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Abstract—Dengue is a significant global health issue, affecting
millions of people annually and imposing substantial socioeco-
nomic burdens. Effective disease control relies on monitoring
the population of Aedes aegypti mosquitoes, the primary vector
of dengue. One surveillance method involves counting the eggs
laid by these mosquitoes in spatially distributed ovitraps. This
study focuses on the application of computational methods to
forecast dengue vector populations. We analyze a four-year (2016-
2019) database from 397 ovitraps distributed across Natal, RN-
Brazil, with a weekly sampling frequency. Our objective is
to develop accurate machine learning (ML) models that can
predict the egg density index (EDI) at a fine-grained spatial
resolution, aligned with zoonosis interventions. To preprocess the
dataset obtained from the ovitraps, we employ spatial smoothing
techniques and aggregation. The preprocessed data is then used to
train ML models, including recurrent deep learning (DL) models,
enabling accurate forecasting of the EDI. This approach shows
promise for monitoring and preventing arbovirus outbreaks. Our
findings demonstrate the effectiveness of spatial smoothing and
aggregation as preprocessing steps for reducing randomness and
noise in the dataset. The recurrent DL models exhibit high
forecasting accuracy, thereby validating their utility in arbovirus
monitoring and prevention efforts.

Index Terms—Machine learning, deep learning, arboviruses
forecasting, dengue, ovitraps.

I. INTRODUCTION

A. Aedes aegypti as a vector for several diseases

Aedes aegypti serves as the primary vector for the transmis-
sion of several significant diseases, including Dengue, chikun-
gunya, zika virus, and yellow fever [1]. Consequently, methods
that enable effective monitoring of Aedes aegypti populations
play a crucial role in public health interventions [2]. One such

monitoring method involves the use of ovitraps, specialized
containers that mimic suitable conditions for mosquito egg
deposition [3]. By quantifying the number of Aedes aegypti
eggs collected in ovitraps distributed throughout a city, we can
obtain a spatio-temporal proxy for vector incidence [4], [5].

B. Potentials of ovitrap data analysis

In previous work our group demonstrated the application of
ovitrap for early prediction of dengue incidence in the city
of Natal/RN-Brazil [5]. Building upon this foundation, the
primary objective of the current study is to forecast vector
incidence through the monitoring of ovitraps in Natal. By
predicting future values associated with egg density, our aim is
to provide public health stakeholders with timely and spatially
relevant information for early interventions. In this regard,
we evaluate various Machine Learning (ML) models, includ-
ing Multilayer Perceptron (MLP), Long Short-Term Memory
(LSTM), and Gated Recurrent Unit (GRU), for predicting
ovitrap data.

C. Structure of manuscript

Regarding the structure of manuscript, Section 2 provides
a comprehensive description of the dataset, outlining the
preprocessing and data preparation techniques utilized, as well
as the ML models employed for prediction. It also details the
strategy adopted for training, validation, and testing of the
models. In Section 3, we present the results of Exploratory
Data Analysis (EDA) conducted on the ovitrap data. We
compare the performance of the ML models and showcase
their applicability in forecasting spatio-temporal ovitrap data.
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Section 4 discusses the findings of the study, comparing and
contrasting them with existing literature on the topic. Finally,
in Section 5, we present the final conclusions and highlight
potential avenues for future research..

II. MATERIAL AND METHODS

A. Ovitrap data description

In this study, we analyzed a dataset comprising egg counts
for Aedes aegypti mosquitoes, collected during each epidemi-
ological week from 2016 to 2019 in the city of Natal. It
is worth noting that, in the field of epidemiology, a year is
conventionally divided into 52 epidemiological weeks. There-
fore, for the four years under analysis, we have a total of
208 epidemiological weeks. The dataset consists of egg counts
obtained from 397 strategically distributed ovitraps throughout
the city. Trained personnel conducted manual counts of eggs
using microscopes and a hand counter, adhering to established
protocols. These counts were reported by the Zoonoses Center
of Natal, ensuring accuracy and consistency. The spatial distri-
bution of the ovitraps can be visualized in Figure 1, providing
a clear representation of their locations within the city.

Fig. 1. Spatial distribution of ovitraps in Natal city.

B. Data prepossessing

The analysed dataset encompassed a total of 397 ovitraps,
as mentioned in the previous section. However, to ensure data
quality and mitigate potential biases, a criterion was applied to
remove ovitraps with an average egg count of less than 1. This
selection process aimed to exclude ovitraps that were likely
to be neglected or exhibited potential biases in egg counts or
material collection. Consequently, the final dataset used in this
study comprised 297 ovitraps, which will be referred to as the
’cleaned dataset’.

C. Spatial smoothing and aggregation

To optimize the dataset for further analysis, we applied
two essential preprocessing techniques: spatial smoothing and
aggregation. Subsequently, we provide a detailed explanation
of both processes.

Spatial Smoothing: To account for the assumption that
neighboring points would exhibit similar conditions for
mosquito reproduction, a neighborhood was defined for each
ovitrap by considering its five nearest points based on Eu-
clidean spatial distance. For each ovitrap, the mean value
computed from its neighborhood was determined. This spatial
smoothing process aimed to reduce randomness at local points
by replacing the local value with the average value obtained
from its vicinity.

Aggregation: In order to establish spatial areas that align
with the actual conditions for vector control interventions, a
group of four ovitraps was aggregated using the mean average.
This aggregation not only computed the mean of the egg
counts within the group but also determined a centroid based
on the mean of the spatial points considered in each case.
This aggregation approach facilitates targeted interventions at
precise locations and helps mitigate the impact of outliers and
randomness in the analyzed data. The aggregation process,
performed through mean averaging, yielded a commonly used
indicator known as the Egg Density Index (EDI) [6]. Affetr
data aggregation step, we finalize with 67 spatial points
(aggregated ovitrap data).

III. MODEL TRAINING AND SELECTION

In this study, we employed a set of eight models categorized
into three distinct groups for arbovirus forecasting. The first
group consisted of traditional feedforward neural networks,
while the second and third groups comprised Deep Learning
(DL) recurrent neural networks (RNNs). The first group in-
cluded two Multilayer Perceptron models (MLP1 and MLP2).
The second group utilized three Long Short-Term Memory
models (LSTM1, LSTM2, and LSTM3). Lastly, the third
group incorporated three Gated Recurrent Unit models (GRU1,
GRU2, and GRU3). Each model in these groups exhibited
unique characteristics in terms of parameters and structural
variations. These differences allowed for a comprehensive
exploration of various aspects of arbovirus forecasting. It
is noteworthy that both MLP models and recurrent neural
networks such as LSTM and GRU have been extensively used
for forecasting purposes in epidemiology, demonstrating their
applicability and effectiveness in similar domains [7], [8].

The selection of these models was based on their ability
to capture complex relationships in the data and address
the challenges associated with time series prediction. The
variations in their architectures provided a diverse set of
models to explore different aspects of arbovirus forecasting.

Our training approach involved using a sliding time window
(see Fig. 2), where we utilized data from the preceding 4
weeks to predict the data for the subsequent week. This
method allowed us to effectively forecast vector incidence
one week ahead, providing valuable insights for timely and
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accurate prediction of vector monitoring and control efforts.
As depicted in Fig. 2, all models were configured with an
input of 4 elements and an output of 1 element. Thus, for all
the models implemented in this work, we used an input layer
with 4 neurons, and an output layer with 1 neuron, employing
the Rectified Linear Unit (ReLU) activation function.

To provide a succinct description of the model architecture,
we have adopted the format NI : NHx : NO, where NI
represents the number of neurons in the input layer, NHx

represents the number of neurons in hidden layer x, and
NO represents the number of neurons in the output layer.
This format offers a concise overview of the neural network
structure by indicating the neuron count for each layer.

In our specific models, we have followed this format to
describe the architecture, providing the number of neurons
in the input layer, the hidden layers, and the output layer.
Additionally, we include detailed information about the type
of layers used eachmodel, such as the specific activation
functions employed. This comprehensive description enables
us to easily identify the dimensions and characteristics of
each layer within the neural network, facilitating a clear
understanding of its composition and functionality.

In the following paragraphs, we will provide a brief descrip-
tion of the different architectures for each individual model.

Fig. 2. Approach used for training the models.

1) Group 1: Multilayer Perceptron (MLP) is a type of
artificial neural network composed of interconnected layers
of neurons. The intermediate layers, known as hidden layers,
enable the MLP to learn complex representations of the
input data, while the output layer generates the final model’s
response. We tested two MLP architectures:

MLP1 (4:8:16:1):
• Hidden layer with 8 neurons and activation function:

Linear.
• Hidden layer with 16 neurons and activation function:

Sigmoid.
MLP2 (4:8:32:1):
• Hidden layer with 8 neurons and activation function:

Linear.
• Hidden layer with 32 neurons and activation function:

Sigmoid.
2) Group 2: Long Short-Term Memory (LSTM) is a type

of recurrent neural network (RNN) specifically designed to
address the gradient vanishing problem in long sequences.
LSTM cells have a specialized structure that allows them to
store and retrieve information over time. We utilized three
LSTM architectures:

LSTM1 (4:32:1):
• Hidden layer with 32 LSTM neurons and activation

function: Rectified Linear Unit (ReLU).
LSTM2 (4:128:1):
• Hidden layer with 128 LSTM neurons and activation

function: Rectified Linear Unit (ReLU).
LSTM3 (4:128:128:1):
• Hidden layer with 128 LSTM neurons and activation

function: Rectified Linear Unit (ReLU).
• Hidden layer with 128 LSTM neurons and activation

function: Rectified Linear Unit (ReLU).
3) Group 3: Gated Recurrent Unit (GRU) is another type of

RNN that also addresses the gradient vanishing problem. GRU
has gate mechanisms that control the flow of information, but
with a simplified structure compared to LSTM. GRUs have a
single memory cell that can be updated, reset, or read from
one time step to the next. This compact structure results in
fewer parameters and faster training. We employed three GRU
architectures:

GRU1 (4:32:1):
• Hidden layer with 32 GRU neurons and activation func-

tion: Rectified Linear Unit (ReLU).
GRU2 (4:128:1):
• Hidden layer with 128 GRU neurons and activation

function: Rectified Linear Unit (ReLU).
GRU3 (4:128:128:1):
• Hidden layer with 128 GRU neurons and activation

function: Rectified Linear Unit (ReLU).
• Hidden layer with 128 GRU neurons and activation

function: Rectified Linear Unit (ReLU).

A. Training, validation, and test

For all the models, we utilized a simple hold-out cross-
validation approach for training and testing. The dataset was
split into 80% (166 weeks) for training (132 weeks) and
validation (34 weeks), while the remaining 20% (42 weeks)
was reserved for testing. However, to ensure robust estimation
of model performance, we implemented a resampling cross-
validation technique [9] with 10 repetitions.

In each repetition, we randomly selected 40 ovitraps from
the dataset and computed the average time series based on the
selected ovitrap data points. The models were then trained
on the 132 weeks of training data and evaluated on the
remaining 34 weeks of the validation set. Model performance
was assessed using the Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) across the 10 repetitions, as these
metrics are widely used in the literature to evaluate model
performance [10].

Based on the mean RMSE and MAE metrics computed on
the 10 repetitions for the validation set, we identified the top
two models with the lowest errors for further analysis.

The testing phase consisted of two aspects: testing on the
averaged (univariate) mean aggregated time series and testing
on the complete aggregated time series, which comprised 67
different data points.
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Our primary objective was to train a spatio-temporal model
capable of predicting future values for each aggregated ovit-
rap data point, representing spatial locations over time. This
approach enables early identification of areas requiring public
health interventions and provides valuable insights into when
and where to implement preventive vector management strate-
gies.

By employing this methodology, our aim was to develop
robust models that can accurately forecast arbovirus vector
populations, facilitating targeted interventions for effective
disease control.

IV. RESULTS AND DISCUSSION

A. Exploratory Data Analysis (EDA)

Heat maps of the ovitrap data are presented in Fig.3, reveal-
ing distinct periods throughout the year that are more favorable
for mosquito reproduction, particularly between January and
June, while the remaining months are less conducive to
mosquito proliferation. This visualization underscores the need
to increase warnings, public health actions, and interventions
during the rainy periods. Fig.3a displays the raw ovitrap data,
which includes certain data points that raised doubts regarding
their accuracy in terms of egg counts. Consequently, the
original data underwent cleaning procedures as explained in
Section II-C. By removing unreliable ovitraps, the spurious
patterns observed in the heat map were eliminated, as evi-
denced by the comparison between Fig.3a and Fig.3b. This
visual comparison clearly shows the removal of missing data
patterns in Fig.3b that were initially evident in Fig.3a.

Additionally, Fig.3c represents the smoothed ovitrap data.
Initially, the dataset was reduced from 397 to 271 ovitraps
(Fig.3a to Fig.3b) through the cleaning process. Subsequently,
the aggregation step explained in Section II-C further reduced
the dataset from 271 to 67 ovitraps, achieving a more concise
representation.

Fig. 3. Heat maps representing the ovitrap data. A log2 transformation was
applied to facilitate data visualization. (a) Raw data containing all ovitraps.
(b) Clean data, excluding ovitraps with extreme low values of egg counts. (c)
Spatial smoothing ovitrap data.

To gain a better understanding and quantify the relationship
between vector incidence and climatic variables, we analyzed
the precipitation data for the Natal city. Fig.4 demonstrates a

strong correlation between precipitation and the Egg Density
Index (EDI). Fig.4a depicts a heat map illustrating the mean
monthly values of EDI for the aggregated ovitrap data, while
Fig.4b represents the time series of the mean EDI data shown
in Fig.4a, alongside the accumulated precipitation time series.
Both time series (EDI and precipitation) were normalized
within the range of 0 to 1, and smoothed by using a moving
average filter, facilitating a visual comparison. Notably, EDI
and precipitation exhibit a robust association. A simple inspec-
tion of Figure 3a and Figure 3b confirms that periods with high
precipitation values align with increased EDI. To quantitatively
assess this relationship, we computed the Pearson correlation
coefficient, yielding a correlation of r = 0.72 and a p-value
of 9.76×10−9, indicating a statistically significant and strong
correlation between precipitation and EDI.

Fig. 4. Relation between EDI and precipitation accumulated monthly in Natal
City; a) Heat map of EDI accumulated by monthly values, b) mean EDI
accumulated by months and monthly values of accumulated precipitation.

These findings highlight the substantial influence of climatic
factors, specifically precipitation, on mosquito populations and
the consequential implications for disease transmission. The
strong correlation between EDI and precipitation underscores
the potential of incorporating meteorological data into ar-
bovirus forecasting models and emphasizes the significance of
proactive measures during periods of heightened precipitation.

B. Model validation and performance

The models underwent evaluation based on the mean RMSE
and MAE metrics computed on the validation dataset using
the resampling approach described in Section III-A. The
performance metrics are presented in Table I. The results
indicated that the MLP models had poor performance, while
the LSTM and GRU models showed superior performance,
with similar results between the two groups. Consequently, we
selected the simplest model from each group, namely LSTM1
and GRU1, for further analysis.
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The selected models, LSTM1 and GRU1, were re-trained
using the complete training and validation dataset, which
encompassed 166 weeks of data. This training was conducted
on the average (univariate) time series obtained by averaging
data from individual ovitraps illustrated in the heat map of
Fig.4a. This extended training provided the models with the
opportunity to learn from a larger and more diverse dataset,
enabling them to capture a wider range of temporal patterns
and improve their predictive capabilities. By leveraging this
expanded dataset, our aim was to enhance the models’ per-
formance and reliability in accurately forecasting arbovirus
vector populations. The inclusion of additional data allowed
the models to extract valuable insights and capture intricate
relationships, ultimately leading to more robust and accurate
predictions.

Model MAE RMSE
MLP1 24.95 29.39
MLP2 19.21 24.14
LSTM1 6.64 9.83
LSTM2 6.69 9.44
LSTM3 6.61 9.42
GRU1 6.58 9.95
GRU2 6.57 9.28
GRU3 6.75 9.23

TABLE I
MODEL EVALUATION METRICS

Fig.5 illustrates the time series of the mean aggregated EDI,
showcasing the true values alongside the predictions from the
selected models. The models closely align with the true values,
validating their performance.

The LSTM1 and GRU1 models were utilized to predict
the values for each individual aggregated ovitrap, despite
being trained on the mean of all spatial points. Fig.6 presents
heatmaps that compare the true values with the predicted
values from each model. Upon visual examination of the
heatmaps, it is evident that both models accurately capture
the true trends of the individual spatial data points.

The LSTM1 model yielded MAE and RMSE values of
7.4 and 9.7, respectively, on the mean EDI (Fig.5), while
the GRU1 model achieved MAE and RMSE values of 7.7
and 10.5, respectively. These results align closely with the
validation errors reported in Table I.

Furthermore, we assessed the performance of LSTM1 and
GRU1 models in predicting individual values for each ovitrap.
When evaluating the MAE and RMSE on individual ovitraps
(Fig.6), LSTM1 achieved scores of 13.4 and 18.1, while GRU1
yielded scores of 14.6 and 19.8, respectively.

It is important to acknowledge that the performance of the
models declined when predicting individual ovitrap values.
This decrease in performance can be attributed to the models
being trained on the mean average, which fails to capture
the unique dynamics exhibited by individual ovitraps. It is

Fig. 5. Performance comparison of models based on the EDI time series.
(a) Comparison of the GRU3 model’s performance. (b) Comparison of the
LSTM4 model’s performance

Fig. 6. Performance comparison of models based on the EDI heat maps. (a)
Heat map of EDI true values. (b) Heat map of EDI predicted by LSTM1
model. (c) Heat map of EDI predicted by GRU1 model.

expected that individual ovitraps may deviate from the overall
mean.

However, it is noteworthy that the models successfully
captured the overall trends in individual ovitrap dynamics
within the test dataset. Despite the limitations mentioned,
the methodology proposed in this study still holds practical
relevance for public health interventions. Nonetheless, further
improvements are necessary to achieve more accurate predic-
tions for individual spatial ovitraps.

1) Hypothesis test for model comparinson: To assess the
statistical significance of the model performance, a hypothesis
test was conducted. Given the dependent nature of the samples,
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we employed the Wilcoxon signed-rank non-parametric test
[11] to compare the performance of the LSTM1 and GRU1
models. This statistical test allowed us to determine whether
there was a statistically significant difference in performance
between the models. The results revealed that the errors of
the models were indeed different, with the LSTM1 model
demonstrating slightly superior performance compared to the
GRU1 model, and this difference was found to be statistically
significant (p-value = 3.64× 10−12).

Based on the obtained results and in comparison with
the findings presented in Table I, it is noteworthy that the
hypothesis test indicated a statistically significant difference in
performance between the LSTM1 and GRU1 models. While
the validation dataset initially showed lower error rates for the
GRU1 model, the test dataset demonstrated that the LSTM1
model achieved slightly lower errors, and this difference
was found to be statistically significant. Therefore, both the
hypothesis test and the analysis of the test dataset suggest that
the LSTM1 model exhibited slightly superior generalization
compared to the GRU1 model, with a statistically significant
advantage.

V. FINAL REMARKS

The findings of our study emphasize the significance of
utilizing ovitrap data to gain insights into the dynamics of
arbovirus vectors. The heatmap representation effectively cap-
tures the seasonal patterns of the vector population, revealing
distinct peaks and valleys. Notably, we observed a strong
correlation between ovitrap data and precipitation, highlighting
the need for targeted public health interventions during rainy
periods.

Among the evaluated machine learning (ML) models,
the recurrent models, specifically Long Short-Term Memory
(LSTM) followed by Gated Recurrent Unit (GRU), demon-
strated superior performance with consistently low error rates.
These models generated accurate predictions with minimal
deviations from the actual values. The effective capture of tem-
poral dependencies by recurrent deep learning (DL) models,
combined with the application of spatial smoothing techniques
to reduce randomness and noise, contributed to their excep-
tional predictive accuracy.

The accuracy achieved by the recurrent DL models further
validates their utility as reliable tools for monitoring and pre-
venting arbovirus outbreaks. Their ability to forecast the egg
density index trends at fine-grained spatial resolutions aligns
well with the requirements for targeted zoonosis interventions.
Additionally, the spatial smoothing approach proved effective
in reducing randomness and noise, thereby enhancing the
precision of the predictions.

These findings hold significant implications for public
health interventions. Accurate forecasting of arbovirus vector
populations with low errors enables proactive and timely
measures to be implemented during periods of heightened risk.
By directing resources and interventions to specific locations
based on the identified spatial trends, public health efforts

can be optimized for effective arbovirus surveillance and
prevention.

In terms of future research directions, we aim to utilize
updated datasets and incorporate additional climatic variables
as predictors. Such enhancements are projected to improve
both the accuracy and robustness of our forecasting models,
offering a significant contribution to more effective arbovirus
monitoring and preventive measures. A pivotal focus for sub-
sequent studies will be the refinement of prediction accuracy,
particularly for fine-grained spatial regions. Additionally, we
plan to delve into and integrate other state-of-the-art DL
methods for time series forecasting, like those highlighted in
[12], which will further enrich the methodologies presented in
this paper.

In summary, our study highlights the significance of achiev-
ing low prediction errors in forecasting arbovirus vector pop-
ulations using recurrent DL models. The successful combina-
tion of spatial smoothing and aggregation techniques, along
with the incorporation of temporal dependencies, underscores
their potential as valuable tools in public health interventions
targeting Aedes aegypti control. These findings contribute to
the growing body of knowledge aimed at improving arbovirus
surveillance and prevention efforts.
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