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Abstract—This work consists of a study on the detection of
anomalies in underwater inspection videos. Novelty detection is
the identification of new or distinct data from a dataset, where
the challenge is for an intelligent algorithm to be able to detect
an input pattern as being previously unknown. Then, different
models with different configurations were chosen, trained using
different video frames and analyzed in order to find the best pat-
tern detection model. The objective of this work is to contribute
to the automatic detection of anomalies, which is currently a task
carried out by specialists who analyze these videos. The model
shows promise compared to other similar works in the area.

Index Terms—Novelty Detection, Anomaly Detection, Autoen-
coder, Deep Learning.

I. INTRODUCTION

Novelty detection or anomaly detection is a technique used
in machine learning to identify patterns or instances that
deviate significantly from the expected behavior or normal
patterns within a dataset [1]. Projecting an anomaly detector
is extremely complex due to the unpredictable aspect of the
anomalies and their inaccessibility during former training.
These factors reveal the unsupervised essence of the problem.

In the oil industry, subsea drilling represents a source
of significant income in Brazil. Therefore, it is crucial to
constantly monitor the equipment installed on the seabed, as
any damage can result in serious environmental issues.

Currently, intelligent inspection systems are being widely
used so that inspections are faster, more effective, and safer as
they do not require a human in risky environments, especially
underwater inspections [2] [3] [4] [5] [6] [7] [8]. In order
for the inspection to acquire good results, it is necessary, in
addition to analyzing recognized patterns, to also check for
unknown patterns, called anomalies. It is important that the
specialist very carefully analyzes the images that the UAV
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(Unmanned Aerial Vehicle), AUV (Autonomous Underwater
Vehicle), or any other autonomous vehicle that is carrying
out the inspection captures, to find any possible flaws or
elements that should not be in the inspected environment. This
procedure can take hours, even days, depending on the number
of videos. An algorithm that automates this process can save
the specialists a lot of time, making them focus on less tedious
tasks.

In particular, underwater images usually have a very similar
appearance due to low lighting and the uniformity of the
ground. Sunlight decreases significantly as it penetrates the
water, and most colors are absorbed at lower depths. As a
result, underwater images often have a blue or greenish tone,
can be turbid, and colors are generally less vibrant than on
the surface [9]. In addition, the underwater ground is often
uniform, with little variation in texture or color, which favors
the training of the models.

These unique characteristics greatly hinder the identification
of anomalies by experts. Therefore, this study employs novelty
detection techniques to assist in this diagnosis.

Novelty detection is well-known in various fields, such as
maintenance and monitoring [10] [11], process automation
[12], video surveillance [13] [14], defect detection [15], supply
chain [16], time series [17] and others.

As it can be observed, novelty detection finds application
in various fields of research. In this study, its application
is specifically focused on the oil industry, particularly in
underwater inspections.

This highlights the significance of this work for the
petroleum industry as a whole and for the Brazilian economy,
as it is an important sector. This study will enable researchers
to quickly and accurately identify anomalies in real-time
during underwater inspections, saving specialists time.

As the demand for submarine resources continues to grow,
the ability to monitor, detect, and correct anomalies effectively
is of utmost importance. Therefore, companies in the oil and
gas sector have been investing in research and development of
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novelty detection solutions tailored to underwater conditions.
In this study, we focus on detecting anomalies in underwater

inspection videos, testing different types of autoencoder net-
works which are known to be able to find anomalies in images
[18]. Therefore, this work aims to train autoencoder models
of distinct configurations using subsea inspection datasets and
analyze which models provided better results.

II. THEORETICAL BACKGROUND

In this section, we briefly introduce the theory behind the
concepts used in this paper: novelty detection, and autoen-
coder.

A. Novelty detection

Novelty detection requires something that stores events,
such as memory or, more recently, representation in deep
autoencoders. Following this, the capacity of remembering a
certain sample is evaluated, measuring reconstruction errors.
There are several applications in the anomaly detection area,
such as video surveillance [19] [20] [21] [22], video inspec-
tions [23] [24] [25], medical images [26] [27] [28] [29] [30]
and fraud detection [31] [32] [33] [34] [35].

B. Autoencoder

Autoencoders [36] are a neural network architecture class
that aims to learn how to compress/reduce a datum (step
known as an encoder) and then learn to reconstruct it from
the version that was previously reduced (step known as a
decoder). It is expected that the reconstructed data will suffer
some (preferably minimal) information loss during the process
(measured by the reconstruction loss). There are various types
of autoencoder (see Figure 1), and in this work we use
two of them: Dense Autoencoder (dAE) and Convolutional
Autoencoder (cAE).

• dAE: is a naive autoencoder, containing dense and con-
volutional layers (Figure 1 - a);

• cAE: is an autoencoder network consisting only of con-
volutional layers (Figure 1 - b).

III. PROPOSED METHOD

Following this study’s objective, many images were created
to test and train the networks. Two datasets were created,
one generated from images captured from the Airsim [37]
simulator, which we call Synthetic dataset, and another dataset
created from videos of ROV inspections, which we call Real
dataset (Figure 2).

These two datasets were created to test the robustness of
the model, both in simulated environments and in real life.

• Synthetic dataset: composed of 993 color images of
224x224;

• Real dataset: composed of 1475 color images of 640x480.
An autoencoder network is trained in order to detect anoma-

lies. The proposal is to train the network with a dataset that
contains only soil and pipeline images. After training, the
network can be used for inference. As the autoencoder only
learned characteristics from the training dataset images, if

Fig. 1. An overview of different Autoencoder frameworks: Dense autoencoder
(a) and Convolutional autoencoder (b).

Fig. 2. Dataset images with synthetic(a) and real(b) image.

there is something different in the input image, the network
decoder will not be able to recreate the different object
(anomaly) in the image. Therefore, given that the output image
has the same dimensions as the input, it is possible to subtract
these images and generate a mask, respecting a threshold that
will be chosen from the following sections (Figure 3). It is
important to mention that the mask represents the pixels of
the image anomaly.

Fig. 3. The proposed novelty detection. A simple subtraction of the recon-
structed image from the input reveals image anomalies.
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TABLE I
ARCHITECTURE TABLE OF TRAINED MODELS WITH SYNTHETIC DATASET.

dAE
Model 1
Synthetic
dataset

dAE
Model 2
Synthetic
dataset

cAE
Model 1
Synthetic
dataset

cAE
Model 2
Synthetic
dataset

cAE
Model 3
Synthetic
dataset

Encoder
filters 32, 64

16, 32,
32, 64,
64

16, 8,
8, 8

16, 8,
8, 8,
8

16, 8,
8, 8,
4

TABLE II
ARCHITECTURE TABLE OF TRAINED MODELS WITH REAL DATASET.

dAE
Model 1
Real
dataset

dAE
Model 2
Real
dataset

cAE
Model 1
Real
dataset

cAE
Model 2
Real
dataset

cAE
Model 3
Real
dataset

Encoder
filters 32, 64

16, 16,
32, 32,
64, 64,
64

16, 8,
8, 8

16, 8,
8, 8,
8, 8,
8

16, 8,
8, 8,
8, 4,
4

A. The Architecture of the Network Chosen

To choose the best architecture for the model, several
autoencoders with different depths were trained for the two
datasets. Furthermore, for the dEA network, the latent layer
size was varied (from 4 up to 1024), while the cAE networks
were based on [39]. To evaluate the inference of each model,
the Dice similarity coefficient [38](equation 1) was used.

Dice Score =
2|X ∩ Y |
|X|+ |Y | (1)

Where X and Y represent two sets for which we want to
measure the overlap. |X| and |Y | denote the cardinalities (i.e.,
the number of elements) of the sets X and Y, respectively. The
intersection of the two sets, denoted as X ∩ Y , represents the
elements that are common to both sets.

The used encoder architectures are listed in Table I and
II, where (the decoder is the opposite of the encoder,
using Conv2DTranspose). All of them used Conv2D and
Conv2DTranspose (functions from the Tensorflow library [40])
with stride 2 and 3× 3 filters.

Network architectures for the real image dataset are deeper
because these images are larger and more complex.

The hyperparameters used in the training of the both
datasets are shown in Table III.

B. Training Summary

This work aimed to make a neural network recognize an
novelty in a series of images. For this purpose, a neural
network was trained. The network input, described above,

TABLE III
HYPERPARAMETERS AND VALUES

Hyperparameters Values
Max epochs 200
Batch size 4
Learning rate 0.0001
Optimizer Adam
Early stopping min delta=0.0001, patience=20

requires at least one image per batch. The pre-processing only
requires resizing each image to 224×224 (if Synthetic dataset
is used) or to 640 × 480 (in case of Real dataset) and a
normalization.

C. Choosing the Image Mask Threshold
After training the model, it is tested. The test consists of

using an image (with or without novelty) as input to the model.
As said before, the model will output an image of the same
dimensions as the input, this output will be subtracted from
the input image generating a mask (Figure 3). To better tune
this mask, a threshold is chosen. So that the choice of this
threshold is not random, tests were performed with thresholds
0, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 using the
validation dataset. The threshold that maximizes the Dice score
was chosen.

D. Choosing the loss function
The loss function, also known as the error function or cost

function, is a fundamental part of deep learning models. It is
responsible for quantifying the difference between the model’s
predictions and the actual values of the data set. The objective
of the model is to minimize this error function by adjusting
its parameters during the training process. There are several
types of error functions, each suitable for different types of
problems, such as classification or regression. Choosing the
right error function can have a significant impact on the
effectiveness of the model and how quickly it converges to
an optimal solution.

In this study, SSIM (Structural Similarity Index Method)
[42] and MSE (Mean squared error) were tested as a loss
function. They are commonly used error functions in deep
learning models.

The MSE measures the mean of the squares of the differ-
ences between the model’s predictions and the actual values
in the data set.

The SSIM Method is an image quality assessment tech-
nique widely used in image processing and computer vision.
SSIM measures the structural similarity between two images,
taking into account information about luminance, contrast and
structure. The SSIM measure varies between -1 and 1, with
values closer to 1 indicating greater similarity between the
images. SSIM is especially useful for assessing the quality
of images that have been compressed or otherwise distorted,
as it takes human visual perception into account and can be
more accurate than traditional measures such as MSE. SSIM
is often used in applications involving image comparison, such
as illegal copy detection, face recognition, and medical image
monitoring.

For these reasons, MSE, SSIM and SSIM+MSE (using
normalization to prevent metric overlap) were used as loss
function, in order to obtain the best possible models.

E. Tests - Evaluation of results using Dice similarity coeffi-
cient

With the threshold chosen appropriately for each model,
images (with and without anomalies in the same proportion)
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TABLE IV
THRESHOLD FOR MODELS TRAINED WITH THE SYNTHETIC DATASET. (*)

MODE OF THRESHOLDS THAT MAXIMIZE THE DICE SCORE.

dAE
Model 1
Synthetic
dataset

dAE
Model 2
Synthetic
dataset

cAE
Model 1
Synthetic
dataset

cAE
Model 2
Synthetic
dataset

cAE
Model 3
Synthetic
dataset

Threshold 70(*) 80(*) 30 40 60

TABLE V
THRESHOLD FOR MODELS TRAINED WITH THE REAL DATASET. (*) MODE

OF THRESHOLDS THAT MAXIMIZE THE DICE SCORE.

dAE
Model 1
Real
dataset

dAE
Model 2
Real
dataset

cAE
Model 1
Real
dataset

cAE
Model 2
Real
dataset

cAE
Model 3
Real
dataset

Threshold 30(*) 30(*) 20 20 20

not used in training and in choosing the threshold are used
for the test. A similar process to the one explained above is
carried out. Images are the inputs of the trained model and its
output is subtracted from the input image, generating a mask.
Then the Dice score is calculated. The model with the highest
Dice score is considered the best.

F. t-SNE Graphics Creation

In order to know how useful the representations created
by the autoencoder networks are to separate the images with
anomalies from the images without, the t-SNE algorithm [41]
(t-Distributed Stochastic Neighbor Embedding, a dimension-
ality reduction technique that visualizes complex data while
preserving non-linear relationships in a lower-dimensional
space) is used. For this, a data sample from the test stage
is used, it is input into the model and the encoder output is
graphed using the t-SNE algorithm.

IV. RESULTS

The results of the training are reported below. The experi-
ments were separated as follows:

• Best image mask threshold for each network architecture;
• Best loss function;
• Best model for Synthetic dataset;
• Best model for Real dataset.

A. Best image mask threshold for each network architecture

In this experiment, the objective is to choose a threshold
that maximizes the Dice score, in order not to use a random
threshold.

The threshold choice is highly important, as increasing
the threshold could lead to the exclusion of crucial pixels
for forming the mask that identifies the anomalous object.
Unfortunately, this action would result in the loss of important
information. To avoid this type of loss, we calculate the Dice
score for each threshold in order to find the threshold that
maximizes the Dice score.

The results of both the Synthetic (Table IV) and Real (Table
V) datasets are found in the following tables.

TABLE VI
COMPARISON OF THE MEAN DICE SCORE OF MODELS TRAINED USING

MSE, SSIM AND SSIM+MSE.

dEA mean
dice score

cEA mean
dice score

MSE 0.4427 0.3712
SSIM 0.6314 0.5132
SSIM+MSE 0.8125 0.6510

TABLE VII
DICE-SCORE (MEAN AND STD. DEVIATION OF IMAGES) FOR TRAINED

MODELS WITH SYNTHETIC DATASET. WHERE LD IS LATENT DIMENSION.

dAE
Model 1
(LD = 256)
Threshold=70

dAE
Model 2
(LD = 512)
Threshold=70

cAE
Model 1

cAE
Model 2

cAE
Model 3

Dice
(µ±σ)

0,90612 ±
0,12102

0,89964 ±
0,10237

0,82241 ±
0,15553

0,66944 ±
0,23307

0,55494 ±
0,19888

Analyzing the results, it is evident that the synthetic dataset
showed a higher threshold compared to the real dataset. This
can be attributed to the presence of less complex and more
similar images in the synthetic set, resulting in masks with
reduced levels of noise.

B. Best loss function

For all architectures created, the training was done using 3
variations of loss function: MSE, SSIM and SSIM+MSE, in
order to discover the best one for the proposed task.

For both the dAE and cAE architectures, the loss
SSIM+MSE presented the best results (Table VI), followed
by the results of the loss being only SSIM and MSE.

Thus, we can conclude that when comparing the gener-
ated images with the original ones, it is more important to
consider information about luminance, contrast and structure
(calculated by SSIM) than just the difference in pixel values
(calculated by MSE). However, the use of all information
makes the result more accurate.

C. Best model for Synthetic dataset

After choosing the threshold for each model, they were
tested. For the Synthetic dataset, the results are shown in
Table VII.

Aiming to experiment with different networks of different
depths, dAE and cAE networks were trained, and for dAE
the latent dimensions were varied from 4 to 1024 resulting
in 9 trained models for each dAE architecture variant, and
from these variations the 3 loss functions were used. In other
words, 27 models were trained for dAE models and 9 for cAE
models.

For ”dAE Model 1 Synthetic dataset” the highest score
resulted from the use of the latent dimension of 256 and using
the threshold selected in the previous step (Figure 4), while
for ”dAE Model 2 Synthetic dataset” the latent dimension that
maximizes the score using the selected threshold is 512.

The best results came from the dAE models, using the
SSIM+MSE loss. The best of these models, as seen in table
5, is the dAE Model 1.
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Fig. 4. Images resulting from ”dAE Model 1 Synthetic dataset” inference

Fig. 5. t-SNE result of model ”dAE Model 1 Synthetic dataset” encoder
representation

It can be concluded that dense autoencoders work well
for non-deep models that use images with few complexities.
And the cAE models achieved moderate results due to the
occurrence of noise in some cases, which generated inadequate
masks.

The t-SNE was used in order to observe if the embeddings
of data with anomalies can be separated from those without
anomalies. The best possible result would be if the two classes
were divided into well-defined clusters.

The t-SNE result, generated based on the best trained model
and its embeddings (Figure 5), clearly illustrates the segrega-
tion between the representations of images with anomalies and
those without. This highlights the effectiveness of the model in
successfully performing its function of distinguishing between
anomalous and non-anomalous images.

D. Best model for Real dataset

Using the real image dataset, experiments similar to the
Synthetic dataset were performed. The results of the models
were are shown in Table VIII.

For this dataset, the architecture using dAE with many con-
volutional layers (dAE Model 2) and with a latent dimension
of 512 obtained the best result (Figure 6).

In this dataset, the worst results were obtained in the cAE
models, the generated images were not very different from the

TABLE VIII
DICE-SCORE (MEAN AND STD. DEVIATION OF IMAGES) FOR TRAINED

MODELS WITH REAL DATASET. WHERE LD IS LATENT DIMENSION.

dAE
Model 1
(LD = 512)
Threshold=60

dAE
Model 2
(LD = 512)
Threshold=60

cAE
Model 1

cAE
Model 2

cAE
Model 3

Dice
(µ±σ)

0,76289 ±
0,24197

0,79379 ±
0,27118

0,54545 ±
0,14271

0,56118 ±
0,15140

0,53711 ±
0,15029

Fig. 6. Images resulting from ”dAE Model 1 Real dataset” inference

original ones, however had a lot of noise, which did not occur
in dAE models, which filtered out the existing noise due to
the low latent space dimensionality.

In some of the results, some areas of the images were
more segmented than necessary, but this can be advantageous,
even if it may lead to an increase in the number of false
positives - that is, regions that are mistakenly identified as
belonging to the object of interest - it is preferable to have false
positives above false negatives. This is because a false negative
indicates that a region that should have been segmented as
part of the object was mistakenly left out, causing the area
not to be observed during the inspection. This can lead to
inaccurate results and misinterpretations of the image. On the
other hand, a false positive can be easily eliminated during the
post-processing step.

Once again, to analyze the results, a graph was created
using the embeddings of the most effective model, through
the t-SNE technique (as illustrated in Figure 7). It can be
inferred that even facing a dataset containing larger and
more complex images, the model once again demonstrates its
remarkable ability in distinguishing between images with and
without anomalies. This performance is clearly visible in the
segregation of the two classes of embeddings, with only a few
distinct representations in proximity.

V. CONCLUSIONS

This work represents an advancement in the submarine oil
industry, with the objective of automating processes that pose
challenges to human perception.

Several autoencoder architectures have been trained to find
anomalies in subsea inspection images, for specialists to more
easily find anomalies in inspection videos.

The choice of using autoencoders was motivated by the fact
that most works use these networks to detect anomalies, but
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Fig. 7. t-SNE result of model ”dAE Model 1 Real dataset” encoder
representation

they use grayscale images, unlike this work, which also uses
RGB images. In addition to featuring a characteristic blue
or green tonality, these images generally exhibit a blurred
appearance.

A study was carried out on the best architecture to be used to
find anomalies in images of different sizes and origins, and it
can be concluded that dense autoencoders and convolutional
autoencoders are good networks to find anomalies in RGB
images. However, the latter tends to generate noise that hinders
the detection of anomalies.

Moreover, this work can evaluate the most suitable loss to
be used in networks aiming to efficiently detect anomalies,
reaching the conclusion that utilizing SSIM+MSE is the opti-
mal choice for a loss function.

As future research, we will use Variational Adversarial
Autoencoder (VAE) and Generative Adversarial Networks
(GANs) to search for underwater image anomalies, in order
to compare the results with those in this article.
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