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Abstract—Inspection through non-destructive testing is impor-
tant for the analysis of oil well structures in different phases
of the project, whether during execution, during the production
period, or at closure. In this context, the propagation of ultrasonic
waves is an important ally to assessing the integrity of structural
components, through the tracing of dispersion curves, which show
the pair frequency x wavelength for a specific waveguide. This
study presents a neural network framework for estimating the
percentage of nominal pipeline thickness. The neural network
inputs are dispersion curves obtained by simulation, using the
semi-analytical finite element method (SAFE), that presents a
computational cost reduced compared with the totally numerical
simulation. In this way, 100 samples were generated. The case
studied consists of a hollow cylinder with different thickness sizes.
From the results, it is concluded that the adopted methodology is
efficient to predict the percentage of nominal pipeline thickness.

Index Terms—Non-destructive testing, pipelines, SAFE, Ma-
chine Learning, Neural Networks.

I. INTRODUCTION

Petroleum derivatives represent a large portion of the
world’s energy matrix. Their exploitation, transport, plugging,
and abandonment operations at the end of the well’s produc-
tion cycle require dedication to risk management and ensuring
the safety of activities [1], [2].

Offshore pipelines are large structures costing hundreds of
millions of dollars [3]. Taking into account factors such as the
location where the line is installed, the significant value of
the transported commodity, and its composition, it is easy to
imagine the consequence of a failure that leads a structure to
ruin which, in addition to having catastrophic environmental
impacts, can also represent financial losses and even lead to the
loss of human lives. It is important to prevent those accidents
and, above all, to guarantee the physical integrity of people.
So, the responsibility of the team involved in the project is
great. Therefore, these projects demand and deserve the care
and attention that modern engineering tools can provide.

There are several types of damage that can affect these
structures, such as localized collapse due to buckling, caused
by factory ovality aggravated during installation/operation [4],
external pressure and internal pressure variations, the genera-
tion of a dent due to impacts with objects (such as the anchor

or a piece of equipment dropped from a vessel operating in the
area, for example) and detrition due to corrosion or erosion
[5], [6].

In this sense, carrying out maintenance and inspections is
part of the routine of the oil and gas industry [7]–[9]. There-
fore, non-destructive techniques such as ultrasound inspections
are used. Also, their development and improvement is still
an object of study and technological advances, as they allow
testing with the least amount of interference.

The propagation of ultrasonic waves is an important tool
to measure the integrity of structures [10]–[12]. In non-
destructive tests, acoustic pulses that propagate through the
structure are emitted. By comparing the behavior of mechani-
cal waves, as to how they propagate in a healthy environment,
and the characteristics of the medium read from the signal
registered in the receivers, it is possible to identify damage in
the coating layers, since the occurrence of defects influences
the shape of the dispersion curves and the guided modes.

However, solving the systems of equations needed to trace
the dispersion curves requires a certain computational cost.

In recent years, semi-analytical methods have been used.
With these methods, an analytical solution is used in the
longitudinal coordinate, while a numerical one is still adopted
for the behavior in the cross-section plane. In this way, the
numerical effort is reduced, and so the computational cost,
compared to fully numerical methods.

An example is presented in [13] where the computation
time reduction of the simulation and analysis of waveguide
dispersion curves are studied. The proposed method, which
consists of building sets of Kriging metamodels using WFEM
(Wave/Finite Element Method) representations, shows promis-
ing results. In [14] a semi-analytical finite element (SAFE)
method for the simulation of wave propagation in waveguides
of an arbitrary cross-section is investigated. The proposed
SAFE formulation is applied to different cases: anisotropic
viscoelastic layered boards, composite-to-composite adhesive
joints, and railroad tracks. In [15], how conventional finite
element modal analysis of a layer of an infinite homogeneous
or periodic waveguide supplies fundamental information on
its properties is demonstrated. A novel method is proposed to
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Fig. 1. This Graphical Abstract presents in a synthetic way how this study was carried out to evaluate the nominal thickness of pipelines using neural networks
trained with dispersion curves obtained by the SAFE method.

evaluate the decay rates caused by material losses.
Although the aforementioned works propose effective so-

lutions for the simulation of wave propagation in pipelines,
the computational cost is an aspect that requires more inves-
tigation. In this context, here it is proposed to use the semi-
analytical finite element method (SAFE) for the simulation of
wave propagation in waveguides with cylindrical structures. A
harmonic analytical solution in the axial and angular directions
is used, and the finite element method is in the radial direction.
In this way, the resulting problem is unidimensional, which
represents a reduction in the computational cost compared
with the bidimensional approaches. In the implementation
published by [16] of the SAFE method, there was an inter-
esting reduction in the computational cost for obtaining the
dispersion curves of a cylinder: using a commercial finite
element software, the processing time was over 1 day and
5 hours, while the semi- analysis took only 8 minutes.

The SAFE method mentioned above was implemented in
Matlab and due to the low computational cost inherent to
this method, this same implementation was used to generate
simulations whose data served as input for the machine learn-
ing. The progress in machine learning techniques allows the
reduction of human intervention in the analysis of detected de-
fects [17]–[20]. Among the various techniques that have been
developed a Convolutional Neural Network (CNN) technique
is a genre of neural networks that have already demonstrated
excellent capabilities in tasks such as pattern recognition, com-
puter vision [21], and time series classification [22], proving its
ability to deal with complex and nonlinear problems [23], [24].
It is designed to automatically learn and extract features from
images, allowing it to perform tasks such as object recognition,
segmentation, and classification [25]–[27].

Combining the use of a semi-analytical method to obtain
input data with machine learning to evaluate samples can
bring more agility to the analysis of results and reduce the
need to provide resources for data collection and assembly
of experimental test rigs [17]. Obviously, it is not suggested
to dispense with these alternatives but to complement and
improve them.

This study aims to develop a deep learning-based framework
for estimating the nominal thickness of pipelines by utilizing
the dispersion curves obtained through the SAFE method. The
motivation behind this research is to save time and reduce
financial costs. To accomplish this, a series of numerical sim-
ulation experiments were performed, resulting in 100 different
responses of dispersion curves associated with each nominal
thickness of pipelines. A CNN architecture is proposed, and
its performance is evaluated using various regression metrics.

The organization of this work follows the sequence: In
this Section I, the subject was presented in general terms,
and a graphical abstract is shown in Fig 1, in Section II
the description of the case study is presented, in Section III
the methods employed are explained, in Section IV describes
the achieved results, and finally, Section V presents the final
considerations.

II. PROBLEM ANALYZED

The structure analyzed is a stress-free hollow cylinder like
the one shown in Fig 2 with linear elastic material behavior
and an initial thickness of 0.03 m. As 100 simulations
were used, each one had a variation of 2.0 × 10−5 m in
the initially adopted thickness. For each of these cylinders,
there is an associated set of dispersion curves. These scatter
curves were used as input for machine learning training. The
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SAFE method was implemented in Matlab [16], using one-
dimensional elements in the radial direction of the cylinder’s
cross-section and the analytical solution in the longitudinal and
circumferential directions. The dispersion curves obtained by
[16], are shown in Fig. 3, where the ratio h/λ is the frequency
by dimensionless wavelength, h is the thickness of the cylinder
and λ is the wavelength.

Fig. 2. The stress-free hollow cylinder model used.

Fig. 3. The dispersion curves for a hollow cylinder was calculated using the
SAFE method.

III. METHODOLOGY

A. Semi-Analytical Finite Element Method (SAFE)

In very long waveguides, such as railtrain tracks, or oil wells
production pipelines, the study of elastic wave propagation can
result in high computational costs due to the discretization
necessary to represent the wavelengths in the longitudinal
direction [3], [28], [29]. Using the SAFE method, as already
stated in this work, the discretization of the structure in finite
elements is done in the radial direction, obtaining an ap-
proximate displacement field. Along both the circumferential
and the longitudinal direction, the analytical solution with the
harmonic representation of the wave in the time domain is
used [16].

Using the semi-analytical approach, the displacement field
that represents the wave motion is considered as follows:

u(e)(r, θ, z, t) =
n∑

j=1

N(r)q(e)ei(kz+nθ−ωt), (1)

where u(e) is the displacement field, r, θ e z are the cylindrical
coordinates, q(e) is the nodal displacement vector, k is the
wave number in the axial direction, n is an integer in the cir-
cumferential harmonic, ω is the frequency, and t corresponds
to time. The shape functions N that corresponds to the finite
element, is given by:

N =




N1 0 0 N2 0 0
0 N1 0 0 N2 0
0 0 N1 0 0 N2


 , (2)

with linear shape function

N1 =
1

2
(1− ξ) and N2 =

1

2
(1− ξ) . (3)

The eigenvalue problem in the global coordinate system is
represented in the following equation:

(
K1 + ikK2 + k2K3 − ω2M

)
Q = 0, (4)

with

K
(e)
1 =

∫
r

∫
θ
BT

1 CB1 r dr dθ

K
(e)
2 =

∫
r

∫
θ

(
BT

1 CB2 −BT
2 CB1

)
r dr dθ

K
(e)
3 =

∫
r

∫
θ
BT

2 CB2 r dr dθ

M(e) = ρ
∫
r

∫
θ
NTN r dr dθ

(5)

where K1, K2 and K3 are the equivalent stiffness matrices;
matrix B represents the geometric compatibility matrix, com-
posed of the shape functions and their derivatives; matrix C
is the constitutive tensor for elastic materials; M is the global
mass matrix; Q is the global displacement vector; k is the
wave number in the axial direction and ω is the frequency.

B. Convolutional Neural Network (CNN)

The CNN is an advanced Artificial Neural Network (ANN)
defined as a representative deep learning framework based
on a visual perception engine and convolutional computa-
tion [30]. Being different from traditional ANN, CNN can
directly capture the spatial features from images to improve
both prediction accuracy and efficiency [31]. The CNN has
been widely employed in diverse fields such as computer
vision including image classification [32], object tracking,
visual salience detection, action recognition; natural language
processing [33] and time series classification and forecasting
[22], [30], [34].

The main CNN structure includes a convolutional layer,
pooling layer, and fully connected layer.

In the convolutional layer, a neuron is connected to only
a portion of the neighboring neurons, which reduces the
complexity of the network and the number of parameters [30].
This layer is used to extract the features of input images
by applying a set of filters to the input data, producing a
set of output feature maps [34]. As observed in Equation 6,
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which represents the convolutional layer equation and filters
are applied to the input matrix.

y
(l)
ij = f

(
M∑

m=1

N∑

n=1

W(l)
mn · x(l−1)

(i+m)(j+n) + b(l)

)
(6)

where, x denotes the input matrix, capturing the input data.
The learnable weights W are convolutional filters applied to
the input matrix, with the specific filter sizes and the number
of filters depending on the problem at hand. The bias term b
is added to the convolutional operation. The resulting output
y is obtained by applying the activation function f element-
wise to the output of the convolutional operation and the index
l represents the layer in the convolutional neural network on
which the operation is being performed.

The pooling layer is employed to reduce the dimensions
of the feature maps to maintain relevant information of the
cross-sectional frame images obtained from the convolutional
layer [35]. In this regression problem, the pooling layer can be
applied after the convolutional layer. The input to the pooling
layer can be the output from the convolutional layer, resulting
in a reduced size representation increasing the computation
speed. This operation helps to avoid over-fitting [30]. The type
of pooling used and the size of the pooling window can affect
the network’s ability to detect specific features.

There are mainly two types of pooling: maximum pooling
and average pooling. Maximum pooling selects the maximum
values from a specified kernel applied to the image, while
average pooling computes the average value within the kernel
specified over the image [36]. These pooling methods play
a crucial role in downsampling the feature maps, enabling
the extraction of dominant features while reducing the spatial
dimensions [37].

The fully connected layer classifies the extracted features
from the previous layers [22]. It focuses on the transfor-
mation of the pooled features into a suitable representation
for regression. The pooled features are flattened into a one-
dimensional vector and then connected to a fully connected
layer [36]. It introduces the matrix multiplication between
the fully connected layers, as represented in Equation 7, and
the activation function (σ) applied to this output. This layer
finalizes the transformation of the extracted features into a
final prediction.

y(l) = σ
(
W(l) · x(l−1) + b(l)

)
(7)

In this architecture, the number of neurons in the fully
connected layers can be customized based on the complexity
of the regression problem. The activation functions in the
fully connected layers can be chosen based on the problem
requirements, such as ReLU or tanh, enabling non-linear
mappings between the features and the target values.

C. Proposed CNN architecture

In this work, we proposed a CNN architecture based on
LeNet-5 to estimate the pipeline thickness. The architecture

of the CNN consisted of two convolutional layers, two max
pooling layers, two fully connected layers, and one output
layer, as depicted in Fig. 4. For this model, we used a 2D
array as input data. Therefore, as the simulation result in
a 2048x66 data pre-processing has to be done by feature
selection based on variance to reduce the amount of data. As a
result, a 2048x32 matrix was obtained and used as input data.
Each simulation was considered as a sample for the model
training and validation. In the CNN, another automatic feature
extraction was performed by two sets of convolutional layers
followed by max pooling layers.

To define the ideal structure of the CNN, a grid search was
performed varying the filters in the convolutional layers, the
kernel size, and the max pooling size. For the dense layers,
sizes 120 and 84 nodes were used. Only the ReLu function
was used as an activation function in the dense layer.

IV. RESULTS AND DISCUSSION

This section focuses on the evaluation of the performance
of the proposed CNN architecture. To assess its effectiveness,
several regression metrics were employed, including the Root
Mean Squared Error (RMSE), Mean Absolute Error (MAE),
and Maximum Error (MAXE). The equations for these metrics
are presented below:

Root Mean Squared Error (RMSE):

MAE =
1

n

n∑

i=1

|yi − ŷi| (8)

Mean Absolute Error (MAE):

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)2 (9)

Maximum Error (MAXE):

MAXE = max
i

|yi − ŷi| (10)

where yi represents the true values, ŷi represents the predicted
values, and n represents the number of samples.

A. Hyperparameter selection

A grid search method was used as the hyperparameter
selection process. The datasets were randomly divided into
a training dataset containing 80% of the samples and a test
dataset containing the remaining 20%.

Table I summarizes the results obtained throughout the test
phase. Both the RMSE and MAE are metrics that measure the
average magnitude of the error between the actual and pre-
dicted values. The difference is that the RMSE is a quadratic
rule that gives high weight to higher errors and MAE gives a
measure of the average magnitude of the error, ignoring the
direction of the errors.

The results show that the mean RMSE was higher than
the mean MAE indicating variations in the magnitude of the
errors. Despite that, both metrics were close to the ideal value
of 0.0. The MAXE represents the maximum error for a set of
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Fig. 4. Schematic representation illustrating the preprocessing procedure and the architecture of the proposed CNN for evaluating the nominal thickness of
pipelines.

TABLE I
REGRESSION METRICS OBTAINED OF PREDICTED PIPELINES THICKNESS

Conv.
Filter

Kernel
Size

Max Pool
Size RMSE MAE MAXE

5 8 2 0.015423 0.000238 0.01728
5 8 4 0.016153 0.000261 0.018012
5 16 2 0.014697 0.000216 0.016551
5 16 4 0.006617 0.000044 0.010102
5 32 2 0.015045 0.000226 0.0169
5 32 4 0.012906 0.000167 0.014754
15 8 2 0.017342 0.000301 0.019204
15 8 4 0.011582 0.000134 0.016487
15 16 2 0.011185 0.000125 0.013116
15 16 4 0.010304 0.000106 0.012862
15 32 2 0.014977 0.000224 0.016832
15 32 4 0.013527 0.000183 0.015378
30 8 2 0.015541 0.000242 0.017398
30 8 4 0.012125 0.000147 0.013272
30 16 2 0.014913 0.000222 0.016769
30 16 4 0.002401 0.000006 0.007419
30 32 2 0.011271 0.000127 0.013111
30 32 4 0.01225 0.00015 0.014096

test samples. The fact that the mean MAXE value was higher
than 1.0 indicates that some of the models committed relatively
large errors.

Analyzing Fig. 5 and Fig. 6, it can be seen that the model
converges quickly in a few iterations. A sign of over-fitting
such as loss of validation was not observed, due to the non-
occurrence of the increase in error prediction. This is important
information to evaluate the quality of the model and can be
used to justify the choice of a specific training approach or
model configuration.

Fig. 7 and 8 show that despite having used small data
set for training, the model is able to make reasonably good
predictions in the testing phase. As seen in the figure, the
model provided an good approximation between the predicted
and actual values. The result of the model with the best
performance is presented in table I. For this case, the RMSE,
MAE, and MAXE were equal to 0.002401, 0.000006, and
0.007419, respectively.

V. FINAL CONSIDERATIONS

In this work, the SAFE method implemented in MATLAB
was used to generate dispersion curves referring to cylindrical
waveguides with different thicknesses. The pair of frequencies
and wave numbers, referring to the curves obtained, served
as input data for machine learning with the technique of
convolutional neural networks.

The results referring to the training indicate that the model
converges faster, that is, with few iterations. Furthermore,
there are no signs of overfitting as the validation metric does
not get worse, indicating a good generalization for studies of
cylindrical waveguides with different thicknesses.

Although little data was used, the prediction graph shows
that the model is able to predict reasonably well in the test
phase for an out-of-envelope data condition used in training.
The RMSE is suitable for practical applications and the
prediction in the training phase indicates that it is still possible
to improve this value.

With what was observed and reported in this work, it can
be highlighted that the use of the results of the SAFE method
has the potential to save time and reduce financial costs and
exposure to risk for workers, since the use of studies with
numerical and computational simulation provided obtaining a
sufficient number of data. This would avoid the mandatory
installation of experimental test rigs or the displacement of
teams to collect data in situ.
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Fig. 5. Training and test LOSS over epochs.

Fig. 6. Training and test MAE over epochs.

Fig. 7. Train predictions Scatter
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