
Application of Graph Theory in the Analysis of
Query Similarity and Complexity in Relational

Databases
Beatriz Soares de Souza

Department of Computer Engineering and Automation
UFRN, Natal-RN, Brazil

bsouza@ufrn.edu.br

Luiz Affonso Guedes
Department of Computer Engineering and Automation

UFRN, Natal-RN, Brazil
affonso@dca.ufrn.br

Abstract—Information Systems constant changes and refac-
toring processes eventually result in design debts, one of them
being related to the database management. Redundancy and
complexity are often found in databases and eventually affect the
overall system performance. In this study, the analysis conducted
was based on graph analysis, which is an essential technique
in several fields demanding data management. The investigation
involved the study of relationships and connections in a real-
world financial organization database, between SQL queries
represented as nodes and edges in a graph structure. By analyzing
the graph structure and properties, it was possible to identify
important nodes, detect clusters of related data, and uncover
hidden relationships and redundancy. The results indicate that
50% of the database queries had medium to high similarity
in subgraphs, which allows the organization to gain valuable
insights into their data, make informed decisions, and optimize
their database performance.

Index Terms—Graph Analysis, Isomorphism, Information Sys-
tems, Relational Databases

I. INTRODUCTION

Database Management Systems (DBMS) are intricate pro-
grams that allow users to input queries, translate those queries
into the correct format to access data, and produce useful
results in the shortest amount of time while using the fewest
amount of resources [1].

Information Systems (ISs) are constantly changing to meet
the demands of consumers, the environment, and new demands
for higher-quality information delivery and services. These
systems’ ability to operate depend on databases, and due to
the need to evolve, integrate to new services or shift to new
technologies, most systems prefer to extend the underlying
design of existing legacy databases. Refactoring is therefore
frequently used to evolve databases and their schemas in order
to satisfy new requirements or properties.

During the adaptation and refactoring processes, system
developers and database designers must adhere to best prac-
tices for database architecture. However, this process can be
compromised by poor design choices that can result in what
we refer to as database design debts [2].

Although databases should be simple to use and maintain, if
the architecture and queries are complex or redundant, the ef-
ficiency of DBMS software may suffer. Therefore, redundancy

and complexity place an additional burden on database man-
agement system software, which eventually affects its overall
performance by increasing processing time and resource costs
[3].

Currently, there are various ways to analyze databases in
order to detect redundancies, such as probabilistic matching
models, supervised and semi-supervised Learning [4], property
entropy grouping clustering (EGC), and finally, the develop-
ment of frameworks to detect patterns in dirty data based
on the obtained relationships by establishing the relationship
graph in the data.

Analysis using graph theory can be described as the anal-
ysis of existing relationships between the different elements
contained in a given data set. The term vertex is used to
describe the elements, while the term edge is used to refer
to the connections between the different vertices of a network
[5].

Thus, the main objective of this research is to investigate
the feasibility of using graph theory to analyze redundancy and
complexity between queries that are processed in a common
relational database system.

This paper is structured as follows. In Section II, the
problem characterization and related works are presented. In
Section III, we describe the research methods. In Section IV,
we present the results. Finally, in Section V, we present the
conclusions.

II. PROBLEM CHARACTERIZATION AND RELATED WORKS

Consider N independent services inside an organization as
shown in Figure 1, consuming data from the main dataset,
which means, a common source. As the number of services
grows, bigger is the chance of having duplicated queries or
queries that are a subset of each other. The main goal of this
study is to determine whether there are any redundant queries
between these services, which indicates query overhead and
could be eliminated by combining them into a single query.

Based on this scenario, this work aims to develop an anal-
ysis algorithm capable of detecting similarities between rela-
tional database queries through graph analysis, and estimating
the reduction of queries when eliminating the duplicates.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

1

Fig. 1. Diagram of independent datasets consuming from common source.

Among its various applications, graphs can represent biolog-
ical networks at the molecular, protein, or species level. [6] and
[7] used graph analysis to find all matches of a pattern graph
in biochemical data. [8] proposed the application of graphs
for industrial solutions, and there are several graph processing
frameworks that have been proposed by both academia and
industry for data analysis such as [9], [10] and [11].

To perform this study, the NetworkX Python library [12]
was used to compare the graphs, and 102 independent
databases from a digital financial service platform were an-
alyzed.

Finally, a tool was developed to calculate the main prop-
erties of each graph, such as eccentricity and radius. In this
way, it is possible to send insights about potential duplicates
and most used dataset fields and columns.

III. METHODS

It is typical for distinct services to make similar requests
when operating on the same data source as numerous indepen-
dent services. This query redundancy may lead to inefficient
resource usage, which would affect system performance as a
whole. Therefore, it is crucial to find solutions that reduce
query duplication and maximize the usage of resources.

In order to point out those similarities, the approach chosen
in this work was to create a graph representation of each
successor dataset, and use the NetworkX Python framework
to compare those graphs, which was done in three main steps,
as ilustrated in Figure 2.

At the first step, the queries of each independent dataset
were computed through the system logs. After that, extraction
of the code was performed and a manual annotation of the
methods and Structured Query Language (SQL) expressions
used: WHERE, WHEREIN, NOT NULL.

In the second stage, the different queries were converted
into NetworkX objects, and the graphs created were validated.

Fig. 2. Stages of proposed approach.

Each consulted column of the main dataset in this case was
represented as a node (vertex) in the graphs, and the queries
made are represented by the directed connections that connect
these nodes. In this manner, the interactions between the
services and their requests are reflected in the directed graph
that is produced.

During the third stage, the obtained graphs were used to
do the comparison, which lead to the detection of several
redundancies and duplicate datasets.

A. Query Extraction

It is possible to interpret a query plan of a dataset as a
graphical representation that resembles a graph structure [13].
In this representation, the columns involved in the query are
represented as nodes, while the conditions that filter these
columns are depicted as edges connecting the corresponding
nodes. Additionally, the query plan incorporates properties
such as the joining columns and expressions.

Furthermore, a query plan can also be visualized as a tree-
like structure, with a hierarchical arrangement of nodes. In this
tree structure, the root node represents the primary table from
which columns are projected into the final result table. This
projection involves selecting specific columns or expressions
and populating the result table accordingly.

In this step, the query plans from each individual dataset
were extracted and converted into graphs, considering the
parameters mentioned above, and ilustrated in Figure 3. The
expressions extracted from the organization’s system consisted
in a row called Input, which contains the list of columns that
are queried in the respective dataset and that will be used as
the first nodes. And the second row is called Condition, which
contains the filters applied in the query.

For this study, all database query extractions have been
anonymized. This includes the anonymization of column
names, filtered values, and dataset names. As it is a finan-
cial organization, which strictly adheres to legal regulations
regarding the protection of sensitive information, all data
has been appropriately anonymized and treated with utmost
confidentiality for the purpose of this research.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

2

Fig. 3. Example of query extraction done in step 1.

B. NetworkX Objects

Firstly, some widely known graph analysis tools were
analyzed for comparison, such as Gephi, Pajek, Networkx,
and IGraph. All four software options are freely available
and capable of handling large graph sizes. Graph and network
analysis tools can be either GUI-based or packages/libraries
that can be used within a programming language. Gephi
and Pajek are GUI-based network tools, while Networkx and
IGraph are package-based tools.

Gephi is an interactive visualization and exploration plat-
form for all types of networks, including dynamic and hier-
archical graphs. It is designed for users who need to explore
and understand graphs. In the meanwhile, Pajek is a widely
used software for drawing networks, and it also offers analyt-
ical capabilities. It can compute various centrality measures,
identify structural holes, perform block modeling, and more
[14].

IGraph is a free software package that provides tools for
creating and manipulating graphs. It includes implementations
for classic graph theory problems, such as minimum spanning
trees and network flow, as well as algorithms for community
structure search [15]. It is known for its efficient implementa-
tion, allowing it to handle graphs with millions of nodes and
edges and can be installed on several different programming
languages.

NetworkX is a Python package designed for the exploration
and analysis of networks and network algorithms [12]. It offers
a wide range of data structures to represent various types of
networks, also known as graphs. These graphs can include
simple connections, directed relationships, and even complex
structures with parallel edges and self loops. In NetworkX, the
nodes within these graphs can be represented by any hashable
Python object, and the edges have the capability to store
diverse data. This level of flexibility makes NetworkX highly
adaptable for modeling networks across different scientific
disciplines.

The four tools were compared by [16] based on criteria such

as platform compatibility, supported graph types, algorithm
time complexity, and the NetworkX was proven to offer a
good performance when it comes to graph analysis.

Moreover, NetworkX goes beyond providing just basic data
structures and hence was chosen for this work. It incorporates
numerous graph algorithms that enable the calculation of
various network properties and structural measures. These
algorithms cover a broad spectrum, including the computation
of shortest paths, clustering coefficients, degree distribution,
and many more. Leveraging the user-friendly nature and
adaptability of the Python programming language, NetworkX
emerges as a robust tool for scientific computations and
network analysis, and hence was chosen for this work.

C. Graph Comparison

A graph can be represented as G = (V, E) where V and E
denote the vertex and edge set [17]. A node-induced subgraph
is defined as Gs = (V s,Es) where Es preserves all the edges
between nodes in V s, i.e. ∀i, j ∈ V s, (i, j) ∈ Es if and only
if (i, j) ∈ E.

The problem of subgraph isomorphism is a fundamental
concept in graph theory and computational mathematics. It
revolves around the question of determining whether a given
subgraph can be found within a larger graph, preserving both
the structure and the relationships between nodes and edges.

In this work, we aim to detect the Maximum Common
induced Subgraph (MCS) by comparing the dataset graphs
in pairs, denoted as MCS(G1, G2), in order to find the
largest node-induced subgraph contained in both G1 and G2
and identify if one of the graphs can be discarded from the
system queries as shown in Figure 4. Graph isomorphism and
subgraph isomorphism can be regarded as two special tasks of
MCS: |MCS(G1, G2)| = |V 1| = |V 2| if G1 are isomorphic
to G2, |MCS(G1, G2)| = min(|V 1|, |V 2|) when G1 (or G2)
is subgraph isomorphic to G2 (or G1).

However, solving the subgraph isomorphism problem is
known to be computationally challenging. It belongs to the
class of NP-complete problems, which implies that there is
no known efficient algorithm to solve it in polynomial time
for all cases. Therefore, researchers have developed various
heuristics and approximation algorithms to tackle this problem
efficiently for practical scenarios.

Fig. 4. The highlighted red circle represents the induced connected Maximum
Common Subgraph (MCS) for the graph pair (G1, G2). It indicates a probable
redundancy between two dataset queries.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

3

The GraphMatcher and DiGraphMatcher are components
from the NetworkX framework that provided the role of per-
forming graph matching operations on the directed graphs that
were created on the previous stages of the study. Essentially,
this entails verifying the presence of an isomorphism between
the graphs, although alternative checks could be employed as
well. For the porpose of this work, it is useful for detecting
whether a subgraph within one graph exhibits isomorphism
with a second graph.

The matching process primarily relies on assessing syntactic
feasibility, but it also offers the option to evaluate semantic
feasibility. In this context, feasibility is determined by the
logical conjunction of these two functions, ensuring that both
syntactic and semantic criteria are satisfied simultaneously
[18].

Using the isomorphic subgraph detection algorithms, we
identified these subgraphs within the analyzed datasets. For
the purpose of this work and to propose different approaches
depending on the similarity, three similarity categories were
established based on the percentage of similarity between the
subgraphs:

• High Similarity: Subgraphs with a similarity percent-
age between 70% and 100% were considered highly
similar. That means that subgraphs share a large part
of their structure and can represent significant patterns
or redundancies in the data, and potentially mean that
some queries could be droppped from the organization’s
services.

• Medium Similarity: Subgraphs with a similarity percent-
age between 50% and 70% were considered moder-
ately similar. These subgraphs have a partial overlap in
their structure, indicating partial connections or partially
shared patterns, and some indexing or clustering tech-
nique could be used in order to improve performance.

• Low Similarity: Subgraphs with a similarity percentage
below 50% were considered low similar. These subgraphs
have a distinct structure and do not show significant over-
lap, suggesting that they are already in their independent
and performatic form.

IV. RESULTS

The results of the study described below are the outcome of
the research conducted using real-world data from a financial
organization. With a complex infrastructure which contains
102 independent services, all consuming data from a single
shared relational dataset, the analysis focused on examining
the behavior of distinct queries from independent services
across the system. In total, 102 unique queries were analyzed,
they collectively apply 712 filters to the primary dataset and
filter 19 different columns, which represent over 100 TB of
data in storage available for read-only operations.

A crucial initial step was successfully achieved to ensure the
accuracy and reliability of the proposed method: the correct
reproduction of each SQL query plan from the relational
datasets into directed graphs. This achievement is an important
step towards the definition of a reliable graph comparison tool

specifically designed for relational databases with independent
services. In particular, the ability to efficiently convert queries
into graphs and continually update the catalog of graphs, is
vital for maintaining the tool’s relevance and effectiveness in
the face of the ever-growing number of services within the
organization.

Upon analyzing the results of the research such as the high-
lighted graph in Figure 5, the patterns and insights found were
remarkable. The subgraph isomorphism algorithm was proven
to be a powerful strategy for detecting redundancy within the
studied datasets, consistently highlighting the largest instances
of query duplication. Through a comprehensive analysis of the
generated graphs using isomorphism algorithms, we were able
to identify 17 subsets within the organization’s database that
shared exact characteristics, representing a proportion of 16%
of the total queries.

Fig. 5. Highlighted subgraph detected between two datasets.

The insights obtained through the application of the iso-
morphism algorithm have revealed not only redundant query
patterns but also valuable opportunities for optimization and
process enhancement. Although some datasets could not be
identified as complete subgraphs of each other, there were

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

4

queries with a considerably high amount of duplicate nodes
and vertexes, that can be studied in order to prevent redun-
dancy.

We obtained high levels of similarity when the program
was executed on datasets that belong to the same category of
the financial service (24%), and medium similarity in some
other queries (10%). When this method was used on more
diverse data sets, the similarity levels dropped (49%), and were
noticeably different and therefore there was a smaller chance
of optimization. As shown in Table I, the total of datasets with
considerable similarity was 51%, and at least 26% have a high
similarity.

Moreover, the identification of these subsets through graph
analysis not only aids in the detection of redundant queries but
also opens up opportunities for optimizing the organization’s
data management processes. By identifying common patterns
and recurring query structures, we can streamline database
design, enhance indexing strategies, and improve overall query
execution times.

Fig. 6. Radar chart of number of queries for each column in the main dataset.

Indexing is a technique widely used in relational databases
to speed up information access and retrieval. It allows the cre-
ation of special data structures that make it quicker to find and
sort records based on specific values [19]. However, indexing
all columns in a table can result in an unnecessary increase in
index size and negatively impact the performance of insert,
update, and delete operations. Therefore, it is essential to
accurately identify the columns that really require indexing.
Based on the results obtained from the graph analysis, there
are two key points [20] that can be taken into consideration
for identifying columns for indexing:

• Query frequency: It is important to analyze how often a
column is used as a search criterion in frequent queries.
Columns that are frequently used in WHERE clauses or
JOINs can benefit from indexing to improve data retrieval
speed.

• Query type: The type of query performed against the
database also plays an important role in the indexing
decision. Queries that involve table sorting, grouping, or
joining operations can benefit from proper indexing of
the relevant columns.

The radar chart presented in Figure 6 offers a visual repre-
sentation of the frequency that each column was queried from
the common source database and the corresponding number
of connections each node possesses within the dataset’s graph
structure. This visualization allows us to simultaneously assess
two essential aspects of the database: the popularity of specific
columns in query operations and the level of interconnected-
ness among the nodes.

The radar chart’s outermost layer depicts the frequency
of column queries. Each spoke in the chart represents a
specific column within the dataset. The length of each spoke
is proportional to the number of times a particular column
has been queried. By observing the chart, we can identify
columns that have been frequently accessed, indicating their
significance in the dataset’s analytical processes.

By analyzing the radar chart, we can derive valuable insights
into the dataset’s utilization and structural characteristics.
Here are some key observations that can be made from the
hypothetical chart:

Columns with longer spokes in the radar chart indicate a
higher frequency of queries. These columns play a crucial role
in data analysis and decision-making processes, as they are
frequently accessed for extracting valuable information and
therefore could be the most impactful candidates for indexing.

By examining the chart, we can identify at least four
columns that exhibit similar query frequencies: Columns 4,
8, 9 and 13. This may indicate potential optimization oppor-
tunities by partitioning query operations and/or indexing these
columns in the database.

By exploring the structural similarity of the discovered
subsets, it is possible to infer optimization points in the data
processing services, which consequently should result in a
significant reduction of processing costs. In the context of
future work, there are some solutions to explore, considering
the results found in this study, specifically focusing on address-
ing the issue of query redundancy and measuring the impact
of the improvements. Conducting comprehensive experiments
and evaluations on the datasets can provide valuable insights
into the potential benefits of query deduplication such as
lowering query execution time, resource consumption, and
overall system efficiency.

TABLE I
SUBGRAPH SIMILARITY ANALYSIS RESULTS

Isomorphic Similarity Number of datasets % of total
Yes High 17 16
No High 11 10
No Medium 25 24
No Low 50 49

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

5

V. CONCLUSION

The results presented show promising results, a high num-
ber of redundancy that could be eliminated was detected
by using the NetworkX Python Library. The computational
development presented in this work showed how it is possible
to have proper knowledge of a system’s database and infer
improvements based on graph analysis.

Finally, the analysis of the generated graphs using iso-
morphism algorithms provides a valuable basis for future
research and exploration. By understanding the similarities
among queries, we can develop more efficient query planning
and optimization techniques directed to the organization’s
specific needs. This, in turn, contributes to enhanced decision-
making capabilities, as well as improved system scalability
and adaptability. Moving forward, further exploration and
refinement of these findings will enable enhanced database
performance, improved data management practices, and more
efficient utilization of resources within the organization.

ACKNOWLEDGMENT

This work was supported by the Department of Computer
Engineering and Automation at the Federal University of Rio
Grande do Norte (DCA-UFRN).

REFERENCES

[1] T. M. Connolly and C. E. Begg, Database systems: a practical approach
to design, implementation, and management. Pearson Education, 2005.

[2] M. Al-Barak and R. Bahsoon, “Database design debts through exam-
ining schema evolution,” in 2016 IEEE 8th International Workshop on
Managing Technical Debt (MTD). IEEE, 2016, pp. 17–23.

[3] M. S. Vighio, T. J. Khanzada, and M. Kumar, “Analysis of the effects
of redundancy on the performance of relational database systems,” in
2017 IEEE 3rd International Conference on Engineering Technologies
and Social Sciences (ICETSS). IEEE, 2017, pp. 1–5.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on knowledge and data
engineering, vol. 19, no. 1, pp. 1–16, 2006.

[5] A. Ruiz-Frau, A. Ospina-Alvarez, S. Villasante, P. Pita, I. Maya-Jariego,
and S. de Juan, “Using graph theory and social media data to assess
cultural ecosystem services in coastal areas: Method development and
application,” Ecosystem Services, vol. 45, p. 101176, 2020.

[6] V. Bonnici, R. Giugno, A. Pulvirenti, D. Shasha, and A. Ferro, “A
subgraph isomorphism algorithm and its application to biochemical
data,” BMC bioinformatics, vol. 14, no. 7, pp. 1–13, 2013.

[7] D. Fourches and A. Tropsha, “Using graph indices for the analysis and
comparison of chemical datasets,” Molecular Informatics, vol. 32, no.
9-10, pp. 827–842, 2013.

[8] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
understanding graph computing in the context of industrial solutions,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[9] I. Tanase, Y. Xia, L. Nai, Y. Liu, W. Tan, J. Crawford, and C.-Y. Lin, “A
highly efficient runtime and graph library for large scale graph analytics,”
in Proceedings of Workshop on GRAph Data management Experiences
and Systems, 2014, pp. 1–6.

[10] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, J. M.
Hellerstein, and D. GraphLab, “A framework for machine learning and
data mining in the cloud,” Proceedings of the VLDB Endowment, vol. 5,
no. 8, 2012.

[11] Y. Song, D. Zhang, X. Li, K. Luo, and J. Liao, “A novel data cleaning
framework based on knowledge graph,” in 2022 8th International
Conference on Big Data Computing and Communications (BigCom),
2022, pp. 350–355.

[12] A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

[13] T. Taipalus, “A notation for planning sql queries,” Journal of Information
Systems Education, vol. 30, no. 3, pp. 160–166, 2019.

[14] G. A. Pavlopoulos, D. Paez-Espino, N. C. Kyrpides, and I. Iliopoulos,
“Empirical comparison of visualization tools for larger-scale network
analysis,” Advances in bioinformatics, vol. 2017, 2017.

[15] N. Akhtar and M. V. Ahamad, “Graph tools for social network analy-
sis,” in Research Anthology on Digital Transformation, Organizational
Change, and the Impact of Remote Work. IGI Global, 2021, pp. 485–
500.

[16] N. Akhtar, “Social network analysis tools,” in 2014 fourth international
conference on communication systems and network technologies. IEEE,
2014, pp. 388–392.

[17] Y. Bai, D. Xu, Y. Sun, and W. Wang, “Glsearch: Maximum common
subgraph detection via learning to search,” in International Conference
on Machine Learning. PMLR, 2021, pp. 588–598.

[18] Q. Zhang, R.-H. Li, H. Qin, G. Wang, Z. Zhang, and Y. Yuan, “Stable
subgraph isomorphism search in temporal networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 6, pp. 6405–6420,
2023.

[19] S. Chaudhuri and V. R. Narasayya, “An efficient, cost-driven index
selection tool for microsoft sql server,” in VLDB, vol. 97. San Francisco,
1997, pp. 146–155.

[20] S. Das, M. Grbic, I. Ilic, I. Jovandic, A. Jovanovic, V. R. Narasayya,
M. Radulovic, M. Stikic, G. Xu, and S. Chaudhuri, “Automatically
indexing millions of databases in microsoft azure sql database,” in
Proceedings of the 2019 International Conference on Management of
Data, 2019, pp. 666–679.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

6

