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Abstract—Lung ultrasound emerges as a powerful tool for the
diagnosis of COVID-19, being a very cost-effective option to other
modalities of exams, such as computerized tomography and X-
ray imaging. There are efforts in trying to employ deep learning
to develop systems that can make an automatic diagnosis based
on ultrasound exams to assist the medical decision, but they are
limited by the amount of data available. The present work tackles
this problem by proposing a method using generative adversarial
models to create synthetic data and increase the volume of data
to train more complex models. To evaluate whether the synthetic
data presents a variety close to that of the original data without
replicating training samples, it was devised applications of the
Kullback-Leiber divergence and L1 norm. Results indicate that
the generated data sampled the main features of the ultrasound
data, presenting a variety close to the original data. This points
to the possibility of using the proposed method as a means to
overcome the problem of low data volume for lung ultrasound.

which is shown using expert knowledge.

Index Terms—deep learning, generative adversarial networks,
lung ultrasound, COVID-19

I. INTRODUCTION

In 2019, COVID-19 was detected and the World Health
Organization (WHO) declared a global pandemic in 2020,
affecting millions of people around the world [1]. This led
to an urgent need for research related to the disease diagnosis,
with a great emphasis on the evaluation of the respiratory tract,
since the lungs are the most affected organs by COVID-19 [2].
In this scenario, the application of medical imaging techniques,
such as computed tomography (CT) and X-ray exams, presents
a way of complementing the diagnostic process, being espe-
cially useful in triage situations and accelerating the proper
treatment [3].

Given how recent the disease is and its similarities with
other pulmonary disorders (such as other forms of pneumonia),
the diagnosis performance through imaging can be greatly
affected by the experience and expertise of the radiologists,
also being a very time-consuming task [4]. This opens up an
opportunity for the development of artificial intelligence (AI)

José M. Seixas
Department of Electrical Engineering
COPPE - UFRJ
Rio de Janeiro, Brazil
seixas @lps.ufrj.br

systems for accurate image-based diagnosis in the context of
COVID-19. This kind of approach (especially those employing
deep learning models) has already been studied for the auto-
mated diagnosis of other diseases and conditions, such as the
identification of malignant nodules in CT scans and detection
of signs of tuberculosis in X-ray exams [5], [6].

Even though CT and X-ray are commonly adopted as the
main options for screening lung diseases, lung ultrasound
(LUS) is gaining more and more space due to having a
good number of advantages such as being cheaper, non-
invasive, repeatable, portable, and safer in the sense of not
exposing the patient to non-ionizing radiation (which occurs
in CT or X-ray exams) [3], [7], [8]. Because of that, this
exam modality has drawn attention during the COVID-19
outbreak, with some protocols being designed to apply LUS
to assess a patient’s condition by means of the analysis and
quantization of some relevant ultrasound findings [7]. More
recently, some studies investigated the feasibility of applying
deep-learning techniques for the automatic classification of
conditions regarding the context of COVID-19 based on LUS
exams: Born and colleagues [3] applied transfer learning from
a pre-trained model both for ultrasound videos and images,
achieving overall accuracies of 87% and 90%, also identifying
the localization of biomarkers in the exams; Roberts and
Tsiligkaridis [9] presented models with average accuracies
ranging from 81% to 85%, also pointing the advantages of
training robust models that try to minimize the effects of
adversarial attacks; Baum et al [11] achieved accuracy values
around 95% for the binary classification through the use of
an image quality assessment module before the classification
model; Awasthi et al. [12] proposed a light and efficient deep
learning model for detection of COVID-19 (Mini-COVIDNet),
reporting accuracy of 83,20%. However, there is still a lack of
LUS data for COVID-19, with only a few collections available
publicly, which poses an obstacle for the training of complex
models [13].
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In the present work, the possibility of applying generative
models was investigated as a means of producing synthetic
COVID-19 LUS, which could provide a handle for the low
data volume available and enable the development of efficient
deep learning models. This approach has already been studied
for X-ray and CT in other studies ( [14], [15], [16]), but has
not yet been explored using LUS exams.

II. METHOD
A. Ultrasound Data

This study used a dataset publicly available [3], consisting
of LUS exams from 216 patients diagnosed with COVID-
19, bacterial pneumonia, viral pneumonia, and healthy. A
summary of the dataset is given in Table 1, giving the number
of exams for each class, the type of transducer used to collect
them, and the format of the file (video or image). Since
there were so few examples for the class viral pneumonia, we
discarded it and worked with the remaining three conditions.
Also, we used only data collected using a convex transducer
for the following analysis.

TABLE I
COMPOSITION OF THE LUS DATASET USED. ADAPTED FROM [3].

Convex Linear
Classe Vid Img. Vid Img. Sum
COVID-19 64 18 6 4 92
Bact. Pneu. 49 20 2 2 73
Viral. Pneu 3 - 3 - 6
Healthy 66 15 9 - 90
Total 182 53 20 6 261

The processing of these data followed the same procedures
used in [3], with frames being extracted from the videos (max
30 frames per video), cropping them to a quadratic window
(excluding texts and border artifacts) and resizing the resultant
images to 112 x 112 pixels (this size of images was used due
to limitations of the hardware used).

B. Generative Models

For generating the synthetic data, GAN models are em-
ployed, which actually consist of two artificial neural networks
(ANN) that are trained simultaneously using a competitive
process [17]. The original GAN framework was proposed by
Goodfellow and colleagues in [18], consisting of a zero-sum
game where the two players are a generator network and
a discriminator network. The generator G(z) tries to learn
the distribution of the original data through a continuous
improvement of data mapping of a prior distribution p,(z) and
observing whether the resulting response would belong to such
a distribution. Usually, z comes from a noise process (typically,
white Gaussian). On the other side, the discriminator network
D(x) is trained to learn the mapping of a given input data x
onto a scalar number that gives the probability of that input
being an observation from the original dataset. During the
adversarial training the model D learns how to maximize
the probability of correctly classifying original and synthetic

data, while G is trained to generate images that would not
be detected as synthetic by D. The whole training can be
summarized by the following optimization process:

m(%n max V(D,G) = Expyorax)[log D(x)]+
Eiopollog(1 = D(GQR))], (D

where pgqt, 1s the probability distribution of the original data.
Training goes until the discriminator cannot correctly identify
which observations are synthetic and which are original data.

When compared to other methods previously developed,
such as the Boltzmann Machine or Autoencoders, GANs
present great advantages in terms of computational cost and
fewer restrictions to the generator [19]. However, the training
of GANs is sometimes unstable, with many studies publishing
heuristics that can result in more stable architectures [20].
One of the major problems faced when training GANs is the
mode collapse, which happens when the model can generate
plausible synthetic observations but they do not cover all the
diversity of the original data. The Wasserstein GAN (WGAN)
[20] is a variation of the original GAN that tries to solve both
the problems of stability and mode collapse.

As described by Arjovsky et al. [20], the WGAN changes
the task executed by the discriminator as well as the objective
function used during the training phase. The training for the
WGAN can be seen as the minimization of the distance be-
tween the distribution of the original data and the distribution
of the synthetic data. To achieve this, the objective function
used is the Wasserstein-1 distance (or Earth-Mover distance)
given by

W(P,,P,) = inf

E(z)~ — , 2
~eT1(P- 2, (z,y) W[Hx y”] 2

with [[(P,,Py) as the set of all joint distributions ~(z,y)
that have P, and P, as marginals [19]. The y(x,y) can be
imagined as the mass that should be transported from x to y
to transform the distribution Py into P,., with W(P,,IP;) as a
measure of the optimized energy cost for this transport. Since
the infimum in 2 is intractable, it can be rewritten using the
Kantorovich-Rubinstein duality as [21]

WP, Py) = sup Eqwp, [f(2)] = Eznp, [f(z)],  3)
Ifllc<1

being the supremum calculated with respect to all 1-Lipschitz
functions. The supremum is still intractable but is easier to
approximate, which enables an implementation of the Wasser-
stein distance.

Using 3, the problem boils down to finding the function
f that maximizes the result of the equation. As described
in [21], it can be considered an ANN with parameters w
contained in a space WV that obeys the Lipschitz restrictions
for f. Considering all functions f,, that fit the desired criteria,
it can be written
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W(P,,P,) ~ mén max Eonp, [fuw(2)]—
Empu Lfw(G(2))]- )

However, to ensure that f,, follows the Lipschitz restriction,
the authors impose a limitation to the weights of the neu-
ral network, clipping them to a range [-0.01, +0.01]. This
approach has some drawbacks, such as limiting the capacity
of the ANN and even generating some instability during the
training. To circumvent these problems, it was employed the
variation WGAN Gradient Penalty (WGAN-GP) presented in
[22], which uses the following objective function during the
models training:

L = Ezp, [D(#)] ~ Eqnp, [D(@)]+
AE; ~p, [(|[V2D(2)]2 — 1)%], (5)

with & as interpolated observations between the original data
and the synthetic data produced by the generator and A\ as a
penalty coefficient.

In the present work, WGAN-GP models were trained
separately for each of the three classes (COVID-19, bacte-
rial pneumonia, and healthy), building class-expert generative
models. Fig. 1 presents the architecture for these models. The
discriminator (or critic) was a convolutional neural network
(CNN) composed of three convolutional layers (128 filters
each, 3x3 kernels, and stride equal to 2), a fully connected
layer with 128 units, and an output layer with a single unit.
The activation function used in all layers was rectified linear
unit (ReLU), except for the output layer which used a linear
activation function.

The generator network consisted of a fully connected layer
with 25088 units, three transpose convolution layers (each
with 128 filters, 3x3 kernels, and stride equal to 2), and an
output layer that is also a transpose convolution layer (1 filter,
kernel size equal to 3x3 and stride equal to 1). The input for
this model was a vector of 100 numbers which came from
a spherical Gaussian distribution. The hyperbolic tangent was
the activation function for the output layer, while all the other
layers used ReLU. Batch normalization was applied to the
output of each layer except the output layer (it was not used
in the discriminator network since it could modify the loss
function used in the WGAN-GP, as pointed out in [22]).

The WGAN-GP models were trained for 20,000 epochs,
with the discriminator being updated 5 times for each update
of the generator. The batch size was equal to 64 images, and
both the discriminator and generator used the optimizer Adam
(learning rate = 0.0001, 81 = 0.5 and 82 = 0.999). The training
for each model followed the cross-validation k-fold with k=10,
which means that 10 models were developed for each class
using different partitions for training and test sets [23].

Fig. 2. Example of an image from the original dataset divided into the 16
patches used.

C. Performance Measures

There is still much discussion about how to measure the
variety and quality of the synthetic data [24]. In the present
work, we used a similar method as the one presented in [25],
which employs the Kullback-Leiber (KL) divergence as a form
of comparing the variation of the synthetic data is contained
within the variation of the original data. We used the following
procedure:

« cach synthetic or original image was divided it into 16
patches, as shown in the Fig. 2;

e each pair of original images in the training set was
compared at patch level using the KL divergence to check
how far the distribution of pixels of a patch in one of the
images is from the other one;

o the same procedure was applied to compare each pair
consisting of one original image from the training set
and one synthetic image, also at patch level;

o The two sets of quasi-distance values obtained for each
patch are compared to check whether the generated
images present a variance close to that estimated in the
original data.

The division of the images into patches was done in order
to compare specific regions of the generated images to the
original ones. This approach was chosen (instead of comparing
the whole images) due to the localization of important LUS
findings used in the medical diagnosis. To that end, the size
of the patch was defined such that the pleural line (one of
the most important findings for the diagnosis) of most of
the images was contained in one or two subsequent patches.
Through the comparison of the KL divergence values for
the original-original combinations and the original-synthetic
combinations, it is possible to evaluate whether the difference
fluctuations between the synthetic images and original images
are within the bounds of that estimated among the original
data. That would be an indication that the generated data
follows the same probability density function as the original
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Noise vector
dim =100

Dense (ReLU) 25088
Reshape 14 x 14 X128
Conv2DTrans 28 x 28 x 128
Conv2DTrans 56 x 56 x 128
Conv2DTrans 112 x 112 x 128
Conv2DTrans 112x 112 x1

generator

Conv2D 112 x 112 x 128
Conv2D 56 x 56 x 128
Conv2D 28 x 28 x 128

Dense (RelLU) 128
Dense (linear) 1

112x 112 x1

critic

Fig. 1. Architecture of the WGAN-GP model implemented for the synthetic data generation.

data. And since we divide the image into patches, it can be
checked if the generative model is failing for specific regions
of the LUS.

Although the KL divergence can be used to compare the
variances and check the generated data adherence to the pdf,
it does not point out whether the generator is only replicating
data in the training set. To that end, it was employed the
calculation of the 11 norm, as described in [25]. By comparing
the histograms of this to measure estimated for each pair of
original-original images and original-synthetic, it was possible
to see if the generator is only creating copies of the training
data (which would result in some entries equal to 0 in
the histogram for original-synthetic norms) and if the two
histograms are close to each other but still presenting some
differences (meaning the produced data has a distribution close
to the training data but can also expand this distribution).

III. RESULTS AND DISCUSSION

The training curves for the models of the first fold of the
k-fold cross-validation are shown in the first column of Fig.
3. For each model, there are two curves: the training loss
(Wasserstein distance) and a filtered version of this loss using
a moving average filter with a window size of 50 epochs. The
filtered curve is shown to check if the loss already converged
or whether it keeps decaying since other studies cited this
convergence as an indication of a successful WGAN training
[20], [22], [25]. Although there are differences between the
three curves, there is a similar behavior: a quick decay at
the beginning of the training followed by an increase in the
training loss and a slow decay until the max number of epochs.
As the critic was beginning to learn how to differentiate
synthetic from original data in the first epochs, it may have
had some difficulty when performing this task, which could be
the cause for the first oscillation in the related behavior. Also,
The Wasserstein distance for the COVID-19 and Pneumonia
classes (A) and B) in Fig. 3) still show signs of decay after the
20000 training epochs, which means that there is still some
room for improvement of these models by using more training

epochs. A similar behavior was observed in the training curves
for the remaining cross-validation folds.

Generated Data

COVID-19

Regular

Bact. Pneu.

COVID-19

Regular

Bact. Pneu.

Fig. 4. Examples of images generated and original images for each of the
classes.

Next, 5000 images for each class were generated using the
trained generators. Some of the synthetic images for fold 1
are shown in Fig. 4 along with images from the original
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Fig. 5. KL divergence estimated for each pair of original images and each
pair synthetic-original, at patch level, for fold 1 of the three classes

dataset. It is possible to see that the synthetic/generated images
are very similar to the original data, even showing some
important findings used in medical diagnostics, such as the
pleural line, coalescent B-lines, and signs of consolidation for
the bacterial pneumonia class. This is especially relevant for
synthetic data production, since these findings are essential
for the identification of the different conditions, with LUS
medical diagnosis protocols being based on their presence and
quantization [7].

The evaluations using the KL divergence and 11 norm
were then employed to check whether the synthetic data also
presented a variety close to that of the original data and
whether or not the model was only replicating examples from
the training set. Fig. 5 shows this result for fold 1 of the
k-fold cross-validation (results were almost the same for the
remaining folds). It can be noted that the variability of the KL
divergence for each patch in the original data is close to the
variety of KL divergences estimated using pairs of original-
synthetic data, which is a good indicator that the models are
able to generate the different modes present in the original
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data.

The results obtained by applying the 11 norm in fold 1 are
shown in Fig. 6, which also occurred repeatedly in all the other
folds. Since there are no distribution entries equal to zero, the
generators of each class are not replicating any of the training
examples. Also, the distributions for the original-original and
for the original-synthetic pairs are very close but still present
some small differences (especially for the class Regular). This
indicates a general similarity between the generated data and
the training set, which is coherent with the examples shown
in Fig. 4.

Summarizing, the results for both measures together with
the presence of the main features used for medical diagnosis
in the generated data, points to the possibility of employing
the proposed method as a means of overcoming the scarcity

of data for training COVID-19 LUS-based models.

IV. CONCLUSION

This study presented a method for generating artificial LUS
data in the context of the disease COVID-19, tackling the
problem of data scarcity for this type of exam. To achieve this
goal, WGAN-GP models were trained in order to generate
ultrasound images that followed the distribution of a given
sample.

The generated data was very similar to the original exam-
ples, presenting the main ultrasound findings related to each of
the three classes present in the dataset (COVID-19, Bacterial
Pneumonia, and Regular). To check if the synthetic data really
followed the distribution close to that of the original data,
presenting a similar variety and not replicating the training
data, an application involving the KL divergence and 11 norm
was employed. The results demonstrate that the variance of KL
divergence, when comparing generated and original images,
closely mirrors that estimated among the original data. The
I1 norm analysis further indicates that the generated data
is not mere replication of training images. This is observed
across different image regions and the dataset’s three classes
(bacterial pneumonia, COVID-19, and healthy), reinforcing the
notion that the generated data faithfully follows the original
data’s distribution without replication.

The outcomes underscore the potential of the proposed
method in circumventing the data scarcity issue in lung ul-
trasound studies. This approach opens avenues for experimen-
tation with more sophisticated models to enhance automatic
patient diagnosis using deep learning methods.

Future work will investigate whether synthetic images can
be used to improve the performance of LUS-based classifica-
tion methods.
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