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Abstract—Identifying key nodes, estimating the probability of
connection between them, and distinguishing latent groups are
some of the main objectives of social network analysis. In this
paper, we propose a class of blockmodels to model stochastic
equivalence and visualize groups in an unobservable space. In
this setting, the proposed method is based on two approaches:
latent distances and latent dissimilarities at the group level. The
projection proposed in the paper is performed without needing to
project individuals, unlike the main approaches in the literature.
Our approach can be used in undirected or directed graphs and
is flexible enough to cluster and quantify between and within-
group tie probabilities in social networks. The effectiveness of the
methodology in representing groups in latent spaces was analyzed
under artificial datasets and in a case study.

Index Terms—blockmodel, social networks, multidimensional
scaling, latent space, visualization

I. INTRODUCTION

In social network analysis, it is usual to examine the
association of n individuals through a matrix Yn×n, whose
elements yij describe the connection between the i-th and j-th
components of the network. These elements can be represented
as a graph, where each node (or vertex, or point) represents
an individual, and the edges (or links, or ties) represent
relationships among them. Identifying key nodes, estimating
the probability of connection between them, and distinguishing
latent groups are some of the main objectives of social network
analysis. Several methods have been being proposed, including
deterministic techniques for graph analysis and, more recently,
sophisticated statistical models using latent effects.

In this paper, we propose a simple latent class model to
represent groups in an unobservable space. In this setting, we
propose an alternative class of models to position groups based
on two approaches: latent distances and latent dissimilarities
at the group level. The novelty of our approach is to propose
a class of simple blockmodels that allows to position groups
in latent spaces aiming:

• to model the relationship between groups as in [9] without
needing to represent individuals in the latent space;

• to estimate within and between-groups probabilities of
ties to properly represent stochastic equivalence, as in
the traditional latent class models; and

• to use a random version of multidimensional scaling
based on samples from the posterior distribution of a set
of unknown dissimilarities provided by data.

The paper is organized as follows. In Section II, an alterna-
tive class of models to positioning groups in latent spaces is
introduced, and aspects of inference are discussed. III evaluate
the effectiveness of the proposed models according to real
data. Finally, a discussion about the results and suggestions
for further research are presented in Section IV.

A. Related models

Our general model, presented in Section II, brings new
features about blockmodelling and has similarities with al-
ternative models in the literature. The Latent Dissimilarities
Model - LDM - and the Latent Positions Model - LPM -
, respectively described in Sections II-A and II-B, extend the
ideas from [14] and [1] to spatially represent network’s groups
in unobserved spaces.

These representations are performed assuming that the latent
positions are parameters, in the LPM model, and via Multidi-
mensional Scaling, in the LDM model. Both models allow the
visualization of the latent structure between groups and also
give an intuitive interpretation for between-group probabilities.

Instead of representing individuals in latent spaces, as
the distance model proposed by [9], the LPM model places
groups. On the other hand, the LDM model can be seen
as a reparametrization of a blockmodel by decomposing the
between-group tie probability into two components: an inter-
cept and a distance between groups, which are estimated from
data. This set of distances is then used to represent latent
positions in a second stage via Multidimensional Scaling.
Thus, the novelty of the LDM model is to provide a set of
distances for the Multidimensional Scaling directly estimated
from data by using a simple and intuitive model structure.

To compare our approach to other models that represent
individuals in latent spaces, we will point out below the main
differences and similarities between the proposed models, the
Latent Position Cluster Model - LPCM -[8] and the Latent
Space Stochastic Blockmodel - LSSBM [6].

The LPCM models within and between-group tie probabil-
ities in the network, projecting all nodes in a latent space.
In this setting, each latent position is modeled as Gaussian
mixtures and the latent distances between all nodes are used
to model tie probabilities, regardless of whether individuals
are in the same group or not. Thus, while projecting all nodes
in the latent space, the LPCM model makes no distinction
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between tie probabilities for nodes in the same or different
groups and also does not provide the cluster’s projection in the
latent space. Despite the fact that the vector of centers from
the Gaussian mixture in the LPCM model can be indirectly
assumed as a set of latent group’s positions — since the
position of a node is affected by the weighted average of
the positions of all centers and not only by the center of its
group —, obtaining their estimates requires modeling the latent
positions of all individuals in the network.

In turn, the LSSBM model decomposes network structure
into two components: one that describes between-community
relations, and another describing within-community relations.
This approach also uses the concept of latent distances [9], but
only to model the within-group tie probabilities. Thus, unlike
our approach, the LSSBM model provides latent representa-
tions only for nodes inside each group — in a multiresolution
perspective — but does not provide groups’ latent positions.
Furthermore, the LSSBM model also requires modeling the
latent positions of all individuals in the network and focuses
on undirected relations. On the other hand, LDM and LPM
models do not require nodes’ latent positions to obtain the
groups’ latent positions and are suitable to model undirected
or directed relational data.

II. A NEW CLASS OF MODELS TO POSITION LATENT
GROUPS

In general, social network data with n individuals produces
a matrix Yn×n, whose elements yij indicate the existence or
non-existence of a connection — or simply the number of con-
nections — between the i-th and j-th elements of the network.
These matrices can be symmetric (undirected networks) or not
(directed networks). In this paper, we consider the asymmetric
case, where yij ̸= yji, but all results can be easily extended
to undirected graphs by adjusting indexes (from i ̸= j to
i < j). Let µij be the probability that two individuals i and j
share a connection — or the expected number of connections
between them. Now, we propose a novel class of models to
position groups in a latent space, which general formulation
is presented below:

Yij ∼ F (µij), i ̸= j

g(µij) = α0 + β(ci, cj),

Ci ∼ Multinom(1,pi), i = 1, . . . , n

α0 ∼ N(0, σ2
α), (1)

where

• F represents a probability distribution with mean µij ;
• g(·) is a link function;
• α0 is a common level for all individuals in the social

network;
• Ci = (Ci1 , . . . , CiK )′ is a vector with K − 1 zeros and

one number one, that indicates the group of the i−th
individual and C = (C1, . . . ,Cn)

′;
• ci is the class of the i−th individual, i.e., ci = {k | Cik =

1}, for i = 1, . . . , n;

• pi = (pi1 , . . . , piK )′ is a vector indicating the prior
probabilities of belonging to each group for the i−th
individual;

• K is the number of latent groups.
Here, the β(ci, cj) parameter can be defined in many ways

to accommodate, or not, between-groups’ and within-groups’
effects. The prior distribution of this quantity will be initially
denoted by p(β(ci, cj)), for all i ̸= j. On the other hand,
the α0 parameter assumes the role of a sparsity parameter,
controlling the average number of connections between in-
dividuals observed in the sociomatrix Y. Finally, the vector
pi = (pi1 , . . . , piK )′ can be fixed — e.g., assigning prior
probabilities equal to 1/K — or modeled according to a
Dirichlet distribution.

Under this formulation, the posterior distribution is given as
follows:

p(α0,β,C | y) ∝




n∏

j=1

∏

i̸=j

µ
yij
ij (1− µij)

1−yij × p(β(ci, cj))




×
[

n∏

i=1

K∏

k=1

p
Cik
ik

]
× exp

(
− α2

0

2σ2
α

)
.

The complexity level of the general model depends on the
structure specified for β(ci, cj). Henceforward, without loss
of generality, it will be assumed that each observation yij
assumes only 0 or 1. In this way, set F as the Bernoulli
distribution, µij as the probability that two individuals i and
j share a connection, and g as the logistic link function.

In Subsections II-A and II-B, four possible formulations of
the model (1) are presented. These different approaches are
subdivided into two types: models based on latent dissimilar-
ities and models based on latent positions.

A. Latent dissimilarities models

In this subsection, the proposed models aim to place groups
in space based on the concept of latent dissimilarities. In this
formulation, it is considered that the tie probability depends on
a set of dissimilarities between groups. This approach allows
a posterior spatial representation of groups through multidi-
mensional scaling, without the need to previously specify the
set of dissimilarities, denoted by δ. Then, one can use samples
drawn from the posterior distribution of the dissimilarities to
place groups in the latent space, through Multidimensional
Scaling.

1) Latent dissimilarities model with no within-group vari-
ation: The latent dissimilarities model with no within-group
variation (LDM) is the simplest proposed formulation of (1).
The structure of this model depends on a set of

(
K
2

)
latent

dissimilarities (for each group pair, there is an associated
dissimilarity) that account for estimating the between-group
tie probabilities. This model’s construction considers that
individuals belonging to the same group have a constant
connection probability, regardless of the group that they are
part of, denying variation in within-group tie probabilities. In
this case, the structure specified for β(ci, cj) is given by:

β(ci, cj) =

{
0, if ci = cj

−δcicj , if ci ̸= cj
, (2)
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for i, j = 1, . . . , n, i ̸= j, where δkl represents a symmetric
dissimilarity measure between groups k and l. Note that, since
the dissimilarity among groups k and l and between groups
l and k are the same, then δkl = δlk. Thus, to unify the
notation, the groups that compose the subindex kl will be
displayed in the ascending order. Moreover, if ci = cj , the
probability µij = logit−1(α0 +β(ci, cj)) will only depend on
α0. Then, logit−1(α0) can be interpreted as the probability
of a tie between two elements belonging to the same group.
Moreover, the higher the dissimilarity between two groups,
the smaller the probability of a tie between two elements from
different groups.

Following the Bayesian paradigm, it is assumed that δkl ∼
Gamma(aδ, bδ), for l = 1, . . . ,K and k < l, with aδ = 0.01
and bδ = 0.01 to ensure a non-informative prior.

2) Latent dissimilarities model with within-group variation:
The latent dissimilarities model with within-group variation
(GLDM) is an extension of the LDM, to represent variation
among within-group tie probabilities, accommodating different
levels of homogeneity inside each group. The structure of
this model depends on a set of

(
K
2

)
latent dissimilarities

that account for estimating the between-group tie probabil-
ities, and on a set of K parameters, given in the vector
α = (α1, . . . , αK), that account for estimating the within-
group tie probabilities. It is required to include a sum-to-zero
constraint in the vector α to make its components identifiable,
as described in Subsection II-C. The effect of belonging to
group k is represented by αk, for k = 1, . . . ,K. In this case,
the structure specified for β(ci, cj) is given by:

β(ci, cj) =

{
αci , if ci = cj

−δcicj , if ci ̸= cj
, (3)

for i, j = 1, . . . , n, i ̸= j, where δkl represents a symmetric
dissimilarity measure between groups k and l.

The main difference between LDM and GLDM occurs when
two individuals belong to the same group. Now, when i and j
belong to the same group k, the probability µij = logit−1(α0+
β(ci, cj)) will depend on α0 + αk. Then, logit−1(α0 + αk)
represent the tie probability between two elements belonging
to the same group k, for k = 1, . . . ,K. Thus, αk is responsible
for increase, or decrease, the probability that two individuals
i and j belonging to the same group share a connection.

Following the Bayesian paradigm, it is assumed that δkl ∼
Gamma(aδ, bδ), for l = 1, . . . ,K and k < l, with aδ = 0.01
and bδ = 0.01 to ensure a non-informative prior. For αk it
is assumed a N(0, σ2

α) distribution, for k = 1, . . . ,K, with
σ2
α = 9, that is a low-informative prior due to the logit link

function structure.

B. Latent positions models

In this subsection, the proposed models aim to place groups
in space based on the concept of latent distances [9]. In this
formulation, it is considered that the tie probability depends on
the latent distance between groups’ positions. This approach
provides a spatial representation of groups through the set of
positions in the latent space, denoted by a. The LDM and

GLDM depend on dissimilarities δkl, which can be interpreted
as the distance between groups k and l since dissimilarities
are positive numbers, for l = 1, . . . ,K and k < l. Thus, in
this context, LDM and GLDM can be viewed as simplified
versions of the models based on latent positions, that will be
presented in Subsections II-B1 and II-B2.

1) Latent positions model with no within-group variation:
The latent positions model with no within-group variation
(LPM) can be considered as an extension of the LDM
to spatially place groups through a set of latent positions.
The structure of this model depends on a set of K × d
latent positions (the position of each group is a point in
the d−dimensional latent space) that account for estimating
the between-group tie probabilities. This model’s construction
considers that individuals belonging to the same group have
a constant connection probability, regardless of the group
that they are part of, denying variation in within-group tie
probabilities. In this case, the structure specified for β(ci, cj)
is given by:

β(ci, cj) = −|aci − acj |, (4)

for i, j = 1, . . . , n, i ̸= j, where | · | is a distance measure
satisfying the triangular inequality, ak = (ak1, . . . , akd)

′ is the
vector containing the position of class k, for k = 1, . . . ,K, in
the latent space D ⊂ Rd and a = (a1, . . . ,aK)′. Note that,
if ci = cj , the probability µij = logit−1(α0 + β(ci, cj)) will
only depend on α0 since |aci − aci | = 0. Then, logit−1(α0)
can be interpreted as the probability of a tie between two
elements belonging to the same group. Moreover, the greater
the distance between two groups’ position, the smaller the
probability of a tie between two elements from different
groups.

Following the Bayesian paradigm, it is assumed that akl
∼

N(0, σ2
a), for k = 1, . . . ,K and l = 1, . . . , d, with σ2

a = 25,
that is a low-informative prior due to the logit link function
structure.

2) Latent positions model with within-group variation: The
latent positions model with within-group variation (GLPM)
is an extension of the LPM, to represent variation among
within-group tie probabilities, accommodating different levels
of homogeneity inside each group; and can be considered as
an extension of the GLDM to spatially place groups through a
set of latent positions. The structure of this model depends on
a set of K × d latent positions that account for estimating the
between-group tie probabilities, and on a set of K parameters,
given in the vector α = (α1, . . . , αK), that account for
estimating the within-group tie probabilities. It is required
to include a sum-to-zero constraint in the vector α to make
its components identifiable, as described in Subsection II-C.
The effect of belonging to group k is represented by αk, for
k = 1, . . . ,K. In this case, the structure specified for β(ci, cj)
is given by:

β(ci, cj) =

{
αci , if ci = cj

−|aci − acj |, if ci ̸= cj
, (5)
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for i, j = 1, . . . , n, i ̸= j, where | · | is a distance measure
satisfying the triangular inequality, ak = (ak1, . . . , akd)

′ is the
vector containing the position of class k, for k = 1, . . . ,K, in
the latent space D ⊂ Rd and a = (a1, . . . ,aK)′.

Similarly to LDM and GLDM models, the main difference
between LPM and GLPM occurs when two individuals belong
to the same group. Thus, the interpretation of the parameters
is similar to that of models based on latent dissimilarities.

Following the Bayesian paradigm, it is assumed that akl
∼

N(0, σ2
a), for k = 1, . . . ,K and l = 1, . . . , d, with σ2

a =
25. For αk it is assumed a N(0, σ2

α) distribution, for k =
1, . . . ,K, with σ2

α = 9. Both distributions can be considered as
low-informative priors due to the logit link function structure.

C. Model inference

We perform inference via MCMC to obtain samples from
the resulting posterior distribution of each proposed model.
To describe the inference procedure for the latent dissimilarity
models presented in Section II-A, we show the estimation pro-
cedure for the GLDM model, which consists of the following
steps:

(1) Initialize the counter j = 2 and set initial values for the
parameters of the model: α0, α, δ and C;

(2) Update the model parameters α0, α2, . . . , αK from their
conditional distributions;

(3) Set α1 = −
K∑

k=2

αk, according to the identification

procedure described ahead;
(4) Update the model parameters δ and C from their con-

ditional distributions;

(5) Increment the counter j to j + 1 and iterate from (2).
For the LDM model, the estimation procedure’s step (2) does
not update αk parameters, for k = 1, . . . ,K, since this model
does not consider these parameters. The inference procedure
for the latent positions models, presented in Section II-B,
follows the same steps of the GLDM estimation procedure,
updating a instead of δ.

Some parameters of the model demand specific inference
strategies to become identifiable. To identify the K parameters
responsible for estimating the within-group tie probabilities,
α1, . . . , αK , it is required to include a sum-to-zero constraint
in the vector α. This restriction is added to the GLDM and
GLPM models. To estimate the set of positions in the latent
space a, which provide a spatial representation of groups in
the LPM and GLPM models, it is necessary to eliminate
translation, rotation, and reflection effects in the configuration
of the latent positions a via procrustes transformation as in [9].
Henceforward, without loss of generality, it will be assumed
that the distance measure is the Euclidean distance.

A usual problem in social network blockmodels is identi-
fying the group labels for each partition of the n individuals
obtained while performing inference. More specifically, given
a partition obtained, one can not directly determine which label
is assigned to each group, since all K! label permutations

produce the same likelihood function value. To deal with
this identification problem, known as label switching, we use
a deterministic online procedure of classification, performed
during the MCMC method, based on a classification method
described in [5].

More specifically, the MCMC method is divided into two
stages. In the first stage, we obtain reference centers and
dispersion measures for a set of parameters ξ from the first
m1 posterior distribution samples. From j = m1+1 onwards,
the permutation p of labels of C(j) that produces a set of
parameters ξj(p) closest to ξ is chosen, and C(j) is switched.
After identifying the optimal label configuration, the reference
measures associated with ξ are then updated, and this proce-
dure is repeated in each of the next m2 iterations.

This method is sensitive to the choice of m1 since high
values can be affected by label switching, and low values may
not be enough to ensure a good estimate of ξ. To improve
the label switching detection, we used the median and the
median absolute deviation as robust measures of centrality
and dispersion, respectively, and we also set m1 = 50 after
discarding the first 50 samples in MCMC.

Note that, since we have only K! label permutations, this
procedure has a low computational cost for a small number
of groups, and is considered a reasonable and simple solution
to the label switching problem in the simulations performed.
Other methods based in order constraints or more sophisticated
methods of classification are also available to deal with the
switching label problem (see [20, 4, 17, 15, 16], among
others), although they were not considered in this paper.

III. CASE STUDY

In this section, we analyze the performance of each of the
four proposed models using a real dataset. The data contains
information about the relationship of trust among eighteen
monks in an American monastery. [18] suggested the existence
of four factions in the monastery: Loyal Opposition (LO),
Young Turks (YT), Outcasts (O) and Waverers (W). The Loyal
Opposition represents the oldest members of the monastery,
while the Young Turks are the newest ones. The Outcasts are
the members of the monastery that were not accepted in any of
the previous groups, and the Waverers are the members who
did not take sides. These monks are usually labeled according
to their names, or according to a sequence of numbers from
1 to 18.

The sociomatrix Y with the relationship of trust between
the eighteen monks was obtained from latentnet [10],
an R package utilized to fit and evaluate the statistical latent
position and cluster models for networks. [18] performed three
studies over time, which resulted in a dataset of a time-
aggregated network. In this dataset, a tie from monk A to
monk B exists if A nominated B as one of his three (or
four, in case of a draw) best friends at any of the three-time
points. Based on Figure 1, which presents the sociomatrix
of monks data (a black pixel represents a link between two
monks), it is possible to distinguish block structures of the
social relationship between each monk faction. Note that,
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Fig. 1. Monks sociomatrix Y blocked according to the different factions
(black pixels indicate the ties between monks).

analyzing the communication within-blocks (black pixels), the
Loyal Opposition group presents fewer connections between
its members than other groups.

Several authors that analyzed this dataset point that there
were three prominent latent groups in the monastery (see [3,
21, 1, 8, 9, 19], among others). Since the main objective of this
analysis is to determine the latent social structure within the
monastery, the LDM, LPM, GLDM and GLPM models were
fitted to this data considering the existence of K = 2 and
K = 3 latent classes. For each scenario and number of latent
groups, we let each chain run for 60,000 iterations, discarded
the first 10,000 as burn-in, and stored every 5th iteration to
obtain 10,000 independent samples.

Table I displays the log-likelihood function evaluated in the
posterior mean of µ, i.e., log p(y|µ), and the Expected Akaike
Information Criterion (EAIC) as a measure of goodness-of-fit.
Note that the greater the number of latent positions considered,
the higher the log-likelihood value, indicating that the models
considering K = 3 performed better than those with K = 2
latent groups. These results corroborate with the EAIC values
since they are notoriously lower for K = 3. Among the models
based on latent positions, the ones with within-group variation
have a higher log-likelihood value. Furthermore, among the
models based on dissimilarities, those with variation within the
group also have a higher log-likelihood value. This conclusion
is analogous to the models based on latent positions. Finally,
there is evidence of a better fitting of the GLPM model with
K = 3 latent classes.

TABLE I
LOG-LIKELIHOOD FUNCTION EVALUATED IN THE POSTERIOR MEAN OF µ

AND EAIC, OBTAINED FOR THE FITS OF THE MODELS TO MONKS’
DATASET.

logL(µ̂) EAIC
K LDM LPM GLDM GLPM LDM LPM GLDM GLPM
2 -156.58 -156.38 -154.19 -156.08 323.94 325.63 327.71 328.96
3 -136.75 -136.64 -134.02 -133.33 286.33 291.28 297.61 304.94
Figure 2 presents the posterior mean of tie probabilities µ

between monks obtained from each model. Note that models
assuming the existence of K = 3 latent groups performed

Fig. 2. Posterior mean of the tie probabilities between monks obtained from
LDM, LPM, GLDM, and GLPM models (bordered pixels represent true ties
and the shades of gray represent the estimated tie probabilities).

better than models assuming K = 2 since they were able
to distinguish Outcasts and Waverers from Young Turks and
Loyal Opposition groups. Moreover, based on the range of
values (represented by the shades of gray), it is possible to
point out that models considering variation in the within-group
tie probabilities produce more extreme values, i. e., values
closer to 0 and 1. These results highlight the ability of GLDM
and GLPM models to properly predict ties in comparison to
LDM and LPM models, considering this dataset. Finally, the
results corroborate the previous evidence, given in Table I, of
a better fitting of the models with different within-group tie
probabilities and K = 3 latent classes.

In the present study, the latent groups to which the monks
belong to are not previously known, except for [18]’s fac-
tions suggestion. Thus, it is possible to analyze how the
proposed models classify the monastery’s monks into 2 and 3
latent groups in comparison with [18]’ classification. Table II
presents the clustering obtained from the posterior mode of C,
considering each number of latent positions, for all proposed
models. Note that all models were able to distinguish the
Young Turks and the Loyal Opposition groups satisfactorily.
Moreover, for K = 2 latent groups, the LDM and LPM models
grouped the monks in the same way, as well as the GLDM
and LPM models, and for K = 3, all four proposed models
equally grouped monks.

TABLE II
MONKS GROUPING OBTAINED FROM THE POSTERIOR MODE OF C FOR

THE FITS OF THE MODELS TO MONKS’ DATASET, CONSIDERING 2 AND 3
LATENT GROUPS.

K = 2 K = 3
Monks [18] LDM LPM GLDM GLPM LDM LPM GLDM GLPM
Albert YT 1 1 1 1 1 1 1 1
Boniface YT 1 1 1 1 1 1 1 1
Gregory YT 1 1 1 1 1 1 1 1
Hugh YT 1 1 1 1 1 1 1 1
John Bosco YT 1 1 1 1 1 1 1 1
Mark YT 1 1 1 1 1 1 1 1
Winfrid YT 1 1 1 1 1 1 1 1
Amand W 1 1 2 2 2 2 2 2
Romauld W 2 2 2 2 3 3 3 3
Victor W 2 2 2 2 3 3 3 3
Basil O 1 1 2 2 2 2 2 2
Elias O 1 1 2 2 2 2 2 2
Simplicius O 1 1 2 2 2 2 2 2
Ambrose LO 2 2 2 2 3 3 3 3
Berthold LO 2 2 2 2 3 3 3 3
Bonaventure LO 2 2 2 2 3 3 3 3
Louis LO 2 2 2 2 3 3 3 3
Peter LO 2 2 2 2 3 3 3 3
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According to Table II, considering K = 2, LDM and LPM
grouped the Young Turks, the Outcasts, and Amand (from
Waverers) in the same class, and grouped the Loyal Opposition
and the remaining Waverers in another class. On the other
hand, GLDM and GLPM grouped all Outcasts, Waverers, and
Loyal Opposition groups in the same class. In the K = 3 latent
groups’ configuration, all models led to the same partition
composed of Young Turks in a class, the Outcasts, and Amand
(from Waverers) in another class, and the Loyal Opposition
and the remaining Waverers in a third class. These results are
in accordance with [21], [8], [11] and [19] as showed in Table
III, which also presents the posterior probabilities of belonging
to each class for each monk, for the GLPM model.

TABLE III
MONKS’ FACTIONS SUGGESTED BY [0] [18] AND LATENT GROUPS

OBTAINED ACCORDING TO [1] [11], [21], [8] AND [19], [2] [1] AND [3]
[3] IN COMPARISON WITH THE RESULTS OBTAINED FROM THE GLPM

MODEL, AND POSTERIOR PROBABILITIES OF BELONGING TO EACH CLASS.

i Monks [0] [1] [2] [3] GLPM P (ci = 1) P (ci = 2) P (ci = 3)
1 Albert YT 1 1 1 1 0.723 0.146 0.131
2 Boniface YT 1 1 1 1 0.730 0.155 0.115
3 Gregory YT 1 1 1 1 0.732 0.155 0.113
4 Hugh YT 1 1 1 1 0.729 0.154 0.117
5 John Bosco YT 1 1 1 1 0.731 0.153 0.117
6 Mark YT 1 1 1 1 0.731 0.152 0.117
7 Winfrid YT 1 1 1 1 0.731 0.156 0.113
8 Amand W 2 2 3 2 0.125 0.740 0.135
9 Romauld W 3 - 3 3 0.146 0.083 0.771
10 Victor W 3 - 3 3 0.145 0.079 0.776
11 Basil O 2 2 2 2 0.126 0.756 0.118
12 Elias O 2 2 2 2 0.125 0.759 0.116
13 Simplicius O 2 2 2 2 0.125 0.759 0.116
14 Ambrose LO 3 3 3 3 0.141 0.077 0.782
15 Berthold LO 3 3 3 3 0.138 0.079 0.783
16 Bonaventure LO 3 3 3 3 0.144 0.079 0.776
17 Louis LO 3 3 3 3 0.143 0.076 0.781
18 Peter LO 3 3 3 3 0.145 0.084 0.771

According to Table III, the main difference between the
partitions found in the literature involves the classification
of monk Amand, probably due to his ambiguous positioning
in the monastery (see [3, 1], among others). Moreover, for
all monks, the modal class presents the highest probability,
indicating a small probability of belonging to any other cluster
class. These high probabilities are also following several
authors in literature (see [8, 11], among others).

The visual display of clustering in the latent space for the
GLPM model can be seen in Figure 3. This display presents
both the different group cohesion levels — represented by
distinct circles with a radius proportional to 1−within-group
tie probability — and a satisfactory notion of the distance
between groups — represented by the Euclidean distance
between estimated latent positions.

The estimated within and between-group tie probabilities
for all models are presented in Table IV. As expected,
the between-groups probabilities are considerably lower than
within-groups probabilities, and the three groups presented
different cohesion levels (see [21, 8, 1], among others). As
observed in the sociomatrix Y (see Figure 1), the within-group
tie probabilities of the class containing the Loyal Opposition
members is lower than the one that holds the Young Turks
members, for all four proposed models. In the models with
K = 3 latent classes, all models presented higher within-
group tie probabilities for the group containing the Outcasts
members, as already pointed out by several authors in the
literature (see [18, 3, 8], among others).
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Fig. 3. Visual display of monks clustering in the latent space obtained from
the GLPM model (circles radius are proportional to 1 − within-group tie
probability).

TABLE IV
POSTERIOR MEAN OF AVERAGE LEVEL (AP), BETWEEN-GROUP (BP) AND
WITHIN-GROUP PROBABILITIES (WP) OBTAINED FROM THE FITS OF THE

LDM, LPM, GLDM, AND GLPM MODELS FOR K = 2 AND K = 3. THE
WITHIN-GROUP PROBABILITIES ARE ORDERED ACCORDING TO LABELS 1,

2, AND 3, AND THE BETWEEN-GROUP PROBABILITIES ARE ORDERED
ACCORDING TO PAIRS (1,2), (1,3) AND (2,3).

K LDM LPM GLDM GLPM

AP 2 0.465 (0.386, 0.548) 0.468 (0.388, 0.547) 0.514 (0.398, 0.655) 0.532 (0.414, 0.672)
3 0.646 (0.545, 0.744) 0.658 (0.561, 0.748) 0.733 (0.561, 0.887) 0.751 (0.548, 0.939)

BP

2 0.118 (0.068, 0.179) 0.114 (0.068, 0.169) 0.144 (0.083, 0.220) 0.144 (0.089, 0.212)

3
0.175 (0.081, 0.311) 0.145 (0.056, 0.286) 0.153 (0.025, 0.408) 0.167 (0.019, 0.542)
0.127 (0.054, 0.235) 0.147 (0.066, 0.265) 0.146 (0.026, 0.398) 0.168 (0.022, 0.545)
0.063 (0.015, 0.146) 0.052 (0.011, 0.141) 0.104 (0.010, 0.379) 0.106 (0.006, 0.457)

WP

2 0.678 (0.484, 0.859) 0.718 (0.529, 0.880)
0.346 (0.163, 0.552) 0.335 (0.159, 0.541)

3
0.675 (0.383, 0.885) 0.666 (0.272, 0.929)
0.885 (0.708, 0.988) 0.906 (0.711, 0.997)
0.516 (0.212, 0.798) 0.510 (0.124, 0.877)

To obtain the latent group positions for the LDM and
GLDM models, the multidimensional scaling method was per-
formed using the dissimilarity samples δ as input. The chosen
approach follows the analysis of [13] and was performed via
cmdscale function in R software. The posterior distributions
of the latent group positions for all four proposed models are
presented in Figure 4.

The latent group positions seem similar for all four proposed
models, despite the models based on latent positions present
more variability than the models based on latent dissimilarities.
The resulting latent positions from models that allow variation
in the within-group tie probabilities are quite similar to those
obtained from models that do not allow this variation. Note
that all models were successful in distinguishing the latent
positions from all groups.

IV. DISCUSSION

In this paper, we proposed an alternative class of models
for social networks to represent groups in an unobservable
space. This class of models encompasses approaches based
on latent dissimilarities — the LDM and GLDM models
— and latent positions — the LPM and GLPM models —
, allowing the researcher to visualize the latent groups of
the social network; quantify tie probabilities for individuals
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Fig. 4. Posterior distribution of the latent group positions for all four proposed
models.

belonging to the same or different groups, without representing
individuals in the latent space; and use a random version of
multidimensional scaling based on samples from the posterior
distribution of a set of unknown dissimilarities provided by
data. Both approaches can be used in undirected or directed
graphs, i.e., in cases where the sociomatrix Y is symmetric or
non-symmetric, respectively. Remark that, if the sociomatrix
is symmetrical, there will be less available data information
to estimate the model parameters since Y will be an upper
triangular matrix.

All four models proposed in this paper are related and
suitable for classification problems in social networks. More
specifically, the models where β are functions of dissimilari-
ties δ — the LDM and GLDM models —, can be viewed as
simplified versions of the models based on latent positions a
— the LPM and GLPM models. Regarding a scenario where
the positions are represented in a two-dimensional latent space,
the LDM and GLDM models can be more suitable when
the number of groups is small. However, if K > 5, these
models will contain more parameters associated with between-
group probabilities than its associated models based on latent
positions a and, consequently, it may not be the most suitable
choice.

The LDM and GLDM models aim to represent groups in
space based on the concept of latent dissimilarities. In the
two-stage proposed methodology, the set of dissimilarities
between groups is estimated in the first step, and the samples
drawn from the posterior distribution of the dissimilarities
are used as input in a multidimensional scaling technique,
in the second stage. Once there is a sample of the poste-
rior distribution of the set of dissimilarities available, it is
possible to take into account the uncertainty associated with
the multidimensional scaling result. Although there are several
methods for modeling data through Multidimensional Scaling,
the main differences between existing approaches have not
been addressed in this paper.

Under the GLDM and GLPM models, individuals belonging
to different groups have the same probabilities of tie to each

other. Despite that, all four proposed models presented in this
work can not properly represent transitivity and homophily on
attributes. To represent these features, it would be required
to model relational data at the individual level, or to include
individuals’ information. The individual-level modeling was
not an aim of this paper, but rather to properly represent the
relationships between groups in latent spaces.

The Multinomial distribution assigned for Ci — responsible
for indicating the group of the i−th individual — depends
on the hyperparameters pi, which represent prior probabil-
ities of belonging to each group for the i−th individual,
for i = 1, . . . , n. For all cases analysed in this paper, we
set pi = K−11K , for i = 1, . . . , n, where 1K represents
the K-dimensional vector of ones. Alternative approaches
include assigning a prior distribution to these quantities, e.g., a
Dirichlet distribution. However, simulated examples modeling
pi through the Dirichlet distribution, for i = 1, . . . , n, have
shown that inference about these parameters is quite sensitive
to the choice of its hyperparameters.

Regarding the inference procedure, MCMC methods were
used to obtain samples from the resulting posterior distri-
bution from the proposed models. In this context, different
distributions can be used to generate proposals in MCMC.
Normal proposal distributions were assigned for α0, α and
a parameters. For the set of dissimilarities δ, both Gamma
and Truncated Normal distributions were examined, and the
posterior results were quite similar. The posterior full con-
ditional of C has an analytical closed-form. Despite that,
to obtain a more efficient sampling scheme, the Metropolis-
Hastings step was used to update C’s chain instead of using
Gibbs Sampling in MCMC [2, 7]. Two approaches were
considered to generate proposal values for C: Multinomial
proposals based on prior probabilities p; and proposals based
on mutations of some elements of the configuration C drawn
in the previous iteration. The main advantage of the latter
approach is that it allows better control of the MCMC’s
acceptance rate.

Some parameters of the model required specific inference
strategies to become identifiable, as well as the latent groups’
labels. In all proposed models, a deterministic classifica-
tion procedure was performed during the MCMC method
to overcome the label switching. Despite the satisfactory
results obtained through this approach, other procedures can
be successfully performed. As an alternative approach, one
could previously estimate C based on a traditional cluster
method, e.g., the K-means algorithm [12] — or using a crude
estimate of C —, and then, use this estimate as a reference
configuration to C. To perform this, in each MCMC iteration,
the configuration of labels C(j) drawn in the j−th iteration
would be switched to the configuration closest to the reference
configuration of C. The main limitation of this approach relies
on the quality of the solution obtained to build the reference
configuration, which can lead to unsatisfactory partitions of
the n network individuals.

Since the labels associated with each latent group are
arbitrary, there are K! ways to represent identical groupings
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of the n individuals in the network. Thus, in all performed
studies, the labels associated with the latent groups were
relabeled to become comparable to each other. In particular,
since the groups’ labels are previously known when we are
dealing with artificial data, the latent groups were relabeled
according to the true partition.

In case study I, the performance of each of the four proposed
models was analyzed using the Monks’ dataset. The models
considering K = 3 performed better than the ones with K = 2
latent groups. In particular, there is evidence of a better fitting
of the model based on latent positions with different within-
group tie probabilities, the GLPM model. Considering K =
3 latent groups, all models led to the same partition, which
follows several authors in literature.

Still, in case study I, the performance of each of the four
proposed models was analyzed using the Monks’ dataset. The
models considering K = 3 performed better than the ones
with K = 2 latent groups. In particular, there is evidence
of a better fitting of the model based on latent positions
with different within-group tie probabilities, the GLPM model.
Considering K = 3 latent groups, all models led to the same
partition, well distinguishing Young Turks, Loyal Opposition,
and Outcasts groups. All four proposed models’ fit to this
dataset showed that this class of models is flexible enough to
properly clustering monks, and also to quantify between and
within-group tie probabilities according to several authors in
the literature.

In practical situations, the most common options for the
dimension of the latent space are d = 1 or d = 2. The projec-
tion of networks or groups in latent spaces intends to allow
better visualization of the network. Except in cases where
interactive 3-D graphics are available, it is hard to achieve
this aim considering d > 2. However, in cases where K = 2,
the GLDM and LDM models do not provide projections of
the groups in the latent space due to the limitations of the
multidimensional scaling technique.

The main findings of this work encourage an extension of
the proposed class of models to consider the number of groups
as a random variable, i.e., assigning a zero truncated binomial
distribution for K. In this case, it will also be necessary to
specify a limit L for the number of classes K or to control
its variation by choosing suitable hyperparameters in its prior
distribution.

Finally, obtaining both the latent positions of nodes and
groups is a challenging and promising future work. Since the
groups have random latent positions, it would be necessary to
propose a latent set of nodes for each group at each MCMC
iteration. In addition, the switching label problem in this situ-
ation would need advanced treatment. Sequential approaches
could be performed in this case, e.g., methods based on latent
configurations obtained from [9]’ model followed by a post-
processing technique to estimate latent group positions.
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