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Abstract—Clustering of multi-view data has become an im-
portant research field. The efficient clustering of multi-view
data is a challenging problem. This work aimed to investigate
a distributed approach to cluster multi-view relational data. A
PSO-based hybrid method was used to generate clustering from
all views independently. Five different objective functions were
explored to induce diversity to the clusterings since each function
looks for different cluster structures. Five different consensus
functions were compared to produce the final partition from the
ensembles. Three multi-view real-world data sets were considered
in this study. The Adjusted Rand Index, the F-measure and
Silhouette clustering validity indexes were used to assess obtained
clusterings. The distributed approach found better clusterings for
all data sets considering at least one consensus function.

Index Terms—cluster analysis, relational multi-view data, dis-
tributed approach

I. INTRODUCTION

Clustering methods divide data sets into clusters (groups)
such that similar objects are placed in the same cluster and
dissimilar objects are placed in different groups. Clustering
algorithms have applications in several areas: Statistics, Biol-
ogy, Pattern Recognition, Data mining [1].

Data can be described in two ways: vectorial or relational.
In vectorial form, each object is described by a vector of quan-
titative or qualitative values. Usually, data sets are represented
by a n × p matrix (n objects with p attributes). In relational
form, each pair of objects is represented by a dissimilarity
measure. Therefore, a n×n dissimilarity matrix describes the
data set. Relational data is more practical when data has a
high dimension. Another advantage of relational data is due
to information privacy [2].

In several practical applications, data has multiple represen-
tations or sources that are complementary. This complemen-
tary information can be useful in the clustering process [3].
As stated by [4], the process of combining multiple views to
achieve better performance is a significant research challenge.

Three main strategies are used to handle multi-view data
clustering depending on whether the view combination is
performed before, during, or after the clustering process:
centralized approach, distributed approach, and concatenation
approach. In a centralized approach, all views are considered
simultaneously in clustering process. Relevance weights are
estimated for each view such that some views may be more

important than others for the clustering task. In concatenation
approach, all views are concatenated into a single view and tra-
ditional clustering algorithms can be applied. In a distributed
approach, the views are considered independently providing
different clustering of the data set. Finally, a solution that
represents a consensus among the set of clusterings is searched
[5]. Most approaches focus on centralized strategy, while there
is a lack of studies investigating the distributed approach.

Metaheuristic algorithms have proven to produce good
solutions to the data clustering problem. Nature inspired
metaheuristics gained attention due to its capability achieving
a good balance in exploration-exploitation during the solution
search. Particle Swarm Optimization (PSO) is one well-known
nature inspired method and PSO-based algorithms were pro-
posed to solve clustering problem for single view and multi-
view relational data [6]–[8].

This work introduces a distributed approach to cluster multi-
view relational data given by multiple dissimilarity matrices.
The proposed approach uses a hybrid method based on Particle
Swarm Optimization (PSO) to cluster all views independently
first and then combine the generated clustering using a con-
sensus function.

The remainder of this work is structured as follows. Section
II presents a review of some related works. Section III presents
an overview of basic related concepts. Section IV introduces
the proposed distributed approach. Three multi-view data sets
were used in experiments to assess the proposed approach
according to two external clustering validity indexes, and their
results are shown in Section V. Section VI presents the final
remarks.

II. RELATED WORK

Most existing works in the literature studied the multi-view
clustering problem in a centralized approach dealing with data
sets described in vectorial form. Some works dealing with
relational data will be discussed in this section.

The authors in [6] proposed a hard clustering algorithm
based on PSO applied to single view relational data described
by a single dissimilarity matrix. In this study, the proposed
method was compared to the other three single-view algo-
rithms for relational data. Five clustering validity indexes were
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considered to assess the quality of the generated clustering. In
most cases, the proposed method found better clusterings.

The work [9] proposed a multi-view fuzzy clustering ap-
proach based on multiple medoids and minimax optimization
called M4-FC for relational data. In M4-FC method, every
object is considered as a cluster representative candidate with
a weight. The weight represents the probability of the object to
be chosen as a medoid. Minimax optimization is also applied
to find consensus clustering results. M4-FC was tested on
several multi-view data sets, in which M4-FC outperformed
the compared approaches.

The authors in [8] proposed fuzzy clustering algorithms
based on PSO for the clustering of multi-view relational data.
The proposed methods use a centralized approach in which
all views are used simultaneously in the clustering process.
In this study, several clustering validity indexes were adapted
to consider all views and weights, these adapted indexes were
used as fitness functions. The proposed methods outperformed
other algorithms suitable for multi-view relational data from
the literature.

The study performed in [7] proposed hard clustering algo-
rithms based on PSO for the clustering of multi-view relational
data. The proposed methods use a centralized approach in
which all views are used simultaneously in the clustering
process. Eleven fitness functions were considered. It was
observed that the top three fitness functions were Silhouette
index, Xu index and Intra-cluster homogeneity. The proposed
methods outperformed the compared methods for multi-view
relational data from the literature.

III. THEORETICAL BASIS

Let E = {e1, ..., en} be a set of n objects and let T
dissimilarity matrices Dj = [dj(ei, el)], where dj(ei, el)
measures the dissimilarity between objects ei and el in j−th
view.

Dj =




dj(e1, e1) · · · dj(e1, en)
...

. . .
...

dj(en, e1) · · · dj(en, en)




The PSO-hybrid method proposed in [6] will be used as
cluster all views independently, in which each data set view
is described by a dissimilarity matrix. In that method, each
cluster is represented by a single medoid (object). The use of
a single medoid may be insufficient to characterize the clusters.
In this work, multiple medoids will be used to represent
each cluster. The use of multiple medoids may represent
each cluster more accurately [10]. In this work, we modify
the method proposed in [6] to consider multiple medoids to
represent each cluster.

Each particle pi of the swarm is defined as a vector of
representatives (Gi,1, ..., Gi,K), in which Gi,1 is a subset
of E with fixed cardinality q (|Gi,1| = q). In a simplified
way, each cluster is represented by q medoids. Each particle
looks for a partition P = (C1, ..., CK) of E into K clusters
and the corresponding representatives G1, . . . , GK which will

represent the clusters in P such that the fitness function is
optimized.

The best position of each particle, denoted as pbesti,
represents the best set of representatives p∗i = (G∗

1, .., G
∗
K)

found based on the value of fitness. The best position of the
whole swarm denoted as gbest corresponds to the best position
Gbest = (G∗

1, .., G
∗
K) found by the entire swarm. Each particle

pi have a velocity V
(t)
i = (v

(t)
1 , .., v

(t)
n ) at iteration t, which

will be used to update the current position represented by
the set of representatives. The PSO-based hybrid method is
described in Alg 1.

Algorithm 1 PSO
1: INPUT:
2: - the dissimilarity matrix;
3: - the number K of clusters;
4: - the number of particles np in the swarm.
5: - the maximum number of iterations;
6: - suitable parameters c1 and c2;
7: OUTPUT:
8: - the vector of medoids (G∗

1, .., G
∗
K)

9: - the partition P = (C1, ..., CK) of E into K clusters.
10: ALGORITHM
11: For i = 1 to np

12: Initialize pi
13: Set pbesti as current position
14: Set gbest as (G1, . . . , GK) of pi ∈ S with best fitness
15: REPEAT
16: For each particle pi in swarm S
17: Update the velocity
18: Update the position
19: If (particle improvement)
20: Update pbesti
21: If (global improvement)
22: Update gbest
23: UNTIL stopping criterion is not satisfied

More details regarding position update step, velocity update
step, and initialization of particles can be found in Ref. [6].

IV. METHODOLOGY

This section introduces the proposed distributed approach
to cluster multi-view relational data. The distributed approach
is divided into two steps. In the first step, each view of the p
views is considered independently by the PSO-based hybrid
method. Besides that, the clustering algorithm is executed
independently for a given objective function. In this work, five
objective functions were considered, and they are described
in Subsection IV-A. These different objective functions were
used to induce diversity since each function looks for different
cluster structures that can complement each other. Therefore,
the idea is to combine these different clustering results and
potentially assure better data clusterings.

In the second step, all clustering results provided by the
optimization of each view and each objective function are used
as input for one consensus method. The consensus method will
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aggregate all clustering to form a final partition. In this work,
we consider five different consensus functions (Subsection
IV-B). Figure IV illustrates the distributed approach.

Fig. 1. Distributed approach for multi-view data

A. Ensemble generation

The Silhouette [11], Intra-cluster homogeneity, Davies-
Bouldin [12], Dunn [13] and CS [14] clustering validity in-
dexes were used as fitness functions. These different objective
functions were used to induce diversity to the clusterings
since each function looks for different cluster structures. It’s
important to emphasize that these clustering validity indexes
were adapted to consider the multiple medoids as cluster
representatives. The intra-cluster homogeneity is defined in
Eq. 1. Lower values of this index indicate better clusterings.

HM =
K∑

k=1

∑

el∈Ck

∑

e∈Gk

d(el, e) (1)

The silhouette is defined in Eq. 2. This index considers the
homogeneity in each cluster and the separation between the
clusters. The index is defined in [-1,1], higher values indicate
better clusterings.

SIL =
1

n

∑

el∈E

s(el) (2)

s(el) =

{
b(el)− a(el)/max(b(el), a(el)) if a(el) ̸= b(el)

0 if a(ei) = b(ei)
(3)

b(el) = min
Cj ̸=Ck

d(el, Cj) (4)

a(el) =

∑
e∈Ck

d(el, e)

|Ck|
(5)

d(el, Ct) =

∑
e∈Ct

d(el, e)

|Ct|
(6)

The Davies-Bouldin index also aims to minimize the intra-
cluster distance and maximize the inter-cluster distances. To
compute this index, the similarity and dispersion of clusters
need to be computed. The index is defined in Eq. 7.

DB =
1

K

K∑

k=1

maxm∈{1,..,K}

(
ok + om
Mkm

)
(7)

ok =

(
1

|Ck|
∑

el∈Ck

∑

e∈Gk

d(el, e))

) 1
q

(8)

Mkm = max
el∈Gk,et∈Gm

d(el, et) (9)

The Dunn index defines the ratio between the minimum
distance inter-cluster and the maximum diameter of clusters.
The index is defined in Eq. 10 and should be maximized.

DN =
mink∈{1,..,K},k ̸=iδ(Ci, Ck)

maxk∈{1,..,K}∆(Ck)
(10)

δ(Ci, Ck) = min
em∈Gi,et∈Gk

d(em, et) (11)

∆(Ck) = max
em,et∈Ck

d(em, et) (12)

The CS index is a combination of the diameter of clusters
and distances to the representatives of each cluster. This
index was designed to deal with clusters of different sizes
and shapes. The index is defined in Eq. 13 and should be
minimized.

CS =

∑K
k=1(

1
|Ck|

∑
ej∈Ck

maxel∈Ck
d(ej , el))

∑K
i=1(minj∈{1,..,K},j ̸=iD(Gi, Gj))

(13)

D(Gi, Gk) = min
em∈Gi,et∈Gk

d(em, et) (14)

B. Consensus function

The second step of the distributed approach aims to obtain
a final partition after obtaining the clustering results exploring
all views under different objective functions. The consensus
functions explored in this work are: Clustering Agglomera-
tive [15], Clustering-based Similarity Partitioning Algorithm
[16], Locally Weighted Evidence Accumulation [17], Iterative
Voting Consensus [18]. These methods are briefly described
below.

1) Agglomerative clustering: The agglomerative method is
a bottom-up algorithm for the correlation clustering problem
[15]. This method starts placing every object into a singleton
cluster. The algorithm tries to merge clusters based on a
calculated distance. The initial ensemble is used to compute
the distance between each pair of objects based on the number
of times they were placed in the same cluster on different
clusterings.
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2) Clustering-based Similarity Partitioning Algorithm :
The Cluster-based Similarity Partitioning Algorithm (CSPA)
creates a similarity graph from the co-ocurrence matrix [19].
After that, METIS [20] method is used to partition the graph
into K clusters of roughly equal size.

3) Locally Weighted Ensemble Accumulation: This method
is based on hierarchical agglomerative clustering. Ensemble-
driven cluster uncertainty estimation and local weighting strat-
egy are used in LWEA. The uncertainty of each cluster is esti-
mated by considering the cluster labels in the entire ensemble
via an entropic criterion. The local weighting strategy refines
the co-association matrix using an ensemble-driven cluster
validity [17].

4) Locally Weighted Graph Partitioning: This method is
based on bipartite graph formulating and partitioning. First
the algorithm constructs the locally weighted bipartite graph.
Then, the Tcut algorithm is used to partition the graph.
Therefore, a final partition can be obtained [17].

5) Iterative Voting Consensus: The Iterative Voting Con-
sensus (IVC) method aims to obtain the final partition from
the label-assignment data matrix of the ensemble.

V. EMPIRICAL RESULTS

This section discusses the performance of the distributed ap-
proach to cluster multi-view relational data. Three real-world
data sets were considered in this study: Image Segmentation,
Multiple features and Corel images. Table I summarizes the
information of data sets. The number of objects, number of
attributes, number of clusters, and the number of views are
presented in Table I. Each view is represented by a subset of
the variables.

TABLE I
SUMMARY OF THE DATA SETS

Data sets # views # variables # clusters # objects
Image 2 16 7 2310
Multiple features 6 649 10 2000
Subcorel 7 338 7 400

A. Experimental settings

The PSO-based hybrid method was run with 100 iterations
for all views and all objective functions. The parameters used
for the PSO algorithm were the default values: wmin = 0.4,
wmax = 0.9, c1 = c2 = 2. The size of swarm used was 20
particles.

For each view, one dissimilarity matrix was computed con-
sidering all attributes in the view. In this work, the dissimilarity
between each pair of objects was calculated according to
the Euclidean (L2) distance. All matrices were normalized
as performed in [7]. After the execution of the clustering
algorithm for all views independently and for all objective
function, the obtained clusterings were assessed using three
evaluation indexes: the Adjusted Rand Index (ARI) [21], F-
measure [22], and Silhouette index [11]. Higher values of these
two indexes indicate better clustering results.

For all data sets, each objective function was considered by
the PSO-based method to generate a clustering for each view
independently, i.e, the optimization of each function generates
p clusterings (one per view). All consensus functions were
executed to compare the performance of these methods and
to verify if the optimization of each objective function could
generate better final partitions, i.e, the ensembles with low
diversity. Finally, the consensus functions were applied again
considering all clustering results.

B. Results

Tables II-IV show the summary of the results of the cluster-
ing generated by the optimization of each view independently.
The average performance and the standard variation of the
indexes are also presented. The best value for each data set
and each external index is shown in bold. The mean values
and standard variation are also shown for each ensemble. The
results of the final clustering found by each consensus function
is also presented.

It is possible to observe in Table II, for Image data set, that
View 2 presented better results independently of the optimized
objective function. The consensus functions were applied to
the sets containing only two clusterings for each objective
function. Consequently, in general, the final clusterings ob-
tained had lower quality in terms of the considered indexes.

From Table III, for Multiple features data set, it is possible
to observe that, except for CS function, View 3 produced
better clustering in all cases for F-measure and ARI indexes.
It is noteworthy that View 4 provided poor clustering for
all objective functions. Therefore, these results reinforce that
some views may have noisy information and, ideally, should
not be considered. The consensus functions were applied to
the sets containing six clusterings for each objective function.
CSPA and LWGP methods produced better results for all
objective functions and all views, except for silhouette index.

From Table IV, some observations can be done. First, view
1 produced better clusterings in terms of F-measure and ARI
indexes in most objective functions. IVC consensus func-
tion found the best final clusterings, considering F-measure
and ARI, for the ensembles in three objective functions.
The consensus functions were applied to the sets containing
seven clusterings for each objective function. For all objective
functions, one consensus function found a clustering better
evaluated, for F-measure and ARI, than the best clustering
found by optimizing all views separately.

Table V shows the summary of the results considering all
clusterings found for all objective functions, i.e, the complete
ensemble. The mean and standard variation is presented for
the three indexes. The results of the final clustering found by
each consensus function are also presented. In general, as can
be seen in Table V, the proposed distributed approach achieved
better results compared to the results from the optimization of
each view separately considering the external indexes and the
data sets used for at least one consensus function.
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TABLE II
RESULTS FOR IMAGE SEGMENTATION DATA SET

Homogeneity objective function Consensus
Index View 1 View 2 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.318 0.556 0.437(.17) 0.087 0.115 0.011 0.112 0.165
F-Measure 0.405 0.615 0.510(.15) 0.429 0.535 0.452 0.534 0.595
ARI 0.219 0.457 0.338(.17) 0.275 0.326 0.188 0.375 0.431

Silhouette objective function Consensus
Index View 1 View 2 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.355 0.580 0.468(.16) 0.019 0.129 0.075 0.141 0.105
F-Measure 0.410 0.653 0.532(.17) 0.497 0.565 0.549 0.535 0.53
ARI 0.204 0.467 0.336(.19) 0.334 0.376 0.286 0.368 0.343

Davies-Bouldin objective function Consensus
Index View 1 View 2 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.155 0.484 0.320(.23) -0.037 0.044 0.125 0.229 0.053
F-Measure 0.435 0.666 0.551(.16) 0.568 0.465 0.58 0.665 0.479
ARI 0.159 0.529 0.344(.26) 0.355 0.221 0.312 0.526 0.237

Dunn objective function Consensus
Index View 1 View 2 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.304 0.552 0.428(.18) 0.089 0.195 0.166 0.101 0.201
F-Measure 0.400 0.580 0.490(.13) 0.424 0.618 0.564 0.504 0.538
ARI 0.203 0.396 0.300(.14) 0.248 0.436 0.353 0.339 0.447

CS objective function Consensus
Index View 1 View 2 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.350 0.554 0.452(.14) 0.112 0.041 0.043 0.104 0.031
F-Measure 0.398 0.579 0.489(.13) 0.422 0.431 0.438 0.503 0.433
ARI 0.185 0.402 0.294(.15) 0.259 0.233 0.219 0.343 0.247

TABLE III
RESULTS FOR MULTIPLE FEATURES DATA SET

Homogeneity objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.220 0.157 0.143 0.572 0.120 0.169 0.230(.17) -0.002 0.123 0.050 0.128 0.120
F-Measure 0.723 0.707 0.835 0.455 0.823 0.667 0.702(.13) 0.834 0.873 0.633 0.798 0.873
ARI 0.541 0.541 0.679 0.317 0.661 0.447 0.531(.13) 0.716 0.749 0.470 0.655 0.747

Silhouette objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.248 0.160 0.147 0.578 0.131 0.178 0.240 (0.17) -0.016 0.114 0.056 0.076 0.111
F-Measure 0.655 0.731 0.762 0.457 0.714 0.629 0.658(.11) 0.758 0.871 0.551 0.773 0.858
ARI 0.476 0.548 0.606 0.323 0.559 0.435 0.491(.10) 0.619 0.743 0.38 0.632 0.723

Davies-Bouldin objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.19 0.093 0.118 0.495 0.08 0.145 0.187 (.16) -0.0166 0.096 0.097 0.101 0.095
F-Measure 0.579 0.522 0.663 0.479 0.582 0.563 0.565(.06) 0.665 0.776 0.711 0.743 0.769
ARI 0.396 0.368 0.489 0.326 0.395 0.346 0.387(.06) 0.512 0.602 0.537 0.571 0.595

Dunn objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.209 0.127 0.134 0.574 0.12 0.169 0.222(.18) -0.015 0.119 0.08 0.108 0.118
F-Measure 0.68 0.555 0.785 0.461 0.675 0.625 0.630(.11) 0.752 0.807 0.684 0.761 0.801
ARI 0.512 0.408 0.628 0.322 0.516 0.412 0.466(.11) 0.603 0.686 0.534 0.631 0.675

CS objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.223 0.128 0.132 0.562 0.128 0.169 0.224(.17) 0.013 0.1 0.056 0.131 0.098
F-Measure 0.59 0.683 0.656 0.468 0.686 0.579 0.610(.08) 0.692 0.808 0.592 0.706 0.794
ARI 0.424 0.493 0.501 0.313 0.542 0.36 0.439(.09) 0.561 0.675 0.434 0.569 0.66

VI. CONCLUSION

This study proposed a distributed approach for the clustering
of multi-view relational data. Most approaches in literature
deal with multi-view data through a centralized approach. In
the proposed approach, each view is used independently to
generate clusterings of the data sets considering five different
objective functions. A hybrid method based on the PSO was
used to produce the clusterings by optimizing the different
objective functions. Five different consensus functions were

compared to generate a final clustering of the data sets.

Three real-world multi-view data sets and three clustering
validity indexes were considered in this study. The empirical
results showed that the proposed approach was able to im-
prove the clustering results for at least one of the considered
consensus functions.

As future work, we intend to investigate a strategy to
perform view selection. View selection may be important due
to complexity reduction and also to improve the clustering
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TABLE IV
RESULTS FOR SUBCOREL-1 DATA SET

Homogeneity objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 View 7 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.198 0.240 0.189 0.226 0.345 0.23 0.292 0.246(.05) -0.063 0.094 0.08 0.083 0.092
F-Measure 0.699 0.664 0.585 0.457 0.567 0.55 0.427 0.564(.09) 0.614 0.639 0.743 0.631 0.637
ARI 0.415 0.311 0.3 0.114 0.336 0.184 0.079 0.248(.09) 0.388 0.396 0.465 0.367 0.393

Silhouette objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 View 7 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.224 0.284 0.193 0.238 0.378 0.24 0.325 0.269(.06) -0.036 0.089 0.073 0.095 0.088
F-Measure 0.611 0.642 0.611 0.479 0.577 0.517 0.443 0.554(.07) 0.601 0.675 0.698 0.61 0.67
ARI 0.32 0.306 0.331 0.123 0.335 0.143 0.091 0.236(.11) 0.339 0.411 0.418 0.385 0.404

Davies-Bouldin objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 View 7 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.182 0.279 0.173 0.208 0.330 0.163 0.242 0.225(.06) -0.069 0.083 0.074 0.060 0.082
F-Measure 0.648 0.668 0.604 0.443 0.541 0.496 0.461 0.552(.09) 0.648 0.647 0.647 0.683 0.65
ARI 0.349 0.350 0.285 0.106 0.323 0.137 0.117 0.238(.11) 0.38 0.411 0.397 0.410 0.411

Dunn objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 View 7 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.201 0.279 0.150 0.233 0.334 0.209 0.292 0.243(.06) -0.066 0.101 0.082 0.129 0.085
F-Measure 0.709 0.663 0.648 0.455 0.618 0.524 0.395 0.573(.11) 0.617 0.677 0.741 0.712 0.735
ARI 0.413 0.343 0.343 0.116 0.363 0.167 0.073 0.260(.13) 0.352 0.427 0.487 0.417 0.459

CS objective function Consensus
Index View 1 View 2 View 3 View 4 View 5 View 6 View 7 µ(σ) Agglomerative CSPA IVC LWEA LWGP
Silhouette 0.206 0.279 0.187 0.204 0.288 0.239 0.131 0.219(.04) -0.047 0.084 0.056 0.02 0.098
F-Measure 0.685 0.645 0.563 0.466 0.526 0.52 0.415 0.546(.09) 0.595 0.662 0.56 0.691 0.694
ARI 0.375 0.292 0.246 0.119 0.235 0.148 0.076 0.213(.10) 0.355 0.396 0.249 0.405 0.415

TABLE V
SUMMARY OF RESULTS FOR ALL VIEWS

Data set Index Ensemble Consensus
Mean Std Dev Agglomerative CSPA IVC LWEA LWGP

Image
Silhouette 0.421 0.14 0.178 0.174 0.154 0.285 0.259
F-Measure 0.514 0.11 0.588 0.629 0.562 0.658 0.757

ARI 0.322 0.14 0.42 0.433 0.349 0.488 0.601

Mfeat
Silhouette 0.221 0.157 -0.006 0.123 0.100 0.130 0.126
F-Measure 0.633 0.107 0.783 0.879 0.715 0.782 0.895

ARI 0.463 0.117 0.646 0.646 0.590 0.652 0.789

SubCorel
Silhouette 0.245 0.056 -0.016 0.093 0.089 0.103 0.091
F-measure 0.558 0.091 0.614 0.685 0.675 0.688 0.682

ARI 0.239 0.112 0.374 0.432 0.394 0.421 0.418

accuracy since data sets may have views containing noisy
information.
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