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Abstract— As optimization processes have become more 
complex for embracing problems of different characteristics, it 
is necessary to have multiple adequate algorithms to tackle each 
of such problems. Bio-inspired evolutionary algorithms are 
suitable solutions for these situations, but they require re-tuning 
when working with different systems. Autotuning is a popular 
strategy to increase the adaptability of optimization algorithms. 
Adaptive Radiation (AR) is a phenomenon in nature that 
optimizes a population by diversity increase and niche 
specialization through intense mutation. This research aimed to 
insert this effect into the Genetic Algorithm (GA) workflow as a 
biological-inspired autotuning method, creating a new model 
called Genetic Algorithm with Adaptive Radiation (GAAR). 
The implementation of the AR component resulted in consistent 
and improved results on multiple benchmark functions from the 
CEC2019 challenge. The GAAR only changes the value of the 
AR component, which is enough to make this model achieve the 
best results in 57% of the tests and the worst results in 0% of 
the tests, while the Adaptive Particle Swarm Optimization 
(APSO) presented 39% and 12% of the best and worst results, 
respectively. 

Keywords—Adaptive Radiation, Autotuning, Dynamic 
Problems. 

I. INTRODUCTION 

Modern computational systems, focused on optimizing 
complex problems, use bioinspired techniques for their 
superior capacity on working with nonlinear-
multidimensional mathematical functions [1]. More 
specifically in this study field, a subgroup of algorithms 
implements the behavior observed in evolutionary phenomena 
of nature to optimize several problems, searching for an 
acceptable solution [2]. These are evolutionary algorithms. 

The evolutionary algorithms work around the concept of a 
population, which progresses over generation steps as its 
timespan, generating better individuals. Such individuals are, 
then, interpreted as the solutions for the problem to be 
optimized [3]. In minimization processes, for example, the 
smaller valued individual is the best solution available. 

The founder of the evolutionary algorithms is the Genetic 
Algorithm (GA), which mimics the basic steps of Darwinist 
Evolutionism [4]. In this model, the population selects its 
better individuals to crossover, and thereafter, introduces a 
mutation factor to simulate the stochastic behavior present in 
nature’s observation. 

Though revolutionizing the bioinspired field, the classic 
GA implementation became obsolete, generating the necessity 
of specific GA modalities, better adapted for each different 
problem. The elitism, for example, sets a percentage of the 
population, to not suffer mutation episodes, enabling the best 
individuals to be in the next generations, and increasing the 

likelihood of finding the optimal solution, as it avoids random 
destruction of the best chromosomes and avoids premature 
convergence [5]. 

Although presenting improvement in the GA’s results, this 
kind of process addition turns this algorithm into a high 
complexity, and large tunable parameter structure, creating 
opportunities for the introduction of more efficient, 
bioinspired optimizing algorithms. The Particle Swarm 
Optimization (PSO) is based on the birds’ behavior in search 
for food, and it works with few parameters [6]. Differential 
evolution generates new descendants by perturbing the 
solutions with scaled difference vectors, it also presents a 
small number of tunable components, being a good strategy to 
find an acceptable solution to a problem of source inversion in 
practical environmental management [7]. 

Setting up an algorithm for each different problem, 
although a reasonable strategy, requires effort for try-and-
error tunning of the parameters. This process becomes 
increasingly complex when applying certain algorithm to 
work over multiple problems of different qualities, in which 
the fitness functions are of different nature. 

The bioinspired algorithms present the ability to adapt to 
dynamic situations, being the dynamism factor characterized 
by changing the mathematical function being optimized, 
therefore, replacing the problem itself. This is possible 
through the process of autotuning, which is the process of 
automatically adjusting algorithm parameters based on 
problem characteristics and performance metrics [8]. 
Autotuning allows bioinspired optimized algorithms to 
achieve optimal performance across a wide range of problem 
instances, allowing an algorithm, to be a powerful tool for 
multiple real-world applications. 

Recalling the GA reference on evolutionary process, there 
are multiple biological actions related to genetic operations 
yet to be implemented in computational environment, such 
can ground autotuning behavior in the algorithm, as the 
adaptative inertia in the PSO [9]. However, multiple sub-
processes running under the same algorithm requires higher 
computational effort. Thus, any bioinspired innovation 
demands a reasonable tradeoff, bringing more positive than 
negative traits to the algorithm. 

This study looked for elaborating an autotuning method, 
that needs to change the value of a single parameter, but also 
relying on a coherent biological element, directly related to the 
behavior that inspired such algorithm. 

References [10] and [11] highlight the presence of 
biodiversity and niche specialization in the survival journey, 
factors generated through episodes of intense genetic 
adaptation, later observed as being the starting point of 
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multiples species diversification. Both episodes are promoted 
by a phenomenon called Adaptive Radiation (AR), which 
provokes high mutation rates in endemic populations, 
allowing its individuals to quickly undergo adaptations in their 
characteristics for survival purposes. 

Dealing with the necessity of optimizing multiple 
functions, aiming for high efficiency while also avoiding the 
necessity for re-tuning the operational parameters, this paper 
proposes the introduction of the AR into GA’s execution, to 
allow this algorithm higher adaptation, with automatic tunning 
process, to different fitness function inputs. Such proposal will 
both improve GA’s performance on the optimization results 
and present a better overall score in functions with different 
characteristics, due to the evolutive grounded autotuning 
method. 

The remaining sections of this paper are presented as 
follows: Section II presents the Background, with state-of-art 
papers related to the study field of this research. Section III 
discusses the adopted Study Case, as the benchmark functions 
used in the performance tests. Section IV presents the concept 
of Adaptive Radiation phenomenon, and its effects on 
multiple species evolution. Section V explain each step of the 
proposed algorithm, detailing the method that led to each 
function’s strategy, and the biological influence on the 
modeling of the AR function. Section VI presents the results 
from the proposed algorithm, and from its rival algorithms, 
and the performance explanation over the benchmark 
functions. Lastly, Section VII presents the conclusions of this 
study, citing the innovations carried out by this research, and 
the proposals for future works.  

II. RELATED WORKS 

 Nowadays, when you look at artificial intelligence (AI) 
algorithms being developed, you get an interesting picture of 
how these algorithms work. There is a lot of manual work 
involved in automating the decision processes for the 
algorithms to perform well. It is AI tuning [12]. That is hard 
work, and it explains why an AI algorithm works great to 
solve a task, but if the task is switched, the performance will 
not be the same. In other words, fine-tuned AI algorithms are 
good for some tasks, but other tasks will require further tuning 
[13]. AI tuning is a promising field of study. 

 For evolutionary computing/swarm intelligence 
techniques, autotuning is also important [14]. Normally, 
evolutionary computation/swarm intelligence is used to tune 
some computational technique that is solving a problem 
[15][16]. But the performance of evolutionary 
computation/swarm intelligence algorithms is also dependent 
on a good tuning of their hyperparameters [17][18]. 

 Among the evolutionary algorithms, the Genetic 
Algorithm (GA) is one of the oldest and most complex [19]. 
A characteristic of this complexity is the number of 
parameters [20][21]. The most important parameters of GA 
are population size, crossover rate, and mutation rate, among 
others. The mutation rate is responsible for exploring the 
search space and trying to maintain the diversity of the 
population [22][23]. Several versions of GA vary the mutation 
rate [24][25][26] or keep it high [27][28], to improve the 
performance of the algorithm. 

 More recently, the self-tuning strategy has been used in 
GA. In [29], the authors model the performance of machine 
learning algorithms as a function of the inherent structure of 

very large datasets. Therefore, a parameterization mechanism 
is presented for an evolutionary rule-based machine learning 
system that can find the appropriate parameter value for a 
wide variety of synthetic classification problems with binary 
attributes and with/without added noise. 

 In [30], a comparison is made between four different 
tuning methods for GA hyperparameters. Non-automated 
method or grid search is used. The other three automated 
methods are iterated racing, mixed-integer parallel-efficient 
global optimization (MIP-EGO), and mixed-integer 
evolutionary strategies. The results suggest that even when 
interested in expected running time (ERT) performance, it 
might be preferable to use anytime performance measures for 
the configuration task. While minimizing ERT favors the 
average first hitting time of a single fixed target, maximizing 
the area under the empirical cumulative distribution function 
curve of running times (AUC) metric aims at optimizing 
anytime performance, which is measured across a whole set 
of (budget, target value) pairs. It shows that in several cases 
tuning for AUC yields configurations that have smaller ERT 
values than those that were obtained when directly tuning for 
ERT.  

 In [31] is proposed an autotuning genetic algorithm with 
two-dimension chromosomes for designing an optimal 
convolution neural network (CNN) model efficiently, to 
defect detection based on the surface images in 
manufacturing. A two-dimension chromosome is developed 
to represent CNN’s structure and parameters. To enhance the 
search process, the crossover rate and mutation rate are tuned 
automatically according to the generation. 

Given the characteristics of the AR phenomenon, and its 
coherent and useful implementation on optimization 
algorithms, this research adopted it as the main reference for 
an autotuning method. Since the AR is directly related to the 
evolutionary steps in nature, by adding a new mutational 
behavior to the population, the GA presents itself as the most 
capable algorithm to adopt this new component, for the 
evolutive abstraction present in this tool, creating a new model 
called Genetic Algorithm with Adaptive Radiation, or simply, 
GAAR, which balances the biodiversity and the niche 
specialization according to necessity. 

III. STUDY CASE 

To analyze the performance of the proposed algorithm, 
there were adopted as reference, trustable benchmark 
functions from the CEC-2019 Single Objective Optimization. 
Such functions were inherited from the 100-Digit Challenge 
[32], and it present 10 objective functions for optimization 
benchmarks. Every function was selected for this study, and 
they are presented in Table 1. 

TABLE I.  CEC-2019 FUNCTIONS 

No. Functions 𝑭𝒊
∗ = 𝑭𝒊(𝒙

∗) D Search Range 
1 Storn's Chebyshev 

Polynomial Fitting 
Problem 

1 9 [-8192, 8192] 

2 Inverse Hilbert Matrix 
Problem 

1 16 [-16384, 
16384] 

3 Lennard-Jones 
Minimum Energy 

Cluster 

1 18 [-4, 4] 

4 Rastrigin’s Function 1 10 [-100, 100] 
5 Griewangk’s Function 1 10 [-100, 100] 
6 Weierstrass Function 1 10 [-100, 100] 
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7 Modified Schwefel’s 
Function 

1 10 [-100, 100] 

8 Expanded Schaffer’s 
F6 Function 

1 10 [-100, 100] 

9 Happy Cat Function 1 10 [-100, 100] 
10 Ackley Function 1 10 [-100, 100] 

The CEC functions present different mathematical 
characteristics in their own models, which carries out distinct 
scenarios for the optimization process. As presented in Figure 
1, each function has its Number of Dimensions (D), Search 
Range, and the value of its respective global minimum. These 
functions simulate many complex environments for the 
proposed algorithm to work with, as a strategy to measure its 
performance, and evaluate at which opportunities it becomes 
the best optimization tool. 

IV. ADAPTIVE RADIATION 

Endemism is the term used in biology for a species or 
taxonomic group that is restricted to a particular geographic 
region [33]. Scientists find endemic species interesting 
because they offer valuable insights into the history and 
ecology of a region. For instance, many plant and animal 
species in Hawaii are endemic and not found anywhere else 
on the planet [34][35]. This suggests that the islands have been 
isolated for a long time, which has allowed unique life forms 
to evolve. 

Several factors can contribute to the development of 
endemic species, including geographic isolation, climate, and 
competition with other species. Endemic species can also arise 
through AR, a process in which a single species diversifies 
into a variety of forms, each adapted to a specific ecological 
niche. 

AR is a biological process that happens when a species 
diversifies into many descendant species, each adapted to a 
specific niche [36]. This usually happens when there is a major 
environmental change, such as the emergence of a new habitat 
or the extinction of other species. AR drives biodiversity by 
allowing organisms to exploit new opportunities and occupy 
new niches in the ecosystem efficiently, thanks to a mutation 
surge [37]. 

As the AR is a product of endemism, the radiation impact 
may be measured by similar metrics to the endemic units. 
Reference [38] presented a study of different metric relations, 
which indicates the most effective for each scenario, proving 
that for Discrete Study Units and Phylogenic Data, which is 
the case for the proposed methodology on this current study, 
the Phylogenic Diversity-Endemism (PDE) is the most 
effective metric. This relation is of immense contribution to 
this research, being the main reference for the mathematical 
model of the AR function presented in the Methodology 
section. 

V. METHODOLOGY 

On this section, it is presented the methodology of the 
algorithm development process, it focuses on presenting and 
describing the steps of the proposed algorithm as to make 
sense of its workflow. 

Most of the steps presented in this section are similar to 
classic GA implementations from other papers, since the goal 
of this research is to bring a minimal effort implementation 
contribution, which draws most of the innovation to the 
Adaptive Radiation step. 

A. Population Initialization 

The function responsible for generating the initial 
population demands 2 inputs, the number of individuals (𝐼𝑛) 
and the number of dimensions for every individual (D). When 
started, this step generates 𝐼𝑛 random solutions, each made of 
D values, uniformly distributed in between the Search Range 
boundaries. 

This paper presents a playful illustration strategy for 
observing population progress based on the Agarose Gel 
Electrophoresis method with Ethidium bromide to separate 
and observe genetic patterns. See Figure 1.  

 
Fig. 1. Agaros Gel Electrophoresis. [39] 

Figure 1 shows a gene present in multiple samples, helping 
identify certain proteins in different individuals. The paper 
uses a similar method to show the population generated by the 
algorithm, as seen in Figure 2. 

 

Fig. 2. Population Genetic Pattern Visualization - Upper View. 

Figure 2 shows as example a population with 100 
individuals and 16 Genes. The colors of this illustration are 
relative to the values of each gene, which are better 
represented in an isometric view, as shown in Figure 3. 
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Fig. 3. Population Genetic Pattern Visualization - Isometric View. 

It is important to notice that Figures 2 and 3 represent the 
same population, only switching between viewing angles. The 
Population Initialization function generates the data necessary 
for producing the genetic pattern plot presented in the Results 
section. 

B. Fitness Evaluation 

To measure the quality of an individual, thus, how good is 
a solution, it is measured its response to a mathematical 
function, known as Fitness Function. In this paper, the Fitness 
Functions adopted are the 10 CEC2019 models presented in 
the study case section. The Fitness Evaluation process is the 
first step of each generation in the loop. 

This paper’s approach to score the quality of a solution is 
based on its proximity to the global solution, being the 
measurement the direct result of an individual to the function. 
It is known the global solution for each function adopted is 
𝑓 = 1 [32]. 

C. Choice process of the Selection Function 

A recent comparative study between the Proportionate 
Roulette Wheel, Linear and Exponential Ranking, and 
Tournament selection methods in a GA presents the 
Tournament method as the most efficient, for presenting less 
time complexity (𝑂(𝑛)), and no need for a sorting method 
[40]. This method also presents more biologically balanced 
behavior, for reducing the possibility of takeover by dominant 
individuals, which reduces premature convergence odds. 
Thus, the Tournament Selection was adopted as the selection 
method for this research. 

This method performs multiple pairwise comparatives on 
the population, selecting only the individual with best fitness 
value of each pair, which reduces the population size in 50% 
after this step [41]. 

D. Strategy Comparative Organization 

This research tested the mutation methods Permutation 
(P), Scramble (S), and Reset (R), and the crossover methods 
Single-Point Cut (SP), Double-Point Cut (DP) and Uniform-
Point Cut (UP). Each strategy combination is named after the 
concatenation of Mutation and Crossover abbreviations, e.g., 
Permutation with Uniform-Point Cut it’s recognized by the 
abbreviation PUP, being all the strategies shown in Table 2. 

 
 

TABLE II.  GA STRATEGIES 

 Permutation 
(P) 

Scramble 
(S) 

Reset  
(R) 

Single-Point Cut (SP) PSP SSP RSP 
Double-Point Cut (DP) PDP SDP RDP 

Uniform Point Cut 
(UP) 

PUP SUP RUP 

 

E. Crossover Function Method Choice 

For this algorithm development, it was adopted to work 
with constant population, for that, the crossover function must 
restore the number of individuals by having each couple to 
produce 4 children. The preference for maintaining a constant 
population relies on biological references, since a species 
efficiency is often related to its capability of density regulation 
[42][43]. Also, there is a linear relation between population 
size and fitness capacity, so if a population reduces 
immensely, it loses its protection against environmental 
permutation, increasing the rates of extinction [44]. 

SP method involves selecting a single cut point in both 
parents' chromosomes and swapping the segments after the cut 
point. While the DP crossover involves selecting two cut 
points in both parents' chromosomes and swapping the 
segments between the two cut points. At last, the UP crossover 
approach involves selecting cut points at random along both 
parents' chromosomes and swapping the segments between 
the cut points [45]. 

The efficiency of each cut point method relies on the 
specific problem being solved and the characteristics of the 
search space. The effectiveness of each method can also vary 
depending on the specific genetic operators used and the 
parameters chosen for the genetic algorithm, thus the 
strategies comparatives come out as a manner to base the 
crossover method choice. 

F. Mutation Function Method Choice 

Nature’s noisy stochastic factor is embedded in GA’s steps 
by the introduction of Mutation Function, this component 
affects a percentage of the population, multiplying the genes 
of such by random coefficients. This process increases the 
similarity of the computational algorithm to its biological 
reference, as to approach the endless variables which interfere 
in the ecological environment. 

As detailed in the previous sub-section, this research 
compared the performance of 3 different strategies (P, S, and 
R). The Permutation mutation method involves selecting two 
positions in the chromosome, at random, and swapping the 
elements at those positions [46]. Scramble mutation method 
involves selecting two positions in the chromosome at random 
and scrambling the elements between those positions [47]. At 
last, the Reset mutation method involves selecting a position 
in the chromosome at random and resetting the element at that 
position to a specified value [48], however for this research, it 
was adopted to work with 2 random positions in the R method, 
and the new value is randomly generated inside the search 
space. 

For every mutation method, the number of affected 
individuals is set by the Mutation Rate (M) variable value. The 
value was set as constant for all the benchmark tests. 

G. Adaptive Radiation Function Formulation 

As shown in Section IV, the AR diversifies the population 
while adapting individuals to new environmental 
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configurations niches, action promoted by an intense mutation 
burst. Given the concepts introduced about the AR 
phenomenon, its implementation model aimed to cause to the 
algorithm’s population, similar symptoms to the ones 
perceived in natural behaviors. 

To avoid dubieties on the impact of the AR Function, it is 
important to compare its operational differences to the classic 
mutation function. The major dissemblance between those is 
their application strategy, due to their biological inspiration, 
as further explained. 

Based on the workflow of the Mutation Function, detailed 
on the previous section, at each iteration, for each affected 
individual, 2 random numbers are generated, replacing 2 
previous genetic variables. This random number generation 
procedure occurs individually, thus, the random seed for each 
individual has time to progress avoiding repetition or high 
similarity. The natural mutation process happens mostly 
individually, with unique settings and results. Thus, such 
computational characteristic is fundamental in this stage as to 
simulate every day biological elements combinations which, 
directly or indirectly, interfere in the genetic changes. 

The AR procedure, otherwise, does note repeats on an 
individual’s basis, it happens once at each generation, 
affecting a variable number of individuals over the 
optimization process. The variable responsible for indicating 
how much of the population will be affected by the AR is 
called Dynamic Rate (DR), and its value is automatically 
adjusted at each generation by the algorithm, as shown further 
in this section. 

The AR generates a DR-by-D matrix of random values, 
which amplitude boundaries are [-1,1], the random valued 
matrix multiplies the matrix of affected individuals, 
promoting collective changes from the same seed. The 
amplitude values are set for statistically equate to minimum 
and maximum concordance, respectively, which represents 
the acceptance (stochastic correlation) of a current gene into 
this environmental shift introduced with the AR effect.  

As presented in the Adaptive Radiation section, the PDE 
is the most compatible metric for this research, as it measures 
the proportion of phylogenetic diversity restricted to a study 
region [38][49]. The PDE measurement is presented in 
Equation 1. 

𝑃𝐷𝐸 =  
∑ 𝐿𝑒

𝐸
𝑒=1

∑ 𝐿𝑠
𝑆
𝑠=1

                                 (1)  

Being 𝐸 the endemic richness, S the total species richness, 
𝐿𝑠 the phylogenic branch lengths of all the resident species, 
and 𝐿𝑒  the phylogenetic branch lengths of the endemic 
species. 

The DR is a value responsible for indicating the number of 
individuals affected by the AR, its value changes based on the 
necessity for the population to evolve, comparing the current 
generation to the initial one, thus, their ancestor. The DR is 
given by the value of a factor 𝛿, mathematically modeled after 
the PDE, which consists of the percentual relation between the 
variance of the current and first populations, as presented in 
Equation 2 and 3. 

𝛿 =
∑ 𝜎2(𝑃𝑝)𝑝

𝑖=1

∑ 𝜎2(𝑃𝑝0)𝑝
𝑖=1

                            (2) 

 

𝐷𝑅 =  {
𝛿, 𝑖𝑓 𝛿 ≤ 100%

100%, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
            (3) 

Where 𝑃𝑝  is the current population, and 𝑃𝑝0  the initial 
population, and 𝜎2 is the variance defined by the Equation 4. 

𝜎2 =
∑ (𝑥𝑖 − 𝜇)2𝑝

𝑖=1 

𝑝𝑠
                            (4) 

Being 𝑥𝑖  the 𝑖𝑡ℎ  individual from the population, 𝜇  the 
population mean, and 𝑝𝑠 is the population size.  

This approach provides an excellent way to compare the 
genetic dispersion of populations while simulating biological 
phenomena. The initial generation is uniformly distributed 
throughout the search space, causing the DR to reach its peak 
value in the initial stages of the algorithm, as the population 
has no evolutive niche progression yet. This increases the 
mutation effects in the population, mimicking the effects of an 
environmental alteration. 

After the AR affects the current population, the generation 
ends, and the new generation begins, starting the next iteration 
in the loop with the Fitness Evaluation step. 

The GAAR follows much of the regular GA workflow, 
with the addition of the AR function. The GAAR steps are 
shown in Figure 4. 

 

Fig. 4. GAAR Workflow. 

H. Algorithm Comparative 

An important part of this research methodology is 
comparing the proposed algorithm to some rival approaches, 
besides using the GAAR over the CEC2019 functions, this 
study adopted the as competitors the Classic GA (GA), Classic  
Particle Swarm Optimization (PSO), and Adaptive Particle 
Swarm Optimization (APSO). 
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The GA was chosen as a direct reference to the GAAR, 
adopting similar parameters (Table 3), being the AR usage 
their only difference. The PSO was also selected as a rival for 
this methodology for, although being a populational 
bioinspired algorithm, presenting essentially different 
characteristics, as being non-evolutive, cooperative, and 
considerably more exploratory. At last, the APSO was 
included as an equivalent AR component to the PSO, for 
adaptative behaviors comparative, however, adopting the 
same values to the other parameters (Table 4). 

TABLE III.  GA AND GAAR PARAMETERS 

Parameter GA GAAR 
Population Size 1000 1000 
Mutation Rate 5% 5% 
Generations 300 300 

Crossover Method Double-Point Cut Double-Point Cut 
Mutation Method Reset Reset 

AR Type Null Dynamic 

 

TABLE IV.  PSO AND APSO PARAMETERS 

Parameter PSO APSO 
Swarm Size 1000 1000 

Inertia Weight 1 [0.1,1] 
Self-Adjustment 

Weight 
1.60 1.60 

Social Adjustment 
Weight 

1.20 1.20 

Iterations 300 300 

 

After setting up the benchmark environment, this research 
performed multiple tests on the fitness functions, and it was 
perceived that 20 tests were an optimal value to obtain reliable 
data, since it was enough to comprise the whole magnitude of 
different performances of the algorithms, caused by stochastic 
motivators. The results and observations from these tests are 
detailed in the next section. 

VI. RESULTS 

The first result of the proposed research is a product from 
the Strategy Comparative step. This result was useful for 
selecting the best alternative, between the 9 strategies 
available. The results of a singular execution of the functions 
are presented in Figure 5, in the format of a Spider Plot [50]. 

 

Fig. 5. Strategy Results on the CEC2019 Functions. 

The values closer to the center are the best (minimum 
values) results for each fitness function, and the more distant 
are the worst results, thus the best strategy is the one to present 
most of its results closer to 1. Following this analysis method, 
the RDP was the strategy that most times achieved the best 
solutions. This behavior is an overall illustration of the whole 
test group, for representing most of the results pattern.  

For the crossover method, the total results present the DP 
achieving the best results in 92% of the tests, thus, being 
elected as the best strategy for this research. The benchmark 
data also informs the Reset was the best mutation method, 
achieving the best results in 44% of the tests, while the 
Scramble and Permutation methods appear with 28% and 25% 
efficiency rates, respectively, and the last 3% is distributed 
over irregular disperse alternatives. 

The quantity of executions to compound the results was 
necessary to avoid temporary divergency or measures based 
on a singular episode of high error, mostly caused by a bad 
seed. Figure 6 samples the results of comparatives between the 
adopted algorithms, with a spider plot approach [50], thus, the 
smaller values are closest to the center, while the higher values 
are on the periphery of the web grid.  

 

Fig. 6. Algortihms Results on the CEC2019 Functions. 

As exemplified by Figure 6, the GAAR presents itself as 
being the most efficient algorithm, followed by the APSO. 
The whole data collected by the benchmarks, shows the 
GAAR providing the best solution in 57% of the tests, the 
APSO in 39%, and GA in 4%. It is important to highlight that 
the GAAR never presented the worst performance, for any 
function, while the PSO presented 88% of the worst solutions, 
and the APSO 12%. 

The data from the tests performed, showed that the GAAR 
mostly loses to the APSO in functions 02, 04, 05 and 09, with 
few exceptional episodes (≅3%). Such functions presented 
itself as being a more comfortable scenario for the APSO, 
given its major exploratory behavior. For better understanding 
the results, this paper explains the algorithms’ relations to the 
functions’ most influential characteristics. 

CEC01: The most complex function in its group, it has the 
highest level of conditionality, modeled after three 
independent equation systems based on signal pulses covering 
nine dimensions. Each system presents different intervals and 
behaviors, drastically altering the function's solution space 
when traversing a continuous, unidirectional path over its 
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surface. It requires greater precision tuning as the population 
approaches the global solution. PSO performed the worst 
among the algorithms, being the most exploratory in nature, 
while GAAR achieved the best performance due to its self-
adaptive nature (Dynamic Radiation). A consequence of such 
conditionality is observed on the shape of the population at the 
last generation, as exhibited on Figure 7. 

 

Fig. 7. CEC01 Last Generation Genetic Pattern Visualization - Isometric 
View. 

Figure 7 visually demonstrates a noticeable pattern in the 
genetic adaptation of the population, as it reaches optimal 
values. It is apparent that, even without intentional weighting 
of genetic preferences, the algorithm focuses on minimizing 
certain genes with a priority scheme. However, the amplitude 
values of the presented genes remain far from the search space 
boundaries. 

CEC02: The APSO produced the best results by 
optimizing the Hilbert Inverse Matrix. This is because the 
algebraic relation between three principal components (two 
functions and one matrix) creates a standardized nature that 
benefits algorithms evaluating the best value found by one 
individual or even a small group within the population. 

CEC03: No large difference presented between the 
algorithm's results. The function being optimized is not 
complex, as the energy values of atomic interactions change 
based on the distance between the particles. The optimization 
problem involves 6 atoms, but 4 of them have trivial solutions, 
meaning that the optimal parameter values are not unique. 
Unlike CEC01, the search orientation does not affect the 
optimization's efficiency. The function's complexity arises 
from the accidental overlapping of atoms, which causes an 
infinite energy value. However, this value is not computed, 
leading to a reduction in the total solution value in an 
inaccurate way. 

CEC04: The Rastrigin function was a challenge for GAAR 
because of the distance between the penultimate and global 
optima, providing most efficiency of more adaptative-
exploratory algorithms, fact observed by the results achieved 
by the APSO, unreachable by their opponents. The generating 
function is simple, but the topology includes the sum of D 
cosine functions (where D is the number of dimensions), 
resulting in a dense function with pseudo-prosperous regions. 

CEC 05 and 09: These functions have mostly smooth 
surfaces but are flatter near the optimum point. Algorithms 
with a component dedicated to the individual result could 
achieve this characteristic more efficiently. APSO algorithm 
obtained the best result in both functions. However, the 
GAAR strategy remains a good choice for optimizing these 
functions. 

CEC 06, 07, and 08: High oscillation is observed in certain 
amplitude ranges, leading to many local optima within the 
search interval. GAAR consistently performed the best across 
all these functions, with particularly strong results for CEC07, 
which presents systems of equations. On the other hand, PSO 
and APSO struggled with function 08 due to its prosperity 
region being limited to a small area of the search space. 
However, it did exhibit high topological density and low 
oscillatory amplitude with respect to the value of 𝑓(𝑥). 

CEC10: GAAR was the best algorithm in all executions, 
despite the function's local minima and pseudo-prosperity 
regions. The intense effect of adaptive radiation in initial 
generations quickly pulls individuals out of local minima, 
promoting greater population agitation. Although not the 
fastest, individuals that enter the region of prosperity reach 
high levels of intensification, resulting in excellent optimal 
values. 

VII. CONCLUSION 

In this paper, we present a novel approach to genetic 
algorithms for dynamic problems by implementing an 
adaptive radiation step. Our approach is based on the 
biological phenomenon of adaptive radiation, which allows 
populations to diversify while adapting to new environmental 
niches. We also propose a mathematical model for the 
adaptive radiation function and compare its performance to 
classic genetic algorithms and other bio-inspired algorithms, 
such as particle swarm optimization. 

As this study aims for the most adaptable algorithm, we 
present a strategy for a comparative step to select the best 
crossover and mutation methods, which proved to be effective 
in improving the GAAR's performance, based on these 
methods' results over the benchmark functions. Our results 
show that the proposed model, the GAAR, outperforms the 
other algorithms in most of the benchmark tests, presenting 
itself as the most consistent, accurate, and stable algorithm 
over the tests. 

Future work includes testing the GAAR on other dynamic 
problems, such as optimal dispatch on power grids, focusing 
on hybrid fuel systems, which require dynamic changes in 
their operational parameters. We also plan to investigate 
strategies to increase the GAAR model's proximity to 
biological references, while avoiding computationally 
inefficient operations, to perpetuate this algorithm as a high-
end tool. 

Overall, we have presented that our approach has the 
potential to significantly improve the performance of genetic 
algorithms on problems of different nature and behavior, 
making them more effective tools for solving real-world 
optimization dynamic problems. 
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