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On the use of Machine Learning for predictive
maintenance of power transformers
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Abstract—This paper focuses on the use of machine learning
algorithms to assist predictive maintenance aiming at reduc-
ing downtime and maintenance costs associated with power
transformers. The paper presents two ML predictive indicators,
Chromatographic Assay Indicator (CAI) and Electrical Failure
Risk Indicator (EFRI), which use chromatographic and sensors
data, respectively. The CAI evaluation showed a significant
improvement in predicting failures compared with classical
methods, whereas the EFRI tests showed it can be helpful to
help maintenance team in identifying potential problems. The
proposed solution integrates classical chromatographic analysis
techniques with these ML indicators and aims at supporting
maintenance specialists in decision-making processes, leading
to more efficient maintenance management and reduced costs
associated with equipment downtime.

Index Terms—predictive maintenance, machine learning,
power transformers, random forest algorithm, energy transmis-
sion

I. INTRODUCTION

The downtime of transmission assets such as power trans-
formers leads to high costs for energy transmission companies,
in addition to disturbances in the delivery of electricity to
people. According to ONS (Operador Nacional do Sistema
Elétrico), the temporary interruptions of energy supply may
have several causes, such as failures in equipment or in
protection and control systems.

It is undoubtedly important to avoid energy supply inter-
ruption. Researches on maintenance effectiveness indicate that
a third of all maintenance costs is wasted as a result of
unnecessary or incorrectly conducted maintenance [1]. The
predominant reason for this ineffective maintenance manage-
ment is the lack of factual data to quantify the actual need
for repair of plant equipment and systems [1]. The traditional
methods of maintenance are reactive and preventive [2]. The
former is based on the actual equipment failure and is the
most expensive method for run-to-fail management. The latter
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is based on statistical trends and predetermined time intervals
or operating hours to reduce the probability of failure or loss
of performance. The predictive methods are in the vanguard
because they determine the scheduling of maintenance actions
in an adaptive and flexible manner, according to the need of
the equipment instead of at fixed intervals as in preventive
maintenance.

The predictive maintenance uses direct monitoring of me-
chanical condition, system efficiency, and other indicators to
determine the actual MTTF (mean-time-to-failure) or effi-
ciency loss for each piece of plant equipment. Such predictive
method aims to ensure the maximum interval between main-
tenance services and minimize the amount as well as the cost
of unplanned downtime caused by failures. The monitoring
may use disruptive technologies such as Internet of Things
(I0T), Cloud Computing and Machine Learning (ML). In the
lights of [3], maintenance has been one of the areas with the
largest number of applications of modern Predictive Analysis
techniques. IoT allows real-time telemetry to provide data on
the operation of systems and equipment to be submitted to
analytical procedures in order to make their failures more
predictable.

This work aims to improve the power transformers mainte-
nance, and thus to reduce the costs associated with their down-
time. In this paper, we present two ML predictive indicators:
CAI (Chromatographic Assay Indicator) and EFRI (Electrical
Failure Risk Indicator). The solution being developed exhibits
these two ML indicators together with several classical indi-
cators and traditional data analytics tools, in order to support
maintenance specialists.

The CAI indicator uses chromatographic data, whereas the
EFRI indicator uses sensors and maintenance data. Both CAI
and EFRI models used the Random Forest algorithm. The
former model had accuracy and F1-score metrics greater than
92% when evaluated on the test set. The latter model had
95% accuracy and 52% Fl1-score. The results of CAI were
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benchmarked against classical DGA methods, presenting a
much superior performance.

This paper is organized into six more sections. Section II
describes the main related works. Section III describes the
use of chromatography and SCADA systems in power trans-
formers monitoring and maintenance. Section IV addresses the
failure risk prediction based on chromatographic data whereas
Section V details the workflow of the Electrical Failure Risk
Indicator based on both maintenance and monitoring data.
Section VI presents the results of experimental evaluation and
the discussion conducted in this paper. In the end, Section VII
concludes and presents future works.

II. RELATED WORK

In the first part of this section, we are going to address the
state-of-the-art articles related to predictive maintenance of
transmission power transformers in the context of dissolved
gas analysis (DGA). In order to find the articles that best
match the current work, we performed a systematic search at
SCOPUS by using the query string: (“predictive” AND “main-
tenance”) AND (“dissolved” AND “gas” AND ‘“analysis”)
AND (“transmission”) AND (“machine” AND “learning”)
AND (“power” AND “transformer”’). We obtained five results,
comprising journals and conference proceedings. Afterwards,
we ranked them based on their relevance. After that, we
selected the top 3 articles and the references therein that best
matched the current work, which we are going to describe in
details as follows.

In [4], the authors introduced a novel methodology for in-
cipient fault diagnosis in power transformers by using artificial
neural networks (ANN). They used a dataset available in [5],
which contains fault types and the corresponding concentration
of the dissolved gasses in the insulating oil of the power
transformers, such as Hydrogen (Hs) and Methane (CHy).
Moreover, in their proposed approach, the authors used a
cascade structure of MLP networks (CMLP) for fault classifi-
cation and the goal was to improve the network’s performance
by simplifying the number of relationships required to be
learned by the ANN, which resulted in 85% accuracy in
the test set. In another work [6], the authors proposed a
robust multilayer framework for online condition assessment
of power transformers. They handled the measurement of un-
certainties and fused the results of independent DGA methods
without losing their fault diagnosis outcome. Moreover, the
authors used an ANN to intelligently assign the weight of
each independent method in the fusion procedure, depending
on its fault type for a given range of input gasses concentration.
The models were tested on a combination of IEC TC 10 [5]
and IEEE standard [7] datasets, and the best obtained model
had an overall accuracy of 96%. In another interesting work
[8], the authors used a Convolutional Neural Network (CNN)
to predict power transformer fault types under different noise
levels in measurements. In this work, the authors used differ-
ent categories of input ratios concerning DGA: conventional
ratios, such as four ratios of Roger [9], new ratios, which
were conveniently created, and hybrid ratios, which are a

combination of the former and the latter ratios. The datasets
used for training and testing were collected from 16 sources,
such as in [10], [11]. The CNN model had an accuracy of
98.5 % for 0% noise level and 96.6% for + 20% noise level
in the test data, which shows the power of CNNs to model
faulty power transformers when data is noisy.

In the second part of this section, we are going to address
the state-of-the-art articles related to maintenance of power
transformers in the context of modeling by using SCADA
data. In order to find the articles that best matched the
current work, we performed a systematic search at SCOPUS
by using the following query string: (“maintenance”) AND
(“machine” AND “learning”) and (“scada”) AND (“power”
AND “transformer”), which resulted in two articles. We ranked
them by relevance, and found one article that matched this
work. Moreover, in order to get more articles related to
this work, in the aforementioned query string, we replaced
“machine learning” by “artificial intelligence” and found three
articles. After that, we ranked them by relevance and found
out that two articles are related to the current work. In the
following, we are going to describe in details such articles
and the references therein. In another interesting work that
used manual inspection of power transformer to confirm the
fault diagnosis [12], the authors proposed a system called
SADTRAFOS in order to support maintenance’s decision with
respect to power transformers fault prediction. In that work,
the authors used a fuzzy inference module for fault diagnosis,
and a decision support, which provided recommendations to
the managers. The final model had an overall accuracy of
80% on real data concerning fault diagnosis and made correct
recommendations for the maintenance team.

In [13], the authors applied ML to fault prediction in wind
turbines for generating corrective maintenance strategies. In
this work, SCADA data was used to capture the operational
status of turbines, and by using a dual transformer model,
comprised of two stages, they obtained an accuracy of up
to 96.75% for alarm prediction in the dataset obtained from
[14]. In another work [15], the authors proposed a model
to detect temperature anomalies in key components of wind
turbines, such as gearbox and transformers. They used ANN
to address the challenge of the limited pre-classified data and
then categorized the operating conditions into: (1) the Normal
Behavior (NB) module, (2) the Expected Time To Failure
(ETTF) module, and (3) Anomaly Detection (AD) module.
Then, they applied the model in data from an offshore wind
farm in Germany, and obtained an accuracy of 94% concerning
transformers with 7 hours ahead prediction.

III. CURRENT MAINTENANCE PRACTICE

Maintenance plays a major role in the industrial sector,
as it greatly affects expenses and reliability, thereby playing
a vital role in a company’s competitiveness in the market.
Unforeseen interruptions or failures in equipment can severely
hamper a company’s primary operations, potentially lead-
ing to substantial penalties and immeasurable damage to its
reputation. Consequently, it is crucial to detect and address
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any faults in the equipment to prevent disruptions in the
production processes [16]. There are several practices related
to equipment’s maintenance. These practices can be grouped
in three main categories [17]:

e Reactive or Run-to-Failure (R2F) maintenance is a sim-
plistic approach where interventions are carried out only
after failures happen;

o Preventive Maintenance (PvM) involves maintenance ac-
tions executed based on a predetermined schedule, either
time-based or process-based;

« Predictive Maintenance (PdM) involves maintenance per-
formed based on estimated equipment health status. PAM
systems utilize prediction tools, historical data, health
factors, statistical inference methods, and engineering
approaches to detect impending failures in advance and
enable timely interventions before failure occurs.

The advancements in modern techniques like the IoT, sens-
ing technology, and artificial intelligence have brought a shift
in maintenance strategies from R2F to PvM to PdM. Reactive
Maintenance is carried out solely to restore equipment to
its functioning state after a failure has already occurred,
leading to delays and high costs associated with reactive
repairs. On the other hand, Preventive Maintenance follows a
predetermined schedule based on time or process iterations to
prevent breakdowns. While it aims to prevent failures, it may
result in unnecessary maintenance and incur high prevention
costs [18].

To strike a balance between the two approaches, Predictive
Maintenance (PdM) is employed. PdM relies on real-time
estimation of equipment “health” to identify potential failures
and intervenes in a timely manner before their occurrence.
This is the best of both worlds, allowing maintenance to
be performed with the lowest possible frequency to prevent
unplanned reactive maintenance, while avoiding the costs
associated with excessive preventive maintenance [18].

Predictive maintenance has four levels of maturity [19]. The
highest level is supposed to use data analytics and real-time
monitoring of equipment. Data analytical techniques include
ML algorithms to uncover hidden relationships and identify
meaningful patterns in large amounts of high-dimensional
and multivariate data, presented in complex and dynamic
environments like industrial settings.

A. Chromatography

Chromatography is a technique that allows the separation
of a mixture of species in separate compounds [20]. In this
context, “species” is a generic term used to describe the
different compounds, molecules, or elements that are mixed
together. It comprises various separation techniques depending
on the material, referred to as the analyte, to be analyzed
after separation. Physical and chemical characteristics such as
mass, density, and type of intermolecular bonding are taken
into consideration in the analysis. In [21], whose authors
are the pioneers of chromatography, there is an allusion
to the similarity between the chromatogram and distillation
columns. Therefore, new methods and techniques for obtaining

quantities of specific elements in a sample gained prominence
in various areas of study.

In the electrical sector, it is possible to highlight the
analysis of the quality of certain transmission assets. There
is a standardization for gas in oil samples that serves as a
reference in Brazil, the NBR7070. Power transformers use
oil in their closed circulation system to cool the equipment.
However, as a secondary function, this oil can be used to
interpret the amount of dissolved gas in the oil [22]. Such
an indicator can be based on the analysis of the concentration
of the following nine gases: Hs, CH4, CoHa, CoHy, CoHg,
CO, CO,, Og, and Nj. Its function is to support decision-
making in predictive maintenance of transmission assets by
comparing the composition of the new insulating oil with the
sample to be analyzed. Based on this data, several inferences
can be made about the condition of the transmission asset, as
well as prevention of equipment defects, as the proportion of
these compounds can indicate electrical and thermal defects
in the analyzed asset.

B. SCADA/EMS Systems

A SCADA/EMS system is a comprehensive solution for
managing a utility’s electricity grid, from data collection and
analysis to real-time control of equipment and optimization
of system performance. The concept is a combination of two
types of control systems: Supervisory Control and Data Ac-
quisition (SCADA) and Energy Management System (EMS).

o SCADA: This is an industrial control system that uses
computers, networked data communications, and graph-
ical user interfaces for high-level process supervisory
management. It also uses other peripheral devices, such as
programmable logic controllers and discrete proportional-
integral-derivative controllers to interface with process
plant or machinery. The operator interfaces, which en-
able monitoring and issuing of process commands, are
where specialists monitor and control processes through
SCADA. This kind of system consolidates, distributes and
monitors real-time data, allowing operators to directly
interact with devices such as sensors, valves, pumps, mo-
tors, and more through human-machine interface (HMI)
software.

o« EMS: An Energy Management System is a system of
computer-aided tools used by operators of electric utility
grids to monitor, control, and optimize the performance
of power generation and transmission. The monitor and
control functions are known as SCADA, whereas op-
timization packages are often referred to as “advanced
applications”. The EMS assists in the process of ensuring
that the power system is operating efficiently, with real-
time adjustments to changes in the load or power supply.
It can also help plan and schedule maintenance activities.

In Brazil, one of the most important SCADA/EMS systems

is SAGE (acronym in portuguese for “Open System for Energy
Management”). SAGE is a large-scale and high-performance
SCADA/EMS system, developed and constantly updated by
CEPEL [23]. It is used by dozens of electric power generation,
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transmission, and distribution agents in Brazil, particularly the
founding companies of CEPEL (Chesf, Furnas, Eletronorte,
and Eletrosul), as well as the National Electric System Op-
erator (ONS), in all of their control centers. Its modular
architecture allows for proper customization, enabling it to be
used as a communication gateway, a data concentrator for a
distribution system, a local or regional supervisory system, an
operation center for a system, or even a “multi-site” system
composed of multiple synchronized and redundant control
centers [24].

IV. EVALUATING FAILURE RISK FROM
CHROMATOGRAPHIC DATA

It is common practice in the electrical sector to monitor
the condition of transformers through DGA. Our objective in
creating the CAI risk indicator was to use ML to develop a
classifier that assists maintenance specialists in their decision-
making process. Upon receiving the company’s data, it became
apparent that there were few data points and, furthermore, they
were not labeled with the type of failure present. Therefore,
they were not suitable for training a ML algorithm. We
opted to combine several public datasets [25]-[30] to train
the algorithm. These datasets have reliable data, since they
were validated in these scientific works and some transformers
were manually inspected. To use these databases, it was
necessary to work with a sample universe of only 5 types of
gases, as some of the databases considered only these gases.
Despite this limitation, the results were very satisfactory. In
the testing dataset, the risk indicator outperformed classical
chromatographic methods, as we will describe in Section
VI-A. The risk indicator was also tested on the company’s
data, yielding encouraging results that demonstrate its ability
to generalize the classification capability to the company’s
data.

The labeled classes were identified from the aforementioned
external datasets, as follows: NF - (No Faults); PD - (Partial
Discharge); D1 - (Low Energy/Spark Discharge); D2 - (High
Energy/Arc Discharge); T1 - Low Temperature Fault (t <
300°C); T2 - Middle Temperature Fault (300°C < t <
700°C); T3 - High Temperature Fault (t > 700°C). The gases
considered in this work in predictive maintenance modeling
were five out of the nine presented in Section III-A, namely,
H,, CH4, C3Hs, CoHy, and CoHg. After joining the datasets,
we started the data pre-processing step, which consisted in two
steps: (i) data cleaning, and (ii) data normalization. The data
cleaning process consisted in two main steps: (1) replacement
of null or invalid values and (2) removal of duplicated samples
or blank values.

After data joining and cleaning, we calculated four con-
centration ratios, which were calculated and inserted as new
columns in the unified dataset, and we adjusted the nonde-
tectable value by adding a constant value, as suggested in
[31]: Ry = /4 + 0.4, Ry = S22 + 0.4, Ry = B/ 104,
and R5; = % + 0.4. For normalization, we used the IQR
(Interquartile Range) method, since it is robust to outliers, and
it is given by equation 1:

Qe
QR3/4 — Q14
where Q; is the i-th quartile. The above equation was applied
to the following attributes of the unified dataset: (i) Ha, (ii)
CH4, (111) C2H4, (IV) C2H6, (V) R]_, (Vl) R4 and (V]l) R5.
However, the attributes corresponding to CoHs gas and to
the ratio Ry needed a particular normalization process, due to
the distribution of their values containing several outliers and
zero values. Therefore, in order to normalize these columns,
equations 2 and 3 were applied, respectively.
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V. EVALUATING FAILURE RISK FROM MONITORING DATA

The EFRI uses analogical monitoring data from the SAGE
system and relates it to the maintenance data from the En-
terprise Resource Planning (ERP) system. This indicator may
suggest a high risk of an electrical failure based on analogical
measurement data in a six-day time window of the failure
event. A major benefit is the maintenance planning can be
done in advance, assisting the decision making of the operator
on the maintenance of the asset.

A big electric energy company provided the data from
SAGE and SAP Plant Maintenance (SAP PM) systems. The
data from SAP has the maintenance history of power trans-
formers and it was used in the categorization of electric
failures of SAGE data. Such SCADA system reads the sensors
of equipment and records that in a daily 5-minute log file. We
calculated some daily statistics from each sensor, including
mean, quartiles and standard deviation. Therefore, we could
calculate the mean of each attribute in a six-day sliding
window. The sensors have related alarms (digital data) which
were computed to extract the mean and maximum statistics.

The processed data from SAGE was matched with the
categorized SAP data. We analyzed the description of main-
tenance data and grouped it into categories according to
some keywords. Such keywords and categories were manually
chosen through a detailed study of data and related works. The
categorization process also used the Levenshtein [32] algo-
rithm in order to find the similarity in the free-text description.
Thus, the conducted experiments that showed the best results
belonged to the electric failure category. Only the attributes
of electric nature were considered in the development of the
model.

A. Methodology

We elaborated a methodology that covers the whole work-
flow of the ML algorithms and pre-processing as depicted in
Fig. 1. Each step can be briefly pointed as: (1) Data cleansing;
(2) Dataset partition and feature selection; (3) Data balancing
and normalization; (4) Model development and optimization;
and (5) Model assessment. The following subsections contain
the description of each step.
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Workflow for power transformer failure prediction

1. Data cleansing

5. Model assessment

Fig. 1.

1) Data cleansing: As a premise, we looked at the digital
data with measurements from more than one power trans-
former, representing the half of the base. Afterwards, we
discarded analogical and digital attributes which variance was
equal or less than one, considering the amount of missing
values in this removal and keeping an attribute of temperature
of auxiliary winding. In total, we worked with 147 attributes.

2) Dataset partition and feature selection: The remaining
data was split into two disjoint subsets: Training (80%, being
71 failure and 37,401 nonfailure) and Test (20%, being 18
failure and 9,350 nonfailure). In both sets, the proportion of
nonfailures is 520 times bigger than failures. The missing
values at Training set were replaced by the mean of the
analogical attribute. Digital attributes did not present missing
values. Afterwards, we conducted preliminary tests with the
decision tree based algorithm DecisionTreeClassifier from
Python’s sklearn library [33]. Such algorithm is deterministic
and was applied to the Training set in order to rank the
most important attributes. To help this choice, we picked
some hyperparameters of this algorithm, such as the minimum
amount of samples required to split a node between 2 and
403 with an interval of 20, with the support of a method of
exhaustive optimization of estimators, named GridSearchCV
[34], from the same library. This method used refitting of the
estimator with the best parameters found in the Training set
based on the recall metric of the minority class. In addition, we
chose the strategy to evaluate the performance of the Cross-
Validation (CV) algorithm on the test fold using a list of
the following multiple metrics: F1 of minority class, recall
of minority class, AUROC (Area Under ROC curve). After
that, we ranked the most important attributes and selected the
top 19 analogical plus the remaining 42 digital attributes to
use in the modeling from now on, totaling 61 attributes.

3) Data balancing and normalization: There is a huge
discrepancy in the amount of failures and nonfailures in
the dataset. To overcome this problem, we chose to balance
the Training data trough the combination of two techniques,
respectively: (i) reduction of nonfailures in 3.7 times and then
(ii) data augmentation of failures in 143 times. Both techniques
performed better than only one. We applied the RandomUnder-
Sampler algorithm from imblearn library [35] to reduce
the majority class instances. Then, we applied the SMOTE
(Synthetic Minority Over-sampling Technique) algorithm [36],
from the same library, to over-sample the minority class, based
on the parameter of the nearest neighbors, which was chosen
to be 10. Both under- and over-sample techniques used the
same number for reproducibility. The balanced dataset had
10,142 instances of each class and was normalized based on
the Gaussian function. This choice was based on comparison
tests against min-max and IQR-based normalization methods.
After that, we applied the normalization in the Test set with the
parameters of the Training set in order to avoid data leakage,
according to the equation Norm,,. , = *Test—LTreine With
this in mind, the missing data of Test set was réﬁﬁ%oced by the
mean of the respective attribute of the Training set.

4) Model development and optimization: We conducted
experimental tests with the Random Forest algorithm with
the max depth of trees parameter instantiated with the value
13, based on empirical analysis. Thereafter, this algorithm
was used as a part of the exhaustive method of optimization
GridSearchCV that uses 10-fold CV with the same parameters
used by GridSearchCV in the feature selection step.

5) Model assessment: As the main metric, we chose the
recall of the minority class because it evaluates the total
amount of failures captured by the model. Furthermore, we
analyzed the metric Relative Risk (RR) [37] that indicates
the number of times there is an increased risk of occurring
an electrical failure. RR is the rate of two metrics: False
Omission Rate (FOR) and Predicted Positive Value (PPV).
The former is the rate of the electric failures classified as
nonfailures, FOR = % The latter is the rate of
failures correctly classified over the total amount of instances
predicted as failures, PPV = Hence, RR = ?g%
is dimensionless.

The minority class was considered as to be the positive
class, in other words, failures. Furthermore, we analyzed the
classic metrics as follows: accuracy, AUC, Fl-score, recall
and recall of minority class. The best results are presented
in Section VI.

TP+FP

VI. RESULTS AND DISCUSSION

This section presents the results of the both indicators: CAI
and EFRI. They indicate an increased risk of occurring an
electric failure. The combination of these indicators provide
decision-making support to the specialist with the most recent
monitored data.

A. CAI results

We ran a benchmark against some algorithms and possible
scenarios. The experiments were executed with the following
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four algorithms: (i) Support Vector Machine (LibSVM) [38];
(i) Random Forest [39]; (iii) Fuzzy Unordered Rule Induction
Algorithm (FURIA) [40]; and (iv) Random Trees [41]. We
performed the experiments in the following ways:

« with and without label class aggregation.

o selection of three different set of concentration ratios

(used in addition to all five gas concentrations).

o five or ten CV folds.

We tested all the possible scenarios, and the best result is
presented in scenario:

o Three label classes:

i. PD, D1 and D2 labels grouped into Electric Faults;
ii. T1, T2 and T3 labels grouped into Thermal Faults;

iii. Normal.

o All four concentration ratios (R1, R2, R4 and R5).

e Ten CV folds.

We split the data into training and test sets, with 80% and
20% of the original data, respectively. In order to find the best
hyperparameters, we used the RandomizedSearchCV method
from scikit-learn [42] in the training set by using ten folds.

TABLE I
EXPERIMENT RESULTS OBTAINED IN THE BEST SCENARIO

LibSVM
74.2%

FURIA
89.2%

Random Tree
81.1%

Random Forest
92.7%

Algorithms
Accuracy

In order to validate the Random Forest model, we compared
it with classical DGA methods, such as: (i) Rogers, (ii)
Doernenburg, (iii) NBR 7274, (iv) IEC 599 and (v) Duval’s
Triangle [22], [43]-[46]. The comparison results are displayed
in Table II, from which we can see that the Doernenburg’s
method had the highest accuracy within the classical DGA
methods. The hybrid DIEC-R method, which consists of a
combination of Doernenburg’s and IEC Ibrahim’s method [28],
presented the best result among all classic/hybrid methods.
From the same Table, we can clearly notice that the Random
Forest model outperformed the other classical methods in
almost 19 percentage points, presenting 92.2% accuracy and
92.1% Fl-score in the test set.

TABLE II
CLASSICAL DGA METHODS AND Random Forest MODEL PERFORMANCE IN
THE TEST SET

Method Accuracy F1-score
Rogers 35.1% 24.2%
Rogers (refined) 46.8% 27.8%
Doernenburg 13.6% 14.5%
NBR 7274 51.7% 43.3%
IEC Ratio 51.2% 41.0%
IEC (refined) 64.4% 56.6%
Duval’s Triangle 60.5% 38.8%
Doernenburg + Durval 69.7% 52.3%
Doernenburg + IEC (Ibrahim) 73.2% 71.3%
Random Forest 92.2% 92.1%

B. EFRI results

The best results indicated that there was an increased risk
of a power transform to fail in 99.7 times (indicated by the

RR metric). The Random Forest performance is shown in
confusion matrix of the Test set in Table III. The evaluation
metrics of Training and Test sets are present in Table IV.

TABLE III
CONFUSION MATRIX OF EFRI ON TEST SET

Class (predicted) Positive | (predicted) Negative

(real) Positive 15 3

(real) Negative 432 8918

TABLE IV
EVALUATION METRICS ON TRAINING AND TEST SETS

Metric Training Test
Accuracy 97% 95.4%
AUROC 97% 39%
Fl-score 97% 52%
Fl-score of failure 98% 6.5%
Recall 97% 89.4%
Recall of failure 99.9% 83.3%
Relative Risk 3061 99.7

The algorithm parameters were chosen using Recall metric
evaluated on the failure class. The results show that the model
can be a helpful aid to the maintenance team on pinpointing
the equipment in need of servicing.

VII. CONCLUSIONS AND FUTURE WORK

The exploration of predictive maintenance technologies is
of great importance for the electrical sector, which is typically
highly regulated and complex. Expanding predictive mainte-
nance applied in this article, leveraging the methodology in
the maintenance of power transformers, and generalizing it to
other transmission assets that allow the use of CAI and EFRI
indicators for decision support can be a good path for future
related works.

In a era of smart, data-driven and cost-effective opera-
tions, electrical sector can benefit from the development of
a cloud platform to support the creation of other machine
learning models, which is an important step towards predictive
maintenance of power substations equipment. Cloud platforms
offer scalability, data accessibility and computing power that
boosts the development and deployment of complex ML
models such as the ones presented in this work. The two
ML indicators presented in this paper show that ML can be
a useful addition to classic data analytics tools in supporting
maintenance experts in their decision making process.

In summary, we have used ML-based approaches to predict
failures of power transformers by using chromatographic data
(CAIl) and data from SAGE (EFRI). In the case of CAI, we
have outperformed the classical DGA methods by using a RF
model, as described in the Results and Discussion section,
obtaining an improvement of the accuracy to predict failures
on the test set by 19% compared to the best classical method.
In the case of EFRI, by using a RF model, we obtained
on the test set an accuracy of 95.4% and recall of 89.4%,
which show that this method is quite helpful in predicting
failures. Using the aforementioned indicators of failure, the
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maintenance planning’s decision of the power plants can be
performed in a data-driven way, leading to more efficient
maintenance strategies. Moreover, the modeling process shown
here opens up possibilities, for instance, for modeling the
downtime of power plants, as well as wind turbines, with
reliability and reducing associated costs.

(1]

[2]
(3]

(4]

(3]

(6]

(7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

S. Yacoub, B. Cukic, and H. H. Ammar, “A scenario-based reliability
analysis approach for component-based software,” IEEE transactions on
reliability, vol. 53, no. 4, pp. 465-480, 2004.

R. K. Mobley, An introduction to predictive maintenance.
2002.

J. LaRiviere, P. McAfee, J. Rao, V. K. Narayanan, and W. Sun, “Where
predictive analytics is having the biggest impact,” Harvard business
review, vol. 25, 2016.

S. M. de Andrade Lopes and R. A. Flauzino, “A novel approach
for incipient fault diagnosis in power transformers by artificial neural
networks,” in 2021 IEEE PES Innovative Smart Grid Technologies
Europe (ISGT Europe), 2021, pp. 1-5.

E. Li, “Dissolved gas data in transformer oil—fault diagnosis of power
transformers with membership degree,” 2019. [Online]. Available:
https://dx.doi.org/10.21227/h8g0-8z59

S.-A. Ahmadi and M. Sanaye-Pasand, “A robust multi-layer framework
for online condition assessment of power transformers,” IEEE Transac-
tions on Power Delivery, vol. 37, no. 2, pp. 947-954, 2022.

M. Duval and A. dePabla, “Interpretation of gas-in-oil analysis using
new iec publication 60599 and iec tc 10 databases,” IEEE Electrical
Insulation Magazine, vol. 17, no. 2, pp. 31-41, 2001.

1. B. M. Taha, S. Ibrahim, and D.-E. A. Mansour, “Power transformer
fault diagnosis based on dga using a convolutional neural network with
noise in measurements,” [EEE Access, vol. 9, pp. 111162-111170,
2021.

International Electrotechnical Commission, “Mineral oil-impregnated
electrical equipment in service — guide to the interpretation of dissolved
and free gases analysis,” IEC Standard 60599, 1999.

Dept. Sci. Technol., Govt of India, “Technology information forecasting
and assessment council (tifac) laboratory,” New Delhi, India, 2020.

I. B. Taha, “Dgalab: an extensible software implementation for dga,”
IET Generation, Transmission & Distribution, vol. 12, pp. 4117-
4124(7), October 2018, n/a. [Online]. Available: https:/digital-library.
theiet.org/content/journals/10.1049/iet- gtd.2018.5564

L. T. B. Santos, M. M. B. R. Vellasco, and R. Tanscheit, “Decision
support system for diagnosis of power transformers,” in 2009 15th
International Conference on Intelligent System Applications to Power
Systems, 2009, pp. 1-6.

J. Chatterjee and N. Dethlefs, “A dual transformer model for intelligent
decision support for maintenance of wind turbines,” in 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN), 2020, pp. 1-10.
O. Catapult, “Platform for operational data (pod) disseminated by ore
catapult,” https://pod.ore.catapult.org.uk, accessed on 9th May, 2023.
B. Alzawaideh, P. T. Baboli, D. Babazadeh, S. Horodyvskyy, I. Koprek,
and S. Lehnhoff, “Wind turbine failure prediction model using scada-
based condition monitoring system,” in 2021 IEEE Madrid PowerTech,
2021, pp. 1-6.

T. P. Carvalho, F. A. Soares, R. Vita, R. d. P. Francisco, J. P. Basto,
and S. G. Alcald, “A systematic literature review of machine learning
methods applied to predictive maintenance,” Computers & Industrial
Engineering, vol. 137, p. 106024, 2019.

G. A. Susto, A. Schirru, S. Pampuri, S. McLoone, and A. Beghi,
“Machine learning for predictive maintenance: A multiple classifier
approach,” IEEE transactions on industrial informatics, vol. 11, no. 3,
pp. 812-820, 2014.

Y. Ran, X. Zhou, P. Lin, Y. Wen, and R. Deng, “A survey of predic-
tive maintenance: Systems, purposes and approaches,” arXiv preprint
arXiv:1912.07383, 2019.

“Predictive maintenance 4.0: predict the unpredictable,” PwC and Main-
novation, Tech. Rep., 2017.

W. De Malsche, Solving advanced micromachining problems for ultra-
rapid and ultra-high resolution on-chip liquid chromatography. Twente
University Press, 2008.

Elsevier,

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]
(39]

[40]

[41]

[42]

[43]

A. J. Martin and R. L. Synge, “A new form of chromatogram employing
two liquid phases: A theory of chromatography. 2. application to
the micro-determination of the higher monoamino-acids in proteins,”
Biochemical Journal, vol. 35, no. 12, p. 1358, 1941.

A. Abu-Siada and S. Islam, “A new approach to identify power trans-
former criticality and asset management decision based on dissolved
gas-in-oil analysis,” IEEE Transactions on Dielectrics and Electrical
Insulation, vol. 19, no. 3, pp. 1007-1012, 2012.

“Cepel description,” https://sage.cepel.br/index.php/pt/sage/visao-geral,
accessed: 2023-05-14.

L. A. Pereira, L. C. Lima, A. J. Silva, P. A. Machado, M. F. Amorim,
L. Ayru Filho, G. P. Azevedo, N. Lambert, P. D. Zarur, V. V. Tavares
et al., “Sage-um sistema aberto para a evolucdo,” 2014.

E. Li, L. Wang, and B. Song, “Fault diagnosis of power transformers
with membership degree,” IEEE Access, vol. 7, pp. 28 791-28 798, 2019.
E. Li, “Dataset directly extracted from table 9 of enwen li (2019),”
2019, table 9 available in the article: https://ieee-dataport.org/
documents/dissolved- gas-data- transformer- oil- fault-diagnosis-power\
break-transformers-membership-degree.

“Dissolved gas data in transformer oil - fault diagnosis of power
transformers with membership degree,” 2019. [Online]. Available:
https://dx.doi.org/10.21227/h8g0-8z59

S. L Ibrahim, S. S. Ghoneim, and 1. B. Taha, “Dgalab: an extensible
software implementation for dga,” IET Generation Transmission Distri-
bution, vol. 12, no. 18, pp. 4117-4124, 2018.

M. Duval and A. dePabla, “Interpretation of gas-in-oil analysis using
new iec publication 60599 and iec tc 10 databases,” IEEE Electrical
Insulation Magazine, vol. 17, no. 2, pp. 31-41, 2001.

D. R. Morais et al., “Ferramenta inteligente para detec¢do de falhas in-
cipientes em transformadores baseada na andlise de gases dissolvidos no
oleo isolante,” Master’s thesis, Universidade Federal de Santa Catarina,
2004.

J. Kreps, “Questioning the lambda architecture,” Online Article, p.
205, July 2014. [Online]. Available: https://www.oreilly.com/radar/
questioning- the-lambda- architecture/

V. L. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals.” Soviet Physics Doklady, vol. 10, no. 8, pp. 707-710,
feb 1966, doklady Akademii Nauk SSSR, V163 No4 845-848 1965.
scikit-learn developers, “sklearn.tree.decisiontreeclassifier,”
https://scikitlearn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html, accessed on 17th May, 2023.

scikit-learn developers, “scikit-learn: Machine Learning in Python,”
https://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.GridSearchCV.html, accessed on 17th May, 2023.

The imbalanced-learn  developers,  “Under-sampling,”  https:
/fimbalanced-learn.org/stable/under_sampling.html, accessed on 17th
May, 2023.
The imbalanced learn developers, “Over-sampling,”  https:
/flimbalanced-learn.org/stable/over_sampling.html, accessed on 17th
May, 2023.

D. Katz, J. Baptista, S. P. Azen, and M. C. Pike, “Obtaining confidence
intervals for the relative risk in cohort studies,” Biometrics, vol. 34,
no. 3, p. 469-474, 1978.

C.-C. Chang and C.-J. Lin, “Libsvm: A library for support vector
machines,” vol. 2, no. 3, 2011.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

J. Hiihn and E. Hiillermeier, “Furia: An algorithm for unordered fuzzy
rule induction,” Data Mining and Knowledge Discovery, vol. 19, no. 3,
pp. 293-319, 2009.

B. Pfahringer, “Random model trees: An effective and scalable re-
gression method,” 2010, working paper. University of Waikato, De-
partment of Computer Science. Hamilton, New Zealand. Available at
https://researchcommons.waikato.ac.nz/handle/10289/4056.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

I. E. Commission, Interpretation of the analysis of gases in transformers
and other oil-filled electrical equipment in service, 1st ed. Geneva,
Switzerland: International Electrotechnical Commission, 1978, no. 599,
iEC Publication.



XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

[44] R. Hooshmand and M. Banejad, “Fuzzy logic application in fault
diagnosis of transformers using dissolved gases,” Journal of Electrical
Engineering and Technology, vol. 3, no. 3, pp. 293-299, 2008.

[45] M. Duval, “A review of faults detectable by gas-in-oil analysis in
transformers,” IEEE Electrical Insulation Magazine, vol. 18, no. 3, pp.
8-17, 2002.

[46] M. Duval and A. dePabla, “Interpretation of gas-in-oil analysis using
new iec publication 60599 and iec tc 10 databases,” IEEE Electrical
Insulation Magazine, vol. 17, no. 2, pp. 31-41, 2001.



