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Abstract—Computer vision has been one of the main appli-
cation areas for Deep Learning (DL) techniques. Image clas-
sification, in particular, has been widely culminating in systems
increasingly capable of replacing human visual analysis. However,
having high-quality images is one of the main requirements for
high performance of DL-based classification, but often factors
associated with the models application condition make this ideal
scenario impossible. Lossy compression fits very well in these
conditions because it is a type of coding technique widely used
in image storage and transmission. In this paper, we propose
compression artifact reduction (CAR) as a way to circumvent
the degradation problem for lossy compression. To this end, we
perform experiments using JPEG with very low levels of quality
factor (QF) compressing the test dataset for classification. Then,
using a DL-based CAR model, we restore this same dataset in
order to investigate a possible improvement in the classifiers
performance. The two evaluated datasets presented positive
results: in Flowers-102 we reached an average 0.52% increase
in accuracy for 10 QFs values, whereas for Cub-200 this value
was more expressive, around 34.57%. Those findings reinforce
that DL-based CAR may increase performance in classification
models degraded by drastic levels of signal corruption.

Index Terms—deep learning, image classification, image
restoration, compression artifacts, JPEG

I. INTRODUCTION

Deep Learning (DL) is a category of Machine Learn-
ing models within the context of Artificial Intelligence that
presents a higher learning capacity. Recently, DL has been
widely used for several signal processing applications, either
in predictive models or in the treatment of these signals.
Image classification is inserted in this set of applications as the
most prominent, because it already has high efficiency models,
ready to be used, in the market. However, lossy compression,
a widely used type of coding which reduces signal quality,
raises some concern for being detrimental to the classifiers
performance.

Among image encoders, JPEG [1] is certainly one of the
most widely used. The compressor high efficiency is asso-
ciated with its structure, which involves frequency domain
transformation, scalar quantization and entropic coding of
zigzaged coefficients, as Fig. 1 shows. Initially, the discrete
cosine transform (DCT) is applied on 8x8 blocks of the
image. Resulting coefficients are quantized according to a
quantization table (Q-Table) that is established according to

the quality factor (QF) assigned to the encoder. The higher
the QF, the more quantization levels are offered to each of
the coefficients, on the other hand, the lower the QF, the
fewer levels each coefficient will have access to. The artifacts
generated during the compression process are directly linked
to the choice of QF. Blocking is caused by discontinuity
observed between the image processed blocks. Attenuation
of high frequencies in the quantization, in turn, provides
ringing (analogous to the Gibbs effect) and the loss of these
components, i.e. blurring.

In the real world, photographs captured by smartphones are
compressed and stored with a high quality factor (QF 95)
and then may undergo more aggressive compression when
transmitted to another device, in order to save bandwidth.
This scenario highlights the existence of doubly compressed
signals. Moreover, datasets generally used as pre-training for
Convolutional Neural Networks (CNNs) such as Imagenet [2]
and CIFAR [3] are already available in JPEG, i.e. they have
a certain level of compression. This may indicate presence of
signal degradation when these datasets are employed as the
training set of classification models.

In this context, artifact reduction methods can be applied
in order to enhance images and, thus, positively interfere in
the performance of image classifiers. Initially, transform-based
techniques [4] were able to increase the quality of images,
but in spite of reducing artifact blocking, limitations of filters
led to an increase of blurring and ringing similar effects.
Thus, CNN-based techniques have been recently explored
and showed results superior to classical signal processing
techniques.

In this paper, we propose to improve DL-based image
classifiers performance in face of lossy compressed images,
by firstly using CNN-based Compression Artifact Reduction
(CAR). We use one such CNN-based image restoration model
as a pre-processing step in order to increase the generalization
performance of classifiers. The central idea is to improve the
input signal quality of the classification models, which has
been intensively compressed, in order to preserve original
classifier performance as much as possible. Our experiments
further address a more challenging scenario, i.e. that of doubly
compressed images. The conclusions drawn from our results
show a certain effectiveness of CAR even under extreme signal
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Fig. 1: Structural model of the JPEG encoder. The encoding path is in red and the decoding path is in blue. Quantization is
the step responsible for inserting losses into the image.

corruption conditions.
The rest of this paper is structured as follows. Section II

presents the related work. In Section III, we state the proposed
CAR model as well as implementation details of the respective
classifiers used. Section IV describes performed experiments
and an analysis of the obtained results. Finally, in Section V
we present the final considerations.

II. RELATED WORK

A. Compression Impacts on Image Classification

In the context of training Deep Learning models, the
problem of image transmission and storage is very common
due to the need of large databases for the success of the
learning process. The evaluation of compression impacts on
mammographic images is done by Jo et al. [5], showing the
decrease of DL model performance for cancer diagnosis as
the compression rate increases. A similar behavior occurs in
steel surface classification [6], which is mitigated with data
augmentation based on compressed images. The problem also
extends to object detection [7], which imposes an additional
degree of difficulty for the models, because it requires local-
ization within the image. Overall, these works indicate the
possibility of preserving some performance of CNNs even
under considerable compression rates.

In contrast, strategies have begun to appear to curb model
degradation in the face of compression. The Highest Rank
Selector proposed by Yang et al. [8] presents a technique
for choosing the JPEG quality factor for a given predictor.
Optimization of the JPEG quantization process for image
classification, on the other hand, is presented in [9]. In this
technique, the encoder Q-Table is treated as another classifier
hyperparameter, which is selected via random search and

Bayesian optimization during the model training. Results show
an increase in performance for similar compression ratios.

B. Deep Learning for Compression Artifacts Reduction

Since the emergence of lossy image coders, the incidence
of artifacts has always been a concern. At first, methods
exclusively based on signal processing started to be developed
to improve signal quality, however, with the advance of CNNs,
learning-based techniques also started to be explored. The “Ar-
tifacts Reduction Convolutional Neural Network (ARCNN)”
proposed by Dong et al. [10] was one of the first CNN-based
models designed to remove JPEG artifacts. Based on the super
resolution technique, the four-layer CNN is trained with both
compressed and uncompressed images.

Usually, QF is a parameter that must be established in order
to choose the adequate restorer, but recently models such
as [11], [12] are able to perform CAR without the need of
QFs prior knowledge. Called blind CARs, the performance
achieved by these networks is superior than those of conven-
tional networks. This type of approach provides the use of a
single model trained for all distinct levels of compression.

C. Image Restoration with Semi-Supervised Learning

As indicated earlier, the main idea of restoring images by
Deep Learning consists in training a CNN with pairs of clean
and corrupted images, e.g. raw and JPEG images. However
Noise2Noise (N2N) developed by Lehtinen et al. [13] is an
approach where only corrupted images are used in learning.
Research reveals the possibility of obtaining higher quality
images just by looking at low quality images. To do so, the
model training must contain pairs of images with two distinct
levels of corruption, i.e. one signal with little corruption and
the other with too much corruption.
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Fig. 2: Schematic of the experiment performed. Initially, the test dataset is compressed to different QFs (1 to 10). Then it is
restored by N2N-CAR trained on the compressed training dataset with its respective QF. Finally, validation is performed with
the classification model trained on the original training dataset.

Several techniques based on N2N started to appear, exactly
because it is a relatively efficient method in situations where
high quality data is scarce. Medical images (MRI, CT and
PET scans) are one of the main focuses of application, as they
need improvement in the face of the low sampling problem.
In addition, images that have noise sources similar to those
indicated in the research (Gaussian, Poisson and Bernoulli)
can greatly benefit from this strategy, e.g. despeckle of SAR
satellite images [14]. Even in other types of signals, such as
audio, this approach shows promising results [15].

In the case of double compressed images, a scenario where
the images undergo a first compression in the capture device
and a second one for signal transmission. Deep Learning
models that operate only on these corrupted signal are just
beginning to appear [16]. But the treatment of doubly com-
pressed images has already started to show results in the CAR
state of the art. The main problem in this case concerns images
where Q2 > Q1, i.e. the first compression ratio (Q1) is greater
than the second (Q2), which is the exact problem we propose
to solve.

III. METHODOLOGY

Our tests were performed on two very popular image
classification datasets: Oxford Flowers-102 [17] and Caltech
Cub-200 [18]. Flowers-102 is divided into training, validation
and test datasets, with 6149, 1020 and 1020 images for each
dataset, respectively. Cub-200 dataset is divided into 5994
images for training and 5794 for testing. First we trained the
reconstruction models and compressed the test datasets with

different compression levels (QFs). Then we used the CAR
on the compressed test datasets and performed the test on
previously trained classifiers as shown in Fig. 2. In both steps
both the CAR and classification models were trained on the
same images.

A. Compression Artifacts Reduction with N2N U-Net
The N2N image restoration model is structured on the U-

Net architecture [19]. This CNN has 23 convolution layers
divided into a contraction path and an expansion path. In the
first path, the image goes through successive pairs of 3 × 3
convolutions followed by a rectified linear unit (ReLU) and
shrunk by 2 × 2 max pooling with stride 2. In the second
path, the feature map is augmented by 2 × 2 convolution,
concatenated with the cropped feature map of the associated
contraction path, followed by the pair of 3 × 3 convolution
with ReLU. The output has the same dimension of the input
image, i.e. it represents the restored image. In the case of RGB
images, three input channels result in three output channels.

We train the network for both datasets separately, i.e. using
their respective training datasets. In both cases we set the
learning rate to 10−3 and the ADAM optimizer with the
parameters β1 = 0.9, β2 = 0.99, ϵ = 10−8. The network
weights θ were updated by minimizing the l2 loss function:

θl2 ∈ argmin
θ

N∑

i=1

(yi − fθ(xi))
2 (1)

where, xi is the compressed signal, fθ is the neural network,
yi is the original uncompressed signal and N is the batch-
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(a)

(b)

Fig. 3: Left: JPEG-compressed image with QF equal to 5. Center: image restored by N2N-CAR. Right: original image. (a)
Cub-200 samples with respective PSNR values: 30.53 dB and 31.43 dB. (b) Flowers-102 samples with respective PSNR values:
29.99 dB and 31.06 dB. In both (a) and (b) it is possible to observe a reduction in compression artifacts and an increase in
objective quality.

TABLE I: Training parameters for the classification models.

Classification Implementation Details
Models Input size Optimizer Optimizer parameters Learning rate Batch-size Epochs

CCT-14/7x2 384x384 ADAM β1 = 0.9, β2 = 0.999 0.001 20 300
MMAL-Net 448x448 SGD µ = 0.9, λ = 0.0001 0.001 6 144

size. For Flowers-102 we assigned a batch size of 13 and for
Cub-200 a size of 9.

In addition, we trained our own model for the compressed
images at each compression level, with 10 distinct QFs in the
range [1,10]. Each model served to restore its corresponding
compressed test dataset to the same QF as the training dataset.
Figure 3 shows the example of CAR on a Cub-200 and a
Flowers-102 image compressed with QF of value 10, the
three types of artifacts reduction is remarkable. We used
approximately 15 hours of an NVIDIA GeForce RTX 2080 Ti
GPU for the complete experiment, i. e. one and a half hours
for each model.

B. Image Classification Models

In this section, we present the classification models used
for each of the mentioned datasets. In both cases, we loaded
the models with the weights that were previously trained by
their designers, in order to reproduce their results. Training
specifications are shown in Table I. It is important to note that
the datasets fall into a special type of image classification, the
Fine-Grained Visual Categorization (FGVC). In this group of
Computer Vision tasks the number of classes is larger and the
visual differences between them is smaller.

1) Flowers-102: For this dataset we use a classifier struc-
tured on the Compact Convolution Transformer (CCT) [20].
This network is a compact version of the Vision Transformer
(ViT) [21], a transformer-based self attention model. Its archi-
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tecture is divided into Convolutional Layer, Pooling, Reshape,
Transformer Encoder, Sequential Pooling and Linear Layer.
Despite the convolutional layer present in the network, there
is no similarity with a CNN, because in this model this layer is
inserted in a process called Tokenization. The advantage of this
type of architecture is the ability to be trained with a smaller
dataset while maintaining the high performance of ViTs. In
the Flowers-102 classification the CCT-14/7x2 is used, which
according to the specifications has 14 encoder transformers
and 7 convolutional layers with 2×2 kernel. With the weights
provided by the CCT designers, a 99.9% accuracy on the test
set was obtained.

2) Cub-200: Unlike CCT, the Multi-branch and Multi-scale
Attention Learning Network (MMAL-Net) [22], used in Cub-
200, has CNNs as its backbone. The architecture consists
of three branches, each one has its own CNN and Fully
Connected Layer that shares the same weights. Raw branch,
object branch and part branch are connected by two modules:
the Attention Object Location Module and the Attention
Part Proposal Module. These modules are responsible for
locating the main object in the image and for highlighting
important parts of these objects, respectively. The CNN present
in MMAL-Net is ResNet50 [23]. This classifier achieves a
89.61% accuracy.

IV. PRACTICAL EXPERIMENTS

We compressed both the training and test datasets using
JPEG with QFs in the range [1, 10]. These very low QF
values were chosen to force some reduction in classification
performance, otherwise a higher QF does not impact in the
classifiers accuracy. After training the CAR models for both
datasets, we were left with a total of 20 CAR models that were
subsequently applied to the compressed test datasets, in order
to increase the quality of the images degraded by compression.
This scenario addresses drastic signal degradation conditions,
on the other hand, it is easily observed where there are compu-
tational limitations, either in relation to storage or in relation
to bandwidth and energy consumption for transmission.

Test step for CCT and MMAL-Net consisted in using both
compressed dataset and CAR-restored dataset, to obtain the
models performance in both situations. Fig. 4 shows the
accuracy obtained by the classifiers in these two conditions for
the cited QFs. The first plot involves the CCT model. There
are two curves with very similar behavior, however with one
slightly overlapping the other. Due to the application of CAR
in one of the datasets it is possible to observe the performance
elevation. Similarly, Fig. 4b deals with MMAL-Net which is
much more benefited by the CAR at the same time that it
suffers more damage due to compression.

Compared to the compressed images only, the CAR on
average provided a 0.52% increase in accuracy for CCT and
a 34.57% increase for MMAL-Net. This is a performance
increase in both cases, but it was much higher for the CNN-
based model. Some factors that may be associated with this
result are: network architecture, larger number of classes and
dataset quality. Regarding architecture, transformer models

may have a higher robustness to lossy compression, and this
already makes the harmful impacts of artifacts less severe.
Regarding the number of categories, Cub-200 has almost twice
as many classes as Flowers-102, which makes the classifica-
tion task more arduous. Finally, the fact that datasets are pre-
compressed indicates the possibility of further degradation of
Cub-200.

We also calculate average peak signal to noise ratio (PSNR)
of each dataset relative to the original dataset, which is
depicted in Fig. 5. By analyzing the curves, it is possible to
extract important information about the results. Firstly, N2N-
CAR curve (green) shifted to the right indicates a better objec-
tive quality of the restored datasets, higher PSNR. Secondly,
in Fig. 5a accuracy values on the compressed dataset only
(cyan curve) in some cases are higher for the same PSNRs,
i.e., even with increasing PSNR the accuracy is lower with
the Flowers-102 images generated by N2N-CAR (green curve
below the cyan curve). Finally, in Cub-200 (Fig. 5b) the
opposite happens at the same PSNR values the accuracy using
the restored datasets is higher (cyan curve below the green
curve). These findings show that apparently lossy compression
PSNR reduction can be more impactful in some models than
in others.

It is worth noting that besides increasing the objective
quality (PSNR), the main goal of CAR is associated with
increasing the signal subjective quality. Removing artifacts
does not necessarily imply an increase in PSNR. Thus, each
model may behave differently when facing the DL-based CAR,
including losing performance with a higher PSNR and a lower
amount of artifacts. Apart from the observed divergences,
overall the positive impact prevailed for both classification
models and datasets.

Despite the performance increase, Figure 6 highlights a
possible concern, the negative impact of image restoration
on classification. Such cases certainly occur less frequently
than otherwise, e.g. in this dataset (Cub-200 with quality
factor 9) only one image was classified right for compression
only and wrong for compression and restoration. But it warns
against the following situation: despite the better signal quality,
if CAR is not considerably efficient, the effect can be the
opposite of what is expected. And as observed for CCT, in
many cases there is no increase in accuracy, evidencing that
increased signal quality will not always result in improved
classification performance.

V. CONCLUSION

This paper presented a possible method to circumvent the
problem of compressed image classification. The use of CAR
for this purpose relies on the fact that the dataset quality is
strictly related to the performance of DL-based classifiers.
We performed N2N-CAR training for different compression
levels on each dataset evaluated and then we analyzed the
behavior for each situation (compressed and restored images).
In both datasets increased objective (PSNR) and visual (artifact
reduction) quality were the targeted aspects to reduce model
degradation due to compression.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

5



(a) (b)

Fig. 4: Validation accuracy on the test dataset compressed and restored by N2N-CAR for different JPEG QFs. (a) Flowers-102.
(b) Cub-200.

(a) (b)

Fig. 5: Performance of classification models with respect to the objective quality (PSNR) of compressed and restored test
datasets by N2N-CAR. (a) Flowers-102. (b) Cub-200.

From the results presented and the aspects about which
we have discussed, it is possible to conclude that there
are noticeable advantages of N2N-CAR in the JPEG image
classification. Certainly, the results we have presented cannot
be extended to all models and datasets. However, in cases
where the DL-based CAR can be applied with some efficiency,
there are great chances of reducing classifier degradation. It
can even be used to treat the training dataset itself in a semi-
supervised approach.

One of the limitations of the experiment we performed is
that a CAR model is required for each QF, which can be
very costly and makes it unfeasible to apply this method in
certain situations. Ideally, it would not be necessary to know

the QF assigned to each dataset in advance, so a single model
trained for a diversity of QFs would be sufficient to restore any
dataset. One of the more recent CAR models mentioned in the
related works (FBCNN or DPCNN) could solve this issue in
the future. Overall, the possibility of obtaining increased accu-
racy of DL-based image classification models under extreme
conditions of signal corruption is evidenced by our results.
Furthermore, the implementation of more versatile techniques
to address the problem can be developed in future work.
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image, despite the quality improvement.
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