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Abstract—A proper forecast of the menstrual cycle is meaning-
ful for women’s health, as it allows individuals to take preventive
actions to minimize cycle-associated discomforts. In addition,
precise prediction can be useful for planning important events
in a woman’s life, such as family planning. In this work, we
explored the use of machine learning techniques to predict reg-
ular and irregular menstrual cycles. We implemented some time
series forecasting algorithm approaches, such as AutoRegressive
Integrated Moving Average, Huber Regression, Lasso Regression,
Orthogonal Matching Pursuit, and Long Short-Term Memory
Network. Moreover, we generated synthetic data to achieve our
purposes. The results showed that it is possible to accurately
predict the onset and duration of menstrual cycles using machine
learning techniques.

I. INTRODUCTION

The menstrual cycle is the time from the first day of a
woman’s period to the day before her next period [1]. It
differs from woman to woman, in addition, it is connected to
physical and mental well-being [2]. The correct knowledge of
cycle variations is crucial to understanding reproductive health
and defining multidimensional well-being in women [2]. Some
phases constitute the menstrual cycle, such as the menstrual
phase or period, follicular phase, ovulation phase, and luteal
phase, sequentially [3]. The length of each phase can vary
from woman to woman, and it can modify over time. In this
way, a cycle is considered regular when it varies from 21 to
35 days, counting from the first day of one period to the first
day of the next [3]. In a regular cycle, the period can endure
between three and five days [3]. The luteal phase, usually,
will be fourteen days long, and the follicular phase will also
be fourteen days long [3]. However, not all women will have
this menstrual pattern. During the woman’s life, the periods
can alter, i. e., they may stay longer or get lighter [4]. The
periods will persist until menopause, which usually happens
when women are in their late 50s [3]. Moreover, the cycle can
be irregular. A cycle is considered irregular when most of the
previous cycles are outside regular intervals, i.e., there is no
visible pattern in the variation [5].

Irregular cycles are common and usually not a cause for
worry. Factors that can contribute to irregular periods include:
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natural hormonal changes, hormonal birth control, stress,
resistance exercise, and weight loss [6]. For instance, for a
woman in perimenopause irregularity of periods is extremely
common. However, an irregular cycle may be a sign of either
early ovarian failure or polycystic ovary syndrome [5], [7].
Moreover, irregular cycles can sometimes drive pregnancy
complicated, as the days a woman is ovulating can also be
irregular [1]. In this way, women who hold irregular cycles
and desire to become pregnant have traditionally resorted to
the arduous strategy of tracking urinary luteinizing hormone
(LH), measuring basal body temperature (BBT), calendars,
and calculations to estimate the ovulatory window and thus
maximizing their chances of getting pregnant [8]. However,
manually mapping and tracking fertility through BBT and LH
tests can be arduous [9].

The knowledge of the menstrual cycle allow women un-
derstanding their own body and may detected a possible
menstrual disorders [10]. However, many women are troubled
by an irregular or unpredictable menstrual cycle [11]. The
patterns are so individual to each woman that it is hard for
a human to create enough rules to capture them. In this
way, machine learning (ML) techniques can be applied to
predict a woman’s cycle. ML and deep learning algorithms
can detect each woman’s unique and individual patterns and
better predict the ovulation window and period. Computational
intelligence can be helpful for disease diagnosis, decision
support systems, and prognosis [12]-[14]. Because of this, it
has become an important approach in biomedical discovery
and clinical research.

ML algorithms, such as artificial neural networks (ANN),
can deliver significantly better solutions than known methods
to cycle predictions [15]. As described by [16], machine
learning procedures enable the development of intelligence
into a machine so that it can achieve better in the future using
the learned experience. Moreover, machine learning appliances
carry about smart change in the health industry, which includes
pattern detection [17], predictions system [18], [19], image
recognition [20]. In this way, in this paper, we highlighted the
prediction system for the predictive modeling of healthcare,
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particularly menstrual cycle length from synthetic data.

One of the prior challenges in predictive modeling for
the menstrual cycle pertains to addressing the uncertainty of
the data at hand, as well as ensuring the adjustment of the
model output [13], [15], [21]. In manuscript [13], the authors
explored uncertainty quantification when designing predictive
models for healthcare, such as cycle length patterns. In the
same way, [15] proposed a predictive model for predicting the
next menstrual cycle start date. Differently, in [21], the authors
applied some machine learning models to predict polycystic
ovary syndrome. Therefore, these works have demonstrated
the capability of probabilistic models and machine learning
algorithms to detect patterns in women’s cycles.

Motivated by the above discussion, our purpose is to ac-
curately forecast the subsequent cycle based on previously
tracked cycle and periods. Thus, the main contributions of
this work lie in the following:

i. Use machine learning algorithms to analyze data from
previous menstrual cycles in order to identify patterns
and predict the start of future cycles;

ii. Model that can accurately predict the timing and length of
the menstrual cycle using only historical menstrual cycle
data.

The manuscript is divided into: The introduction, where we
provided background information on the problem and its sig-
nificance. The related work section summarizes the relevant re-
search on the topic. The problem formulation section describes
the problem and some time series algorithm approaches. The
data characteristics section describes the research design and
data generation methods used in our study. The results section
presents our findings, including statistical analyses and visual
representations of the data. Finally, the conclusion summarizes
the main findings and contributions of our study and suggests
directions for future research.

II. RELATED WORK

There is a need for the development of an appropriate model
for one-step-ahead forecast periods. In the last few years, the
usage of web systems and apps to track periods and predict the
fertile window has become popular [22], [23]. For instance,
in the manuscript [24], the authors built a hybrid predictive
model based on autoregressive—moving-average (ARMA) and
linear mixed effect model (LMM) for forecasting menstrual
cycle length in athletes. In paper [25], the authors presented
a state-space modeling approach for forecasting the onset of
menstruation based on basal body temperature time series
data. They used the state-space model to forecast the onset of
menstruation for up to three months in advance. Differently,
in [26], Chen et al. proposed a mathematical model of the
human menstrual cycle. The model is based on a system of
differential equations that describes the changes in hormone
levels in the body over the course of the menstrual cycle. The
authors validated the model using data from clinical studies
of the menstrual cycle and found that it accurately predicted
the timing and magnitude of hormone fluctuations during the
cycle.

In [27], the authors presented a mathematical model for
the administration of gonadotropin-releasing hormone (GnRH)
analogs in the treatment of infertility. The authors developed
the model to optimize the timing and dosage of GnRH analog
administration for the induction of ovulation. The model takes
into account the feedback mechanisms that regulate hormone
levels, as well as the effects of GnRH analogs on hormone
production.

To enhance analysis, we compiled some manuscripts that
modeling cycles in time series data. In Table I, we summa-
rized the paper, the model used by authors, and the features
employed.

TABLE I
RELEVANT PAPERS.
Paper | Model Features
[24] ARMA, LMM Cycle lengths
[28] Poisson model Cycle lengths

[13] CNN, RNN, LSTM, Poisson
[29] Cyclic Hidden Markov Models

[30] Natural Cycles algorithm*

Algorithm information are not provided.

Cycle lengths
Cycle lengths
Cycle lengths, BBT, LH

The authors, in [24], employed the ARMA, and LMM
models, focusing on cycle lengths as the key feature of interest.
[28] used a Poisson model, with a focus on cycle lengths as
well. In [13] a comparison between Convolutional Neural Net-
work (CNN), Recurrent Neural Network (RNN), Long Short-
Term Memory (LSTM), and Generalized Poisson models are
made. [30] compared fertile window and cycle predicted by
Natural Cycles algorithm over calendar-based methods. The
Natural Cycle algorithm incorporated cycle lengths, BBT, and
LH as key features for analysis.

In contrast to previous works, in this study, we implemented
multiple models to forecast the menstrual cycle duration.
These models include AutoRegressive Integrated Moving Av-
erage (ARIMA), Huber Regression, which is a robust regres-
sion method that provides robustness against outliers, Least
Absolute Shrinkage and Selection Operator (LASSO) Regres-
sion, Orthogonal Matching Pursuit (OMP), which efficiently
identifies relevant predictors, and LSTM Network.

III. PROBLEM FORMULATION

The problem formulation for predicting menstrual cycle
based on only the cycle time series, involves developing a
model that can accurately predict the timing and length of the
menstrual cycle using only historical menstrual cycle data. The
model is designed to handle both regular and irregular cycles,
and may need to be personalized to the individual woman.

The menstrual cycle time series can be represented as
a sequence of observations indexed by time, where each
observation corresponds to a menstrual cycle. Let us denote
the menstrual cycle length time series by

Xy =z1(1), ey
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where z1(t) represents the length of the menstrual cycle at
time ¢. Similarly, let’s denote the period length time series by

Xo = x2(t), ()

where x2(t) represents the length of the bleeding time at time
t.

We can use a sequence-to-sequence model, where the input
sequence consists of past values of X; and X5, and the output
sequence consists of future values of X; and Xs. Therefore,
let us denote the input sequence X € RV*? as

X = : ; SENE)
z1(t) z2(t)

where L is the length of the input sequence.
We can write the output sequence Y RV *? as

.’El(t—i-l) $2(t+ 1)

Y = ) (4)

1‘1(15'-1- P) $2(t.“v‘ P)

where P is the length of the output sequence. Each element of
the matrices X and Y corresponds to a time step and consists
of the menstrual cycle length and period length at that time
step.

A. Time series algorithms approaches

The model must be able to identify the key patterns and
trends in the menstrual cycle time series data, such as the
length of the menstrual cycle, and the duration of menstru-
ation. Machine learning algorithms, such as recurrent neural
networks or time-series forecasting models, such as ARIMA,
can be used to analyze the menstrual cycle time series and
predict future menstrual cycles based on past cycles. The
model can also be used to identify any irregularities or
abnormalities in the menstrual cycle, which can aid in the
diagnosis and treatment of reproductive health issues.

In the following sections, we discussed some models that
have been utilized, including the LSTM network, ARIMA,
Huber Regression, Lasso Regression, and OMP.

1) LSTM model: Long Short-Term Memory (LSTM) is a
type of recurrent neural network that is generally employed
for sequential data processing, such as time series analysis,
and natural language processing [31]. The fundamental idea
behind LSTM is the usage of memory cells, which are capable
of maintaining information over long sequences [31].

We applied an LSTM network to predict the menstrual cycle
time series. The LSTM model takes the input sequence X and
outputs a sequence of predicted values

Jil(t—i-l) $2(ﬁ—‘r 1)

Y = : : ) &)

z1(t+ P) x2(t+ P)
with Y € RN*2, The LSTM model can be formulated as
follows:

h(t) = LSTM (X (t), h(t — 1))

V() = lincar(h(t)) ©

where h(t) is the hidden state at time ¢, which is passed to the
output layer to predict the values of Y, and linear is a linear
transformation to map the hidden state to the output values.

The LSTM cell updates the hidden state based on the current
input and the previous hidden state as follows:

i(t) = (Wilh(t — 1), X ()] + b;)
f(t) = o(Wglh(t —1), X ()] + by)
olt) = G(Wy h(t 1), X (t)] +b,) 0
&(t) = tanh(Welh(t — 1), X ()] + be)
c(t) = f(t)e(t — 1) +i(t)e(t)
h(t) = o(t)tanh(c(t))

where i(t), f(t), o(t) are the input, forget, and output gates,
respectively, W;, W, W,, W, are weight matrices, b;, by, b,
b. are bias vectors, and c¢(t) is the cell state at time t. The
output layer is a linear layer that takes the hidden state h(t)
as input and outputs the predicted values Y (t).

2) ARIMA model: ARIMA model is a time series fore-
casting model that incorporates autoregression and moving
average components [32]. We can expressed it as

Y/ =c+ ) (Y )+ (ier—) + e @®)

where Yt’ represents the differenced observed menstrual cycle
length at time ¢, ¢ is a constant term, ¢ represents the
coefficient of the autoregression component at lag <. Note that,
we used the past values of the differenced time series to predict
future values. ¢; is the white noise error term at time t, and 6;
represents the coefficient of the moving average component at
lag i.

ARIMA models can be used to predict the cycles patterns
in a time series by incorporating seasonal differencing and
seasonal autoregressive and moving average components.

3) Huber Regression: Huber regression is a robust regres-
sion that uses the Huber loss function. Unlike the squared error
loss, the Huber loss function is designed to be less influenced
by outliers [33]. Its definition can be expressed as follows:

1Y — XB)? for |Y — XB| <4
5(IY — XB| — 36) otherwise.
©))
where [ is the regression coefficients, and § is a tuning
parameter, which determines the threshold beyond which the
loss function transitions from squared to absolute loss, thereby
controlling the model’s sensitivity to outliers [33]. Therefore
the problem consist in

Ls(Y,Xf) = {

minZL(s(Yi,Xiﬂ). (10)
Hence, the goal is to encounter the regression coefficients
[ that minimize the sum of the Huber losses between the
predicted values X3 and the actual values Y;.
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4) Lasso regression: Unlike Huber regression, Lasso re-
gression utilizes the L1 norm penalty (sum of absolute values)
on the regression coefficient, i.e., Lasso regression promotes
sparsity in the regression coefficients by adding the penalty
[34]. The minimization problem for Lasso regression can be
stated as follows:

1 2
ming— Z(K — X;a)* + )\Z |l

z J

(11

where A is the regularization parameter that controls the
strength of the penalty term, and « is the vector of regression
coefficients.
5) Orthogonal Matching Pursuit: OMP is an applied algo-
rithm for recovering sparse high-dimensional vectors in linear
regression models [35]. The objective of OMP in cycles time
series forecasting is to determine the lagged variables, i.e., the
predictors that are most informative in describing the current
and future values of a cycle. Therefore, given the time series
X, and a set of lagged variables Y [36]:
1. Initialize the set of selected predictors S = () and the
residual » = X. Let the iteration counter ¢ = 1.

2. Find Y; that solves max|YTr;_;| and add Y; to the set
S.

3. Let P, = Y(YTY)~'Y7T denote the projection into the
linear space spanned by the elements of Y. Update r; =
(I -P)X.

4. If the stopping condition is achieved, stop the algorithm.
Otherwise, set ¢ = ¢ + 2 and return to Step 2.

OMP algorithm was adjusted to combine lagged variables
that capture the temporal dependencies in the data. By iter-
atively selecting lagged variables based on their correlations
with the temporal residuals, OMP gradually determines the
most informative predictors for prediction purposes in the
cycle time series.

IV. DATA CHARACTERISTICS

We generated synthetic data that mimic the statistical prop-
erties, such as the distribution, variance of a real cycle. This
is useful for exploring different scenarios and testing the
robustness of the machine learning models to different data
conditions. The data is generated from the following model:

f - gmean + fstd e
0 = Omean + Ostd * Mo

where o represents the period length, £ is the cycle duration
in days, and p denotes the uncertain.

According to the model, the cycle length is generated based
on the mean and the standard deviation of the cycle length.
The period length is generated based on the mean and the
standard deviation of the period length. For analysis of the
possible patterns present in regular and irregular cycles, we
explored three different cases:

o Case 1: The period starts on the first day of the cycle, and

the variation of the period length is small, i.e., 9stq <K
Omean- Therefore, it is a regular cycle.

12)

o Case 2: The period starts on the last day of the cycle,
and the variation of the cycle is between 28 and 35 days,
and a period variation between 5 and 6 days. Therefore,
it is a regular cycle.

o Case 3: The period starts in the middle of the cycle, and
the variation of the cycle is between 28 and 49 days and
a period variation between 4 and 8 days. Therefore, it is
an irregular cycle.

Figures 1 and 2 show the menstrual cycle and period
distribution in the three cases, respectively. As shown, in
Figures 1 and 2, in case 1, the menstrual cycle duration is
between 28 and 30 days, and the period duration is 5 days.
A large density is concentrated in cycles of 30 days, and
the period duration is 5 days. In case 2, the menstrual cycle
duration is between 28 and 34 days (Figure 1), and the period
duration is between 5 and 6 days (Figure 2). In case 2, we
have more cycle of 28 and 34 days , and the period duration
with 6 days. In case 3, the menstrual cycle duration is between
28 and 49 days (Figure 1), and the period duration is between
4 and 8 days (Figure 2).

Case 1

Case 2
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Density

0.2
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Menstrual Cycle Duration (Days)
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Menstrual Cycle Duration (Days)
Fig. 1. Menstrual cycle distribution.

Figure 3 shows the boxplot of the menstrual cycle distri-
bution in the three cases. As shown, in Figure 3, in case
1, the menstrual cycle duration is between 28 and 30 days,
and the period duration is 5 days. In case 2, the menstrual
cycle duration is between 28 and 35 days, and the period
duration is between 5 and 6 days. In case 3, the menstrual
cycle duration in the three cases. As shown, in Figure 3, in
case 1, the menstrual cycle duration mean is 29 days, and the
period duration mean is 5 days. In case 2, the menstrual cycle
duration mean is 31 days, and the period duration mean is 5.5
days. In case 3, the menstrual cycle duration mean is 38 days,
and the period duration mean is 6 days.

In Figures 4 (a), (b), and (c) are depicted the boxplot of
the periods length. As shown, in Figure 4 (c), in case 3, the
period length varies significantly from cycle to cycle. This can
made it difficult to predict when the next period will start and
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Fig. 3. Boxplot of the menstrual cycle in the three cases.

how long it will last. This variability in period length is what
characterizes an irregular menstrual cycle.

With the data generated, we can now proceed with the
simulation. In the following section, we will describe the
simulations conducted and present the results obtained.

V. SIMULATION AND RESULTS

To perform the models’ implementation, we used the Ten-
sorFlow framework version 2.12.0 for the LSTM model. For
hyperparameter selection, we performed an iterative process
involving experimentation and validation to fit model. We also
utilized Darts library version 0.8.1 for ARIMA model imple-
mentation. Moreover, to execute Huber regression, LASSO,
and OMP, we applied the PyCaret library regression module
version 3.0.

We divided this section into three subsections to present
the simulations conducted for three different cases: case 1
and case 2 with datasets representing regular cycles, and
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Fig. 4. Boxplot of the periods length distribution in the three cases.

case 3 with datasets representing irregular cycles. For case
1, we implemented an LSTM network with 64 units and with
hyperbolic tangent activation function. This layer processes the
input sequence and generates a hidden state that summarizes
the information in the sequence. Moreover, we added a dropout
layer with a rate of 0.05 to prevent overfitting. In the output
layer a rectified linear unit activation function was used.

For cases 2 and 3, we utilized a stack of three LSTM
layers with progressively decreasing numbers of units: 128,
64, and 32, respectively. These layers were interspersed with
dropout layers set at a regularization rate of 0.2. The ultimate
dense layer generates predictions using the rectified linear unit
activation function.

The reliability of the models is evaluated using measures,
such as mean absolute error (MAE), mean squared error
(MSE), and root mean squared error (RMSE).

A. Case 1

Table IT shows the models and their respective metrics, such
as MAE, MSE, and RMSE, which were calculated based on
predictions made for the next 14 cycles by each model. These
metrics provide a comprehensive evaluation of the trained
models. The lower the MAE, the more acceptable is the
model’s performance. Because it provides a good indication
of how close the predictions are to the true values. Alike to
MAE, a lower MSE value indicates better model performance.
Also, like MSE, a lower RMSE signifies more suitable model
performance. Out of all the models, LSTM stands out as
having the smaller values in all the metrics, indicating its
superior effectiveness to predict the regular menstrual cycle.

Figure 5 (a) depict the change in the loss function value
during the training process through different epochs for the
LSTM network. We needed approximately 100 epochs to the
model convergence. In Figures 5 (b) and (c), the time-series
of the cycles and periods are shown, respectively, and the
prediction provided by LSTM, ARIMA, and LASSO models.
Each model provided an identical prediction for the next cycle,
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TABLE II
CASE 1 MODELS METRICS RESULTS FOR PREDICTIONS OF NEXT 14
CYCLES.
Model MAE MSE | RMSE
LSTM 0.3000 | 0.5477 | 0.7401
ARIMA 0.7400 | 0.8400 | 0.9165
Lasso Regression 0.7580 | 0.7649 | 0.8641
Lasso Least Angle Regression 0.7580 | 0.7649 | 0.8641
Elastic Net 0.7580 | 0.7649 | 0.8641
Dummy Regressor 0.7580 | 0.7649 | 0.8641
Light Gradient Boosting Machine | 0.7580 | 0.7649 | 0.8641
Bayesian Ridge 0.7583 | 0.7654 | 0.8644
Ridge Regression 0.7882 | 0.8076 | 0.8885
Linear Regression 0.7892 | 0.8092 | 0.8894
Least Angle Regression 0.7892 | 0.8092 | 0.8894
Orthogonal Matching Pursuit 0.7892 | 0.8092 | 0.8894
Huber Regressor 0.7943 | 0.8174 | 0.8935
K Neighbors Regressor 0.8367 | 0.9320 | 0.9374
Random Forest Regressor 0.9610 | 1.3042 | 1.1017
Passive Aggressive Regressor 0.9692 | 1.3238 | 1.1040
Extra Trees Regressor 1.0076 | 1.3885 | 1.1392
AdaBoost Regressor 0.9652 | 1.3531 | 1.1162
CatBoost Regressor 1.0093 | 1.5354 | 1.1797
Gradient Boosting Regressor 1.0412 | 1.6650 | 1.2364
Decision Tree Regressor 1.0750 | 1.8417 | 1.2962
Extreme Gradient Boosting 1.1826 | 2.0305 | 1.3720

i.e., time+1. Moreover, we observed that there is a periodic
pattern over time.

Case 1: LSTM model loss Case 1: Predicting the next cycle duration
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Fig. 5. (a) Evolution of the loss function across epochs for LSTM model. (b)
Prediction for time+1 of cycle time series over days. (c) Period time series
over days.

B. Case 2

Table III depicts the models metrics evaluation for regular
cycles. In contrast to Case 1, the Case 2 dataset exhibits greater
variation in cycles. Analyzing the table, different models
achieve better results compared with the results in case 1.
In case 2, we had models such as Huber Regressor and K
Neighbors Regressor. However, the LSTM model continues to
exhibit the best performance across all metrics for predictions

made for the next 14 cycles. Ridge Regression, Linear Regres-
sion, and Least Angle Regression models have the same values
for MAE, MSE, and RMSE. They perform slightly worse than
the Huber Regressor but still exhibit good performance.

TABLE III
CASE 2 MODELS METRICS RESULTS OF PREDICTIONS FOR THE NEXT 14
CYCLES.
Model MAE MSE RMSE
LSTM 2.1000 | 2.5495 1.5967
Huber Regressor 1.7712 | 5.0785 1.9973
K Neighbors Regressor 1.8600 | 5.5167 | 2.0995
Ridge Regression 1.8115 5.1098 2.0305
Linear Regression 1.8119 | 5.1223 2.0275
Least Angle Regression 1.8119 | 5.1223 | 2.0275
Bayesian Ridge 1.9036 | 5.2605 | 2.0980
ARIMA 2.4000 | 2.7100 | 1.6462
Elastic Net 2.1392 | 5.9010 | 2.2964
Dummy Regressor 2.1865 5.9786 2.3316
Light Gradient Boosting Machine | 2.1865 | 59786 | 2.3316
Lasso Least Angle Regression 2.1887 5.9879 2.3337
Lasso Regression 2.1887 5.9879 2.3337
Orthogonal Matching Pursuit 2.1008 6.1891 23154
Random Forest Regressor 22672 | 7.3894 | 2.5504
Gradient Boosting Regressor 2.7488 | 10.2011 | 3.0975
CatBoost Regressor 2.5281 8.9969 2.8520
Extra Trees Regressor 2.3502 8.5454 | 2.7297
Extreme Gradient Boosting 24686 | 9.0248 2.8734
AdaBoost Regressor 2.7140 | 109011 | 3.0415
Passive Aggressive Regressor 23072 | 7.9378 2.5390
Decision Tree Regressor 2.8667 | 11.5167 | 3.2344

Figures 6 (a), (b), and (c) present the simulation results for
regular cycle data. The progression of the loss function over
epochs during LSTM training is depicted in Figure 6 (a). The
LSTM model took around 1600 epochs to converge. Figures
6 (b) and (c) display the time series of cycles and periods for
regular cycle data, respectively. Differently from Case 1, in
Case 2 each model provided a distinct prediction for the next
cycle, i.e., cycle 16", as shown in Figure 6 (b). LSTM model
provided a cycle of 31 days, the ARIMA model predicted a
cycle of 30 days, and differently, Huber regression predicted a
cycle of 32 days. Both LSTM and ARIMA provided a correct
period duration prediction, as depicted in Figure 6 (c).

C. Case 3

Table IV shows the models metrics evaluation for time
series of irregular cycles. In contrast to Case 1 and Case 2,
the dataset in Case 3 presents a greater variation in cycles
with no perceptible patterns. Based on Table IV, the LSTM
model performed better in therms of MAE, MSE, and RMSE.
Both ARIMA and OMP models presented good performance,
however, the ARIMA model is considered better than the OMP
for the irregular cycle time series.

Figures 7 (a), (b), and (c) show the simulation results for
irregular cycle data. Figure 7 (a) displays the progression of
the loss function over epochs during LSTM training. Figure 7
(b) show the cycle time series and the predictions provided by
models, and Figure 7 (c) depicts the period time series as a
function of period number and the forecasts given by models.
Among all models, LSTM provided the correct prediction.
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Fig. 6. (a) Progression of the loss function throughout epochs. (b) Time
series representing the cycle as a function of cycle number. (c) Time series
illustrating the period as a function of period number.

TABLE IV
CASE 3 MODELS METRICS RESULTS OF PREDICTIONS FOR THE NEXT 14
CYCLES.
Model MAE MSE RMSE
LST™M 3.4000 | 4.2895 | 2.0711
ARIMA 7.3000 | 7.7964 | 2.7922
Orthogonal Matching Pursuit 5.3373 | 41.1000 | 6.1243
Elastic Net 5.3686 | 41.1295 | 6.1588
Huber Regressor 5.5458 | 43.5776 | 6.2851
Ridge Regression 54826 | 42.5662 | 6.2523
Linear Regression 54914 | 42.7152 | 6.2604
Least Angle Regression 54914 | 427152 | 6.2604
Lasso Regression 5.4554 | 42.2978 | 6.2402
Lasso Least Angle Regression 5.4554 | 422978 | 6.2402
Dummy Regressor 54702 | 41.5427 | 6.2063
Light Gradient Boosting Machine | 5.4702 | 41.5427 | 6.2063
Bayesian Ridge 5.5910 | 44.0523 | 6.3834
K Neighbors Regressor 5.6383 | 45.9650 | 6.5151
Passive Aggressive Regressor 5.6844 | 48.3409 | 6.5683
Random Forest Regressor 6.2947 | 59.3721 | 7.3739
AdaBoost Regressor 6.2856 | 56.1740 | 7.3034
CatBoost Regressor 7.2368 | 76.8913 | 8.4820
Gradient Boosting Regressor 7.2034 | 75.0468 | 8.3428
Decision Tree Regressor 7.1083 | 75.7250 | 8.3555
Extra Trees Regressor 7.1378 | 69.3403 | 8.1291
Extreme Gradient Boosting 7.5025 | 77.0432 | 8.5549

Based on the given results, for cases 2 and 3, the LSTM
network model appears to be the best in terms of error metrics.
Also, the ARIMA model has relatively low values for MAE,
MSE, and RMSE. While not as good as the LSTM model, the
ARIMA model performs better than most other models, this is
due to the flexibility of the ARIMA model, it can capture both
short-term and long-term dependencies in the data. However,
the LSTM model can capture temporal relationships within
cycle time series.

VI. CONCLUSION

In this study, we applied machine learning algorithms to
predict menstrual cycle using data from generated by defined
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Fig. 7. (a) Evolution of the loss function over epochs. (b) Cycle time series
as a function of cycle number. (c) Period time series as a function of period
number.

model. The algorithms can identify patterns and correlations
that may not be immediately apparent to humans. This can
lead to new insights and discoveries in the field of menstrual
cycle prediction. Moreover, our results suggest that machine
learning models can accurately predict menstrual cycle phase
with small error. Our findings have important implications
for women’s health and may be used to inform personalized
reproductive health decisions, such as family planning and
fertility treatment. In addition, the models can be trained on
individualized data, allowing for personalized predictions of
menstrual cycle patterns. This could be particularly useful for
women with irregular cycles, as traditional prediction methods
may not work as well for them. Future work in this area
could focus on refining our models by incorporating additional
data sources, such as menstrual symptoms, hormonal data, and
conducting larger-scale studies to validate our findings.
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