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Abstract—The use of Artificial Intelligence (AI) as an assis-
tant for diagnosis in imaging exams has already proven to be
effective, and is known as Computer-Aided Diagnosis (CAD).
This paper evaluates the effectiveness of using a single network,
YOLOv8x is the current state-of-the-art in the YOLO family,
for lumbar spine detection and segmentation in Magnetic
Resonance Imaging (MRI) exams. The network was used for
detection, classification, and semantic segmentation, generating
the masks over the vertebrae, which simplified the implemen-
tation and reduced the computational cost. Encouraging results
were obtained using a dataset of 1,116 samples (images). The
detection step achieved a mean average precision (mAP) of
0.989 at 50% intersection over union (IoU), mAP:50-95 of 0.886,
recall of 0.98, and precision of 0.97. For bounding box marking,
the following results were achieved: mAP of 0.978 at 50% IoU,
mAP:50-95 of 0.882, recall of 0.971, and precision of 0.948. The
semantic segmentation step achieved a mAP of 0.978 at 50%
IoU, mAP:50-95 of 0.856, recall of 0.971, and precision of 0.948.
These results demonstrate the effectiveness of using YOLOv8x
for lumbar spine detection and segmentation in MRI exams.

Index Terms—CAD, Semantic Segmentation, DeepLearning,
YOLOv8x, Lumbar Spine, MRI.

I. INTRODUCTION

Low back pain is the leading cause of disability world-
wide, according to the World Health Organization (WHO)
[1]. It is estimated that up to 80% of people will experience
low back pain at some point in their lives. The most common
of these pathologies include herniated discs, spinal stenosis,
spondylolisthesis, vertebral compression, osteoarthritis, and
others. These conditions can be caused by traumatic injuries,
underlying medical conditions such as osteoporosis and
arthritis, as well as genetic and lifestyle factors. These spine
pathologies and fractures are common in individuals of all
ages. Prevention and early diagnosis of these pathologies
are essential to reduce the pain and disability associated
with them. For this, imaging exams are commonly used,
such as X-rays, Computed Tomography (CT), and Magnetic
Resonance Imaging (MRI). According to the WHO, in 2010,
there were 9 million osteoporotic fractures worldwide, of
which 1.4 million were hip fractures [2].

Authors such as [3], [4], [5] highlight the importance of
using artificial intelligence techniques for diagnosis, known
as CAD - Computer-Aided Diagnosis. The main purpose of
CAD is to assist the medical specialist as a second opinion,
reducing false positive diagnoses. This can increase process
efficiency and reduce the time to confirm a diagnosis, which
can lead to less aggressive treatment and lower emotional
and financial costs.

The implementation of machine learning in the medical
field has significant advantages, as highlighted by [6]. These
advantages include the ability to gather a large volume of
information about a particular disease in a single digital tool,
suppressing the human bias, and speeding up the analysis of
the material to be studied. This approach can lead to safe
and fast diagnoses, and can even be used as a ”second expert
opinion” in more complex cases.

In the context of neural networks, the choice of using a
YOLO network is justified by its simplicity of implementa-
tion, low computational cost compared to other algorithms,
and ease of onboarding such a solution, as highlighted by
[7]. Using YOLOv8, the current state-of-the-art in the YOLO
family, for CAD in spine pathologies and fractures based on
MRI is a novel approach that may offer specific advantages
over previous methods. However, there are likely research
gaps and challenges that lead to the use of YOLO as a
solution in this context:

• MRI-based CAD for Spine Pathologies and Fractures:
while CAD systems have been developed for various
medical imaging tasks, the specific application of CAD
to spine pathologies and fractures using MRI may not
have been extensively explored or have fewer dedicated
solutions. Previous research might be more focused on
other imaging modalities, such as CT scans or X-rays
[8].

• Object Detection in MRI: MRI images can present
different challenges compared to other modalities. The
appearance of anatomical structures and abnormalities
in MRI can vary significantly due to differences in tissue
contrast and resolution [9].
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• Multi-class Object Detection: YOLO is capable of
multi-class object detection, allowing it to identify and
localize various abnormalities and structures in MRI
images relevant to spine pathologies and fractures. This
is important as spine pathologies can involve different
types of abnormalities and fractures in various regions.

• Spatial Context: YOLO considers the entire image at
once, allowing it to capture spatial context and depen-
dencies between different regions of the spine. This
is beneficial for accurate detection and localization of
abnormalities, especially in the context of spine patholo-
gies.

• Real-time Performance: YOLO’s architecture is de-
signed for real-time object detection tasks, and this
capability can be advantageous for providing timely
second opinions to medical specialists during clinical
assessments.

• Transfer Learning: YOLO can leverage transfer learn-
ing, which means it can be pre-trained on large datasets
from other domains (e.g., natural images) and then fine-
tuned on a smaller MRI dataset for object detection.
This can be valuable when medical datasets are limited,
as is often the case due to privacy concerns and data
availability.

• Generalization: YOLOv8 has improved generalization
capabilities, meaning it can perform well on unseen data
and potentially adapt to different MRI protocols and
acquisition settings.

• Automation: By integrating YOLO into a CAD system,
the detection process can be automated, reducing the
burden on medical specialists and potentially increasing
efficiency in diagnosing spine pathologies and fractures.

Several techniques are currently used in CAD, either
isolated or combined, with the purpose of making all the
processes as automated and efficient as possible, as listed in
Section 3: Related Work.

The application of deep learning in lumbar spine MRI
images is proposed by this paper. Its main objective is
to evaluate the YOLOv8 network and its performance on
the same dataset for detection and semantic segmentation,
generating masks for each vertebra to be used in a subsequent
step for image detection, which will be addressed in future
work.

This paper is divided as follows: Section 2 describes some
basic concepts necessary for understanding the related work,
which is covered in Section 3. The methodology used in
the development of this paper is presented in Section 4, and
its results are discussed in Section 5. Suggestions for future
work are presented, and Section 6 presents the conclusions
reached by this paper.

II. CONCEPTS

This section introduces the key concepts used in this paper.
First, a brief overview of the spine is given, outlining the
main imaging studies used. Finally, an overview of YOLO
networks is given, with a focus on YOLOv8.

A. Spine, Pathologies and Examinations

Figure 1 presents 5 spine regions, with its labels [10]:

• Cervical Spine: 7 vertebrae in the neck region, from
C1-C7;

• Thoracic Spine: 12 vertebrae in the thorax region, from
T1 to T12;

• Lumbar spine: 5 vertebrae in the final back portion, from
L1 to L5;

• Sacrum: 5 vertebrae in the hip region, from S1 to S5;
• Coccix: End portion of the spine;

Fig. 1. Basic spine regions [10]

Several pathologies can affect the spine in all its extension,
such as herniated discs, scoliosis, stenosis, tumors, infections
and inflammations, and vertebral fractures [11]. For diagno-
sis, the imaging exams that provide the most detail are CT
and MRI, as shown in figure 2. CT uses X-rays to create
detailed images of the bones and tissues in the body. MRI
does not use X-rays, but instead uses a strong magnetic field
and radio waves to produce images of the soft tissues in the
body. The main difference between CT and MRI is that CT is
better at visualizing bones and other calcified tissues, while
MRI is better at visualizing soft tissues, such as the spinal
cord and nerves, according to [12].

Fig. 2. Examination images: a) MRI b) CT

MRI can also detect other fractures, such as spondylolysis
and spondylolisthesis. Spondylolysis is a fracture at the back
of the vertebra, while spondylolisthesis is a condition in
which a vertebra slides forward of the underlying vertebra.
Both conditions can cause back pain, loss of balance, and
muscle weakness.

B. YOLO network

Convolutional Neural Networks (CNNs) are widely used
in computer vision applications, including object detection
in images. One of the most popular architectures for object
detection is known as You Only Look Once (YOLO). YOLO
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networks are known for their ability to perform real-time
detection and provide accurate results for different types of
objects, even on images with many objects in the scene. Since
its first release in 2015, YOLO has continuously evolved,
with versions YOLOv2 and YOLOv3 providing featuring
significant improvements in accuracy and speed [13].

YOLOv8 is the current state-of-art for object detection and
image segmentation, created by Ultralytics. Like YOLOv5,
it is divided into 3 components: backbone, neck and head.
There are 5 versions: YOLOv8n, YOLOv8s, YOLOv8m,
YOLOv8l and YOLOv8x, highlighting the difference in the
amount of trained parameters [14]. A structure diagram in
YOLOv8 and a better explanation can be found in [14].

YOLOv8 uses the EfficientNet backbone for efficient
and accurate object detection. The backbone consists of 10
convolutional layers, followed by a pooling layer and an
object detection layer. The pooling layer reduces the size
of the feature map, making it easier for the object detection
layer to find objects in the image. The object detection layer
detects objects and provides location and size information
[15].

III. RELATED WORKS

The field of diagnostic medicine is a constant target of
studies for deep learning applications, especially for imaging
exams such as MRI and CT. Accurate segmentation of
vertebrae in these images is a fundamental step for diagnosis,
especially as an automated solution. The large variation in
spinal anatomy between patients and the scarcity of available
samples for many of them make this task challenging.

In their paper, Kuang et al. [16] address the challenge
of classifying spinal diseases with a small training dataset.
They propose a supervised hybrid generation model called
SpineGEM, which is divided into two steps: first, generating
initial models based on a large-scale trained CNN; and then,
fitting these initial models based on the limited training data
available. The resulting models are then combined into an
ensemble to improve classification accuracy.

The results show that SpineGEM outperforms other spine
classification methods in terms of classification accuracy,
even with a very small training dataset. An accuracy of
87.6% was achieved on the spinal pathology classification
task using only 58 training images. These results suggest
that the SpineGEM approach can be an effective solution for
spinal disease classification with a limited training dataset.
This may be especially relevant in clinical settings where
image availability is limited.

Candemir et al. [17] address strategies for model training
in scenarios with limited data, insufficiently labeled data,
and/or limited expert resources. They discuss strategies for
expanding the data sample, reducing the time required for
of manual supervised labeling, adjusting the architecture of
the neural network to improve model performance, applying
semi-supervised approaches, and leveraging the efficiency of
pre-trained models. They argue that patient privacy, tedious
annotation processes, and the limited availability of radiolo-
gists pose challenges to building such datasets.

A two-stage deep learning approach was proposed by [18],
for the automatic localization and segmentation of vertebrae

in CT images of the spine. The first stage used a 2D-Dense-
U-Net network to localize the vertebrae and detect their
centroids. The second stage used a 3D-Dense-U-Net network
to segment each specific vertebra into a region of interest,
based on the centroid detected in the first stage. The approach
achieved high accuracy, with a 100% detection rate and a
Dice coefficient of 0.877 ± 0.035.

A CNN based on the VGG19 architecture was used by
[19] to detect lumbar disc herniations on MRI images. The
results were promising, an were successfully tested on more
than 200 patients, achieving 100% accuracy and respective
intervertebral disc (IVD) identification accuracies for L1-L2,
L2-L3, L3-L4, L4-L5, and L5-S1 IVDs of 92.7%, 84.4%,
92.1%, 90.4%, and 84.2%, respectively.

Wang et al. [20] proposed an improved Attention U-
Net algorithm for lumbar spine image segmentation. The
algorithm uses attention-based fusion and residual modules
to improve performance. It was tested on 1000 MRI images
and achieved better performance than other algorithms in
terms of accuracy, recall, and Dice similarity coefficient.

A Fully Convolutional Network (FCN) was proposed by
[21] to segment and label vertebrae. The FCN was com-
bined with a memory component to store information about
previously segmented vertebrae. The network then searched
for nearby vertebrae and predicted whether they were visible
enough to be segmented. The method was evaluated on five
different datasets and achieved an average Dice score of
94.9%, an anatomical identification accuracy of 93%, and a
visibility identification accuracy of 97%. The method is fast,
flexible, generalizable, and compares favorably with state-of-
the-art methods.

Yolov5 as an object detector and the HED U-NET as
segmentation model to segment vertebrae was used by Mush-
taq et. al [22],deep learning models to localize and segment
lumbar spine vertebrae in MRI images. The results showed
that the proposed method was able to accurately localize
and segment the vertebrae, with a mean average precision
(mAP) of 0.975 for localization and a Dice coefficient of
0.94 for segmentation. The proposed method was also able
to diagnose lumbar deformities with an accuracy of 74.5%.

Mercaldo et al. [23] applied a YOLOv8 model to automat-
ically detect and localize brain cancer in MRI images. The
model achieved a precision of 0.943 and a recall of 0.923
for brain cancer detection, and an mAP0.5 of 0.941 for brain
cancer localization. These results demonstrate the effective-
ness of the YOLOv8 model for brain cancer detection and
localization.

At the time of writing this paper, no studies have been
found on the segmentation of the lumbar spine using
YOLOv8 applied to MRI images.

IV. MATERIALS AND METHODS

The work described in this paper was performed on
the Google Colaboratory (Colab) platform, using the paid
environment to have access to more GPU availability and
high memory availability. The code was developed in Python,
and the pipeline is illustrated in Figure 3.
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Fig. 3. Pipeline of the steps performed

A. Dataset

The choice of data is an important step, as the quality of
the samples directly afects the results. For this paper, we used
the Lumbar Spine Composite dataset, available on Mendeley
Data [24]. This dataset contains 514 individual sagittal plane
MRI images, which were derived from the MRI dataset [25].
The original dataset was obtained from anonymized clinical
MRI studies of 515 patients with symptomatic back pain,
with each study containing axial or sagittal slices of the
three lower vertebrae and the intervertebral discs. The dataset
contains a total of 48,345 MRI slices with an accuracy of 12
bit per pixel and a resolution 320x320 pixels for most slices.
The dataset generated by [24] is already available for use in
.png format for use. From this total, 3 samples were excluded
due to noise, and the final dataset used has a total of 512
central sagittal plane images.

B. Label Annotation

Currently, there are several resources available for anno-
tating labels, such as LabelME, LabelIMG, V7, Roboflow,
and others. As recommended by Ultralytics due to the use
of YOLOv8, Roboflow was used, as shown in Figure 4. Only
vertebrae related to the lumbar spine, from L1 to L5, which
are the object of this study, were annotated.

Fig. 4. Annotation process example

From the total set of 512 images, 50 were separated for
testing, and only 462 images were annotated. In the first
stage, without using data augmentation, 375 images were
used for training (70%) and 137 images were used for
validation (30%).

C. Data Augmentation

Data augmentation is a solution applied to improve algo-
rithm training and reduce overfitting [25]. It is used when
there is no access to large databases, such as in medical
image analysis [17]. Data augmentation comprises a set of
techniques that increase the size and quality of training
datasets in order to build better deep learning models [25].

This process was performed directly in Roboflow, and
the ratios were changed automatically through the follow-
ing steps: the images were inverted horizontally, rotated
clockwise, counterclockwise, and upside down, clipped to a
minimum zoom of 0º and a maximum zoom of 20º, rotated
between -23º and +23º, tilted up to 15º horizontally and
vertically.

The training dataset has been expanded from 462 images
to 1,116, and is automatically adjusted to 981 training images
(87,9%), 103 for validation (9,2%) and 32 (2,87%)for test,
the maximum allowed for the free version of Roboflow.

D. Training, Detection and Segmentation

The decision to use YOLOv8x, which produced the best
results, was made after the training and validation process
described below and shown in figure 5:

• 1st: Images were reset to 320x320 and trained on the
YOLOv7 network;

• 2nd: Images reset to 640x640 and trained on the
YOLOv7 network

• 3rd: Images from previous step, applied Data Augmen-
tation as described below and trained on YOLOv7;

• 4th: Upon reaching a satisfactory result, the previous
dataset was trained on YOLO8n;

• 5th: Detection training performed on YOLOv8x;
• 6th: Detection validation of the 50 images with the

previously trained weights;
• 7th: Segmentation training on YOLOv8x;
• 8th: Validation of segmentation of the 50 images with

the previously trained weights;

Fig. 5. Networking training steps

Due to the small number of samples, the model was
pretrained on a general COCO 2017 dataset. This allowed
the model to learn general object features without losing the
generalization of the pretrained model. The hyperparameters
were optimized using an iterative trial-and-error process.

To achieve the best results, several training runs were
performed for both detection and segmentation. Adjustments
were made, such as varying the batch size from 5 to 30 and
the number of epochs from 50 to 300. The best results were
obtained with a batch size of 20 and 300 epochs. However,
the training was terminated with 169 epochs for detection
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training and 108 epochs for segmentation due to early
stopping, when no further improvements were observed.

The hyperparameters shown in table I were used for
the task of detecting and segmentating vertebrae in lumbar
spine MRI images. The use of a large batch size (20)
and a large number of workers (8) helps to improve the
training efficiency of the model. The use of a constant
learning rate (0.01) throughout the training process helps to
prevent the model from overfitting the training data. Using an
intersection over union (IOU) threshold of 0.7 for evaluation
is a reasonable choice, as it balances the precision and recall
of the model. The use of a random seed helps to ensure that
the reproducibility of the training results.

Overall, the hyperparameters in the table I are a good
starting point for training a YOLOv8 model for vertebrae
detection and segmentation in lumbar spine MRI images.
However, it is important to note that these hyperparameters
may need to be adjusted depending on the specific dataset
and application.

TABLE I
YOLOV8 HYPERPARAMETERS

Hyperparameter Train Segmentation
Epoch 300 300

Patience 50 50
Batch size 20 20
Image Size 640 640

Workers 8 8
Optimizer SGD SGD

Seed 6 6
IOU 0,7 0,7
LR0 0,01 0,01
LRf 0,01 0,01

The loss function was VarifocalLoss, a robust variant of
binary cross entropy loss for small objects and objects with
low probability.

The results of this study demonstrate that the YOLOv8
network is a promising approach for vertebral detection
and segmentation in lumbar spine MRI images. The model
achieved a mAP of 0.975 for detection and a mean IOU
of 0.900 for segmentation. These results are comparable to
or better than those reported in other studies using similar
approaches.

The YOLOv8x detrending step predicted the vertebrae,
from L1 to L5, with bounding box marking, highlighting
its probability for each vertebra.

Semantic segmentation was used to predict and mark the
masks on the vertebrae individually on each pixel, using
different colors for each vertebra. Marking individual masks
is important to support other diagnostic steps, such as devi-
ations and fractures. When necessary, this process can also
be used to segment other structures. This process has been
performed by other authors using other available networks,
each one with its own purpose.

The last step was the binary mask extraction of each
image, saving it in a specific .png file and its corresponding
.json file so that it can be used in other applications, if
necessary. Figure 6 shows an example of each step described.

Fig. 6. Validation steps: (a) Detection with bounding box; (b) Semantic
Segmentation; (c) Binary Masks

E. Evaluation Methods

Evaluating the results is important to understand the be-
havior of the network and makes it possible to make various
adjustments, such as to its hyperparameters or even to the
model itself, to improve its performance or even to replace
it.

The main criteria for evaluating a neural network model
are Precision, Recall and Mean Average Precision mAP,
which are presented below:

• Precision: Equation 1 shows the calculation as the ratio
of the total number of true positive (TP) samples to the
total number of samples classified as positive (correct
TP or incorrect FP). It measures the accuracy of the
network in classifying a sample as positive, which
reflects how reliable the model is in classifying samples
as positive:

Precision =
TP

(TP + FP )
(1)

• Recall: Equation 2 calculates this as the ratio of the
number of true positive (TP) samples correctly classified
as positive to the total number of positive samples
(correctly TP or incorrect FN) and measures the ability
of the model to detect positive samples. The higher the
recall, the more positive samples are detected:

Recall =
TP

(TP + FN)
(2)

• mAP (Mean Average Precision): mAP is a metric used
to evaluate the precision of an object detection model
at different detection thresholds. It is usually calculated
using the average mean average precision (AP) for
different object categories and is the average of the
precision at different recall values. The general formula
for calculating AP is AP is calculated for each object
category individually and is the average of the Precision
(P) at different Recall (R) value:

AP =

∫ 1

0

P (R) dr (3)

The mAP represents the average of these APs for all
object categories considered in object detection using
YOLOv8. The formula to calculate the mAP is as
follows

mAP =
1

n

N∑

i=1

APi (4)
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The most commonly used metric, as listed above, is mAP.
It is also satisfactory, since AP represents the average Preci-
sion for each class (in this case, 5) and mAP represents the
average for all classes. mAP0.5 represents a value of mAP
between a fixed intersection over union of 0.5. mAP 0.5:0.95
represents the IOU values from 0.5 to 0.95. All results graphs
indicate that the network performed well for training on the
dataset used, together with its hyperparameters.

V. RESULTS AND DISCUSSION

This paper explores the potential of using a single network,
specifically YOLOv8x, for vertebral detection and semantic
segmentation in central sagittal MRI images. Despite the
use of a limited training dataset, the results obtained in
this work were very promising and successfully achieved
the main objective of the study. In particular, the semantic
segmentation results were extremely satisfactory, indicating
the possibility of using a single network to perform both
steps.

The analysis of the results of the detection and semantic
segmentation process will be discussed as follows.

A. Detection Results

Table II shows the results of the detection test s using
103 separated images for vertebrae from L1 to L5, including
results for all classes. The training process ran for 169
epochs. It was stopped due to no improvement in the results
was observed after epoch 119. The table shows the results
for Bounding Box (BOX), Precision (P), Recall (R), mAP:50,
and mAP:50-95.

TABLE II
YOLOV8 DETECT TRAINING RESULTS

Metric All Vertebrae L1 L2 L3 L4 L5
Precision 0.97 0.946 0.971 0.981 0.971 0.98

Recall 0.98 0.971 0.987 0.958 0.985 1
mAP:50 0.989 0.981 0.99 0.983 0.995 0.994

mAP:50-95 0.886 0.877 0.909 0.898 0.883 0.865

The overall precision of 0.97 means that, on average, 97%
of the vertebra instances were correctly classified. The overall
recall of 0.98 means that, on average, 98% of actual vertebra
instances were detected. The overall mAP of 0.989 means
that, on average, vertebra instances were detected with a
precision of at least 98.9%.

The results for each individual vertebra class are also good.
All classes have a precision of at least 0.94 and a recall of
at least 0.95. L1 has the lowest precision and recall, but it is
still very good. L2, L3, and L4 have similar results. L5 has
the highest precision and recall.

Figure 7 shows the YOLOv8 confusion matrix, with the
accuracy results for each grid, all of which are above 0.95.
The background column indicates that these instances should
have been classified but were not. This allows us to better
analyze the model built, and the errors found.

Figure 8 shows the F1 scores for different confidence
levels. The best F1 score was 0.98, which is very high. This
means that the classifier achieved 98% accuracy and 98%
recall. In other words, the classifier correctly classified 98%
of all instances, and it correctly classified 98% of the true
positives.

Fig. 7. Confusion matrix of the detection training model

The confidence level of 0.781 indicates that the classifier is
78.1% confident in its predictions. This is a good confidence
level, but it is important to note that no classifier is perfect.
There will always be some instances where the classifier
misclassifies.

The results of this study suggest that the classifier is a
very effective tool for detecting objects. The high F1 score
and confidence level indicate that the classifier is accurate
and reliable.

Fig. 8. F1 scores curve of the detection training model

Figure 9 shows the accuracy vs. confidence curve for all
class values (L1 through L5). The curve shows that the
accuracy is very high for all class values, with all values
above 0.926. This is a very satisfying result, as it indicates
that the classifier is very accurate in its predictions.

Figure 9 shows that the classifier achieves high accuracy
and confidence for all class values. This indicates that the
classifier can accurately and reliably detect objects of all
types.

Overall, the results are very satisfactory, demonstrating
that the classifier is well-suited for object detection tasks.

B. Semantic Segmentation Results

Table III shows the results of the semantic segmentation
test for vertebrae from L1 to L5, using 103 validation images,
including results for all classes. The training process ran
for 108 epochs. It was stopped due to no improvement
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Fig. 9. Accuracy vs. Confidence curve, detection training

in the results observed after epoch 58. The best results
were obtained at epoch 58. The table shows the results for
Bounding Box (BOX) and Masks (MASK), Precision, Recall,
mAP50 and mAP50-95.

The overall results are very good, with a precision of
94,8%, a recall of 0.971, and a mAP of 97,8% for the
bounding box and 0.948, a recall of 0.971, and a mAP of
97,8% for the mask. The results for each individual vertebra
class are also good, with all classes having a precision of at
least 0.94 and a recall of at least 95%.

The L1 vertebra has the lowest precision and recall for
both the bounding box and the mask. This is probably due
to the fact that the L1 vertebra is the smallest vertebra in
the lumbar spine and is therefore more difficult to detect
and segment. The L2 vertebra has the highest precision and
recall for the bounding box, but the lowest precision and
recall for the mask. This is probably due to the fact that
the L2 vertebra is located in the middle of the lumbar spine
and is therefore more difficult to segment than the L1 or
L5 vertebrae. The L5 vertebra has the highest precision and
recall for the mask, but the lowest precision and recall for
the bounding box. This is probably due to the fact that the
L5 vertebra is the largest vertebra in the lumbar spine and is
therefore easier to segment than the L1 or L2 vertebrae.

Figure 10 presents the confusion matrix for YOLOv8x.

Fig. 10. Confusion matrix of the Semantic segmentation training model

Figure 11 shows the graph F1 scores for the confidence
values.

Fig. 11. F1 scores curve of the semantic segmentation training model

Figure 12 shows the curve accuracy vs confidence curve
for all class values (L1 to L5).

Fig. 12. Accuracy vs. Confidence curve, detection training

C. Discussion

Despite the positive results, further scrutiny of the final
data is required. Some images showed mislabeling, possibly
influenced by anatomical variations between patients, war-
ranting individual analysis of the detected and segmented
images.

The limitations of the study stem from a dataset with a
small sample size and unbalanced data, which requires evalu-
ation by experienced radiologists to validate the effectiveness
of the process.

The study presents an innovative technical approach by
integrating classification, semantic segmentation, and bi-
nary mask extraction into a single deep learning network,
YOLOv8x, selected for its exceptional performance.

In order to increase the efficiency o the model, the incor-
poration of an image enhancement preprocessing step and an
increase in the number of points in the annotation process
are recommended strategies. These improvements can further
increase the overall performance of the system.

VI. CONCLUSION

This paper presents the application of the YOLOv8 net-
work for the detection, semantic segmentation, and binary
mask extraction of lumbar spine vertebrae from L1 to L5
in MRI scans. The proposed methodology used a single,
lighter, more reliable, and easier to implement network to
perform both tasks. The results showed that the methodology
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TABLE III
YOLOV8 SEMANTIC SEGMENTATION TRAINING RESULTS

Metric All Vertebrae L1 L2 L3 L4 L5
Precision (BOX) 0.948 0.875 0.942 0.971 0.969 0.981

Recall (BOX) 0.971 0.951 1 0.959 0.971 0.971
mAP:50 (BOX) 0.978 0.969 0.987 0.965 0.98 0.991

mAP:50-95 (BOX) 0.882 0.866 0.904 0.902 0.88 0.856
Precision (MASK) 0.948 0.875 0.942 0.971 0.969 0.981

Recall (MASK) 0.971 0.951 1 0.959 0.971 0.971
mAP:50 (MASK) 0.978 0.969 0.987 0.965 0.98 0.991

mAP:50-95 (MASK) 0.856 0.831 0.879 0.864 0.858 0.847

was able to achieve satisfactory performance for semantic
segmentation, without the need for additional refinements.
This methodology has the potential to perform the entire
pathology detection process with high accuracy, which can
help radiologists to make more accurate diagnoses.

As a suggestion for future work, the authors plan to include
digital image processing in the initial stage of the method-
ology. This would include grouping the samples according
to the pathologies to be treated, as well as including edge
detection steps to calculate the dimensions of each vertebra.
The authors also plan to apply the methodology to image
classification tasks.

The authors believe that the proposed methodology has
the potential to be a valuable tool for radiologists and other
healthcare professionals. It can be used to automate the
detection and segmentation of vertebrae in MRI scans, which
can freeing radiologists’ time to focus on other tasks. The
methodology can also be used to improve the accuracy of
diagnoses, which can lead to better patient outcomes.
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