compare the studied approaches, we ex-
plored the Mean Squared Error (MSE), a commonly used
metric, and the Mean Average Percentage Error (MAPE),
which are defined in Equations (16) and (17), respectively.
It is worth mentioning that the MAPE does not depend on the
scale of the data since it calculates a percentage error.

n

1

MSE = — i — ;)2 16
n;:l(y ¥i) (16)
1|y — 0

MAPE = — 2 17
DD (17)

i=1
where y; is the actual output, g, is the estimated output and
n is the number of observations.
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E. Dataset

The chosen database is provided by the National Electric
System Operator (ONS), and contains the daily electric load
(in megawatts, MW) in the southeast region of Brazil from
2000 to 2022. It is a time series with daily data, containing
about 7700 measurements [21].

V. RESULTS

In the experiments, we considered all the valid combinations
of trend removing and deseasonalization techniques, which led
to the nine preprocessing methods indicated in Table I. By
applying each method to the original time series, we obtained
the approximately stationary series displayed in Figure 1.

TABLE I: Preprocessing methods obtained by combining the
removing trend and deseasonalization techniques.

Trend Seasonality

Method ID | Curve fitting | Differencing | Moving Average | Normalization

1

: v \ \

3| v \

4| \ \ v \

5| \ \ \ v
6 | v | \ 4 \

L A \ \ v
8 | v v \

> | v \ v

It is pertinent to remark that for methods that kept the
original scale of the time series, like the moving average and
curve fitting, we also applied a standardization procedure to
the training and test set. It should not be confused with the
normalization method explained in Section IV-B for seasonal
component removal. The purpose of standardization is not to
remove any components, but to adjust the values to have a
zero mean and unit variance. Therefore, Method 1 in Table I
involves the standardized time series, as well as Methods 2, 4
and 6.

A. Preprocessing

The first step is to identify if each time series is actually
stationary, and for that we used a hypothesis test called
Augmented Dickey Fuller Test (ADF Test) [22]. If the p-
value is below 0.05, we can reject the null hypothesis of the
time series not being stationary. This suggests that we have
likely eliminated the trend and seasonal component, leaving
primarily the random part. In fact, according to Figure 1, it
appears that the more effective the stationarity method, the
closer the time series resembles a white noise.

The p-values from the ADF Test for each method can be
seen in Table II. It is possible to observe that the times series
without seasonality using moving average (Method 4) was
not considered stationary by the ADF Test. Additionally, the
time series without any stationarity removal method (Method
1), and without seasonality through normalization (Method 5)

were considered stationary by the ADF Test, but the relatively
high p-values suggest that they are in the edge between
stationary and nonstationary.

To identify trend and seasonal patterns, we also analyzed the
autocorrelation function for each method, which are exhibited
in Figure 2. For Method 1 in Table I, the ACF preserves the
shape of the ACF from the original time series, as expected.
On the other hand, Method 2, which removes trend by curve
fitting, preserves all seasonalities, while Method 3, which
involves differencing, appears to remove not only the trend
but also annual seasonality. Although the seasonality removal
Methods 4 and 5 mentioned in IV-B are effective, they still
exhibit values for all lags, which is likely due to the trend. The
best one appears to be Method 9, as it removes any indication
of both seasonality and trend.

B. Model results

Following the procedure outlined in Section IV-C, we
applied the AR model for each scenario, and the resulting
MSE and MAPE values are presented in Table II.

TABLE II: MSE and MAPE of each model, for each method
and p-value of ADF Test.

AR MLP
Method ID p-value MSE MAPE MSE MAPE
1 1.67E-02 | 7.97E+06  5.57E-02 | 1.18E+06  1.91E-02
2 1.30E-10 | 6.64E+06  5.21E-02 | 1.32E+06  2.13E-02
3 2.08E-30 | 227E+06  3.02E-02 | 1.06E+06  1.81E-02
4 1.72E-01 | 2.99E+06  2.93E-02 | 1.84E+06  2.49E-02
5 3.01E-02 | 6.03E+06 4.99E-02 | 1.47E+06  1.82E-02
6 9.34E-12 | 2.65E+06  2.89E-02 | 1.28E+06  2.11E-02
7 2.28E-13 | 4.12E+06  4.04E-02 | 1.64E+06  2.06E-02
8 4.03E-24 | 9.58E+05 1.77E-02 | 1.10E+06  1.88E-02
9 2.07E-30 | 1.24E+06 1.94E-02 | 1.02E+06 1.69E-02

There seems to be a correlation between the ADF p-value
and the error observed: as the p-value increases, so does the
magnitude of the MSE and MAPE, which is expected for a
model that requires stationarity. The only outlier is Method 3,
which involves removing trend by differencing: although it has
a very low p-value, the errors are still relatively high compared
to the other methods. It appears that the ADF test primarily
detects trend and is not particularly effective in identifying
seasonal patterns. This is observed in Method 3, which clearly
exhibits a weekly seasonality despite a very low p-value.

Subsequently, we applied the same procedure to the MLP
using the model parameters described in Section IV-C. In order
to attain a more robust analysis of the MLP, we trained the
model 20 times and present the results in the form of a boxplot
in Figure 3. To compare with the AR model, the average values
of MAPE and MSE from the 20 independent experiments with
the MLP are also shown in Table II.

Based on Figure 3 and Table II, we can see that the most
favorable outcomes for the MLP, in terms of both MSE and
MAPE, are obtained by employing differencing to remove
trend and employing normalization to remove seasonality
(Method 9). As the AR model, this outcome seems to be
related to how effective is the stationary method applied.
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Fig. 1: Each stationarity method applied to the whole time series (train + test data)
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Fig. 2: Autocorrelation function for each stationarity method regarding 1000 lags on the whole time series (train + test data)

However, it is worth noting that using only differencing also
yielded very favorable results for the MLP, which is different
from the AR.

The outcomes from both models further demonstrate that
solely applying standardization (i.e., subtracting the mean
of the time series and dividing by the standard deviation
from the whole series) results in a higher error compared
to removing trend and seasonality to achieve stationarity.
Furthermore, among the components of a time series, trend
removal is probably the most critical, while only removing
seasonality tends to yield worse results. This observation is
evident in Figure 3, in which Methods 4 and 5 exhibit a

significant dispersion in the errors, especially for MSE. Also, it
appears that moving average methods are not the most efficient
approach.

Finally, we can observe in Figure 4 a comparison between
the predicted and original time series regarding the test set
using the MLP. The figure comprises two plots: (a) one for the
time series without stationarity methods, which only includes
standardization, and the other (b) for Method 9, which has the
lowest MSE and MAPE. It seems that Method 9 is slightly
superior to the one without stationarity, which appears to be
underestimating. Checking the area under the curves with the
RMS value, we have for Method 1 a RMS of 1087 MW, and
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for Method 9 a RMS of 1027 MW. The only visible drawback VI. CONCLUSION

of Method 9 is that it produces peaks in some values. ) )
This study explored the effects of different methods for re-

moving trend and seasonal components to achieve stationarity
in a electricity demand (energy consumption) time series. We
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used a Multilayer Perceptron (MLP) and an Autoregressive
Model (AR) as predictors. The methodologies used to remove
trend were curve fitting and differencing, and to remove
seasonality we adopted normalization and moving average.

The autocorrelation plots indicated that certain methods
were more successful in achieving stationarity, which was vali-
dated by the ADF Test. Additionally, an interesting observation
regarding the ADF test is that it may encounter difficulty in
detecting seasonal patterns.

With respect to the MLP, the obtained results suggested that
eliminating trend and seasonality, depending on the method
used, yields lower error rates compared to solely applying
standardization across the entire dataset, as is commonly done.

For both AR and MLP, exploring the differencing method
to remove trend in conjunction with season normalization
resulted in the lowest MSE and MAPE. Furthermore, removing
only seasonality seems to be insufficient to improve results,
and it is best to combine it with a trend removal method.
Moving average methods also proved to be not very effective.

As future works, it is essential to investigate the effect of
the preprocessing stages on other forecasting models, as well
as to expand the analysis by considering different time series
related to electric power.
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