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Abstract—In this paper, we present an evaluation of semantic
segmentation for bubble detection in multiphase flow particle
image velocimetry (PIV), from which a lot of applications in
oil, gas, and chemical industries, for instance, can benefit. The
problem is challenging, however, given the differences in contrast
that can make the bubble almost invisible at blind eye. Thus,
for this research we have collected and manually annotated a
dataset with 1161 images, and trained a U-Net neural network to
perform the detection of the bubbles. The experiments presented
pixel accuracies of about 86.78% on the largest test set, with
more challenging images, but more than 99% can be achieved
with more training images and less test images. We believe that,
although preliminary, the results are encouraging towards the
development of a fully-automated Computer Vision-based system
for PIV, but more effort should be put into expanding the training
set and enhancing the evaluation protocol in future work.

Index Terms—Particle image velocimetry, Semantic segmenta-
tion, Taylor bubble, Machine learning, Deep learning

I. INTRODUCTION

Various nonstationary two-phase bubbly flows are often
found in the oil, gas, chemical, nuclear, and aerospace indus-
tries having abundant applications [1]. Probe-based (contact)
and non-invasive (non-contact) methods are the two main
classes of measurement techniques for two-phase flow di-
agnostics. In the former it is possible to evaluate physical
quantities such as temperature, pressure, or velocity at high
frequency in a given flow region and, thus, derive its average
and fluctuating values. The later has the advantage of not
disturbing the flow under investigation, being most of the
optical approaches, which have been significantly accelerated
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along with the evolution of laser, engraving, and computer
technologies [2].

Even though probe-based approaches are usually the most
precise set of tools to achieve high precision in terms of
measurement, they also tend to be more expensive and difficult
to scale up to larger sets of flows. Non-invasive methods, on
the other hand, might not reach the quality of the others in
terms of quality, but recent advances in Computer Vision (CV)
are encouraging towards defining approaches that are good
enough for practical applications involving bubly flows.

One of such applications is Particle Image Velocimetry
(PIV), a well-developed and contactless technique in ex-
perimental fluid mechanics. It consists of a measurement
technique that allows for capturing velocity information of
whole flow fields in fractions of a second [3]. Furthermore,
the strong velocity gradient and streamline curvature near the
wall substantially limit its accuracy improvement [4]. One
important step for this application is a precise detection of
the bubles, from which speed can be calculated from the
difference between two subsequent timeframes. But that task
is very challeging, especially due to the dispersion of the laser
light caused by the gas-liquid interfaces [5]. The boundaries
of the buble vary considerably in terms of contrast to the fluid
background, which makes the segmentation task more difficult
and requires an approach that is adaptive at pixel level.

Modern non-intrusive experimental detection techniques in-
cluding electrical capacitance tomography (ECT), electromag-
netic tomography (EMT), computed tomography (CT), PIV,
particle tracking velocimetry (PTV), have been widely applied
for the study of flow and transport phenomena with the aid
of machine learning (ML), especially deep learning (DL), as
these techniques are able to process images more accurately
and efficiently in problems of classification, object detection,
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segmentation, reconstruction and noise removal if compared
to traditional techniques [6].

In this context, machine learning has been succesfully
applied to fluid mechanics problems. In [7], the authors
propose a deblur filter using a generative adversarial network
(GAN) was developed and applied to real PIV images. The
authors found that the deblurred images resulted in less PIV
velocity error by applying the generator to actual experimental
images of a synthetic jet. Authors of [8] presented a study
concerning a combined sonic-hotfilm anemometer, and a fully
automated in situ calibration procedure implementing DL. The
calibration procedure was tested on both the open sea dataset
and inside a wind tunnel, it has shown to have the robustness
necessary for operation in everchanging open field flow and
environmental conditions. In [9], the authors implemented
genetic programming on an experimental setup in order to
improve flow control performance for bluff bodies wakes.

Machine learning has been applied to understaning bubble
dynamics and for the detection of their characteristics such
as their location, shape, diameters and speeds. In [10], the
authors presented a deep learning based approach to de-
tect underwater bubbles, where the real-time object detector
YOLO [11] framework has been adapted for this task. In
[12], the authors applied the principal component analysis
(PCA) technique to extract physical descriptors of pool boiling
experimental images. The dominant frequency and amplitude
of the time-series principal components were used as new
physical descriptors to distinguish different boiling regimes.
They used a bidirectional long short-term memory (BiLSTM)
neural network to estimate the future variations of PCs and
hence the bubble dynamics to predict future boiling states, so
that boiling crises can be detected. The proposed approach was
able to predict reduced-order bubble images well. The authors
of [13] trained the instance segmentation Mask R-CNN to
develop an automated bubble detection and mask extraction
tool applicable to a varity of two-phase flows. The dataset
used included experimental images of bubbly flows and re-
alistic synthetic bubble images. In the training process the
loss function was weighted according to bubble size. The
proposed model showed to be accurate under a wide range
of experimental conditions.

In [14], the authors introduced three bubble velocimetry
methods, inclunding a fine-tuned CNN-based model, which
was re-trained using the synthetic bubble images. The pro-
posed method correctly measure the temporal variation of
the bubble velocity when compared with the traditional PTV
method. In [15], the authors try to handle different image
conditions, higher gas volume fractions and a proper recon-
struction of the hidden segment of a partly occluded bubble
in the task of identifing and segmenting bubbles. The authors
tested three different methods based on CNN’s. The Mask
R-CNN performed equally good compared to the StarDist
method, which was initially developed for segmenting cell
nuclei in biomedical images.

Characterizing velocity field measurements in flows that
present Taylor bubbles is important to understand the under-

Fig. 1. Schematic layout of the experimental facility.

lying mechanisms of such phenomenom that spans diverse
applications such as oil, nuclear, chemical industries [16].
However, doing so currently requires that engineers label man-
ually bubbles in many images, which is expensive, tedious and
error prone. As most PIV methods are based on time-shifted
image correlation, it is important to segment the input images
so that the bubbles are removed in a pre-processing stage, as
it influences the overall result and the final analysis. In this
context, the main goal of the present work is to evaluate the
applicability of state-of-the-art neural networks for semantic
image segmentation, applied to the problem of Taylor bubble
detection in multiphase flow. For that end, we evaluate the
U-Net neural network on a set of 1161 images collected for
this paper, captured from 5 different PIV experiments, using
different hold-out dataset splits ranging from 20 to 40%, in
order to asses how the model would generalize on images
from unseen experiments. The results point out accuracies
ranging from 86.78% to 99.81% of pixel accuracy, with less
and more training images, respectively. The quality of the
results presented impact directly the methodology for PIV in
bubbly flows and will enable practitioners to adopt such a tool
in their analysis procedure, avoiding time spent on tedious
tasks and providing more accurate results.

The rest of the paper is organized as follows. The case study
is presented in Section II. Section III presents the methodology
used in this work. In Section IV the results are presented,
finally Section V presents the conclusions and future works.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

2



Fig. 2. Bubble shapes for each flow condition.

II. CASE STUDY

The experiments described in this section investigate the
motion and the shape of Taylor bubbles rising in vertical pipes
against downward liquid flows. Figure 1 shows the schematic
layout of the experimental facility. The upper reservoir has
dimensions of 0.65 m x 0.275 x 0.220 m and is made of
acrylic. It has two inner plates used to maintain a uniform
water column above the pipe, and consequently maintain a
constant pressure. The left plate is 0.215 m high and the right
one is 0.205 m high. The excess water that overflows over the
second plate is drained by a tube back to the lower reservoir to
be pumped to the top again. The experiment is conducted in a
turbulent regime, as for the laminar case a much larger pipeline
would be required, but this would be unfeasible considering
the available environment. The smallest Reynolds number used
in the experiment was 3178.

In the measurement section, an acrylic box (0.12 m x 0.095
m x 0.22 m) was used around the tube in order to reduce
optical distortion. A 29.5 mm long screw was installed to fix
the Taylor bubble in a radial position. A honeycomb was used
right at the entrance of the pipe in order to align the flow
and avoid vortices. A white LED panel behind the acrylic box
in order to improve the visualization of the bubble contour.
Polyamide tracer particles with a diameter of 50 µm were
added to the water to make it possible to use the PIV method.
The camera used in the experiments has a resolution of 1280
x 1024 pixels.

Water flowed up to the topmost section through the vertical
pipe. A valve system was used to generate the Taylor bubble.
First, the upper valve is closed, interrupting the flow of water.
With the two lower valves open, the breather valve is opened
until the volume of air inside the tube reaches a volume of
100 cm3.

The tests were performed in five different configurations.
For each test, a desired flow rate was chosen using the
gate valve and a multimeter that allows its visualization in
hertz, later transformed into m3/s. The settings chosen were:

stagnant flow (0 Hz), 15 Hz, 19 Hz, 32 Hz, and 40 Hz. In the
case of the 40 Hz flow rate, it was not possible to manually
perform a subtle transition from a lower flow rate to the desired
one between the inserted screw and the laser position, which
generated instability in the bubble, preventing the acquisition
of images in the proper position. For this reason, the images
obtained by these tests are in the opposite position to the
previous flows.

Figure 2 shows an example of a bubble for each configura-
tion mentioned. It is possible to observe that the symmetry of
the bubble is already broken at 15 Hz.

III. METHODOLOGY

In this section we present a brief introduction to semantic
segmentation, then we describe how it has been implemented
and the evaluation metrics used in this work.

A. Semantic segmentation

Semantic segmentation is an important research topic in
computer vision along with object detection and image clas-
sification. In a semantic segmentation task, a label is assigned
to each pixel, thus, an image is partitioned into semantically
meaningful coherent regions. It comprises image classification,
object detection and boundary location, which makes it a chal-
lenging task [17]–[19]. Figure 3 shows an example of object
detection (a), and classification of each pixel (b) into different
classes (plantation, sky, tree, florest, bush, and person).

Fig. 3. Example of object detection and semantic segmentation.

One widely adopted method for semantic segmentation is
U-Net [20], consisting of an encoder-decoder neural network
archicture divided in two stages, i.e. one to encode the input
image into a semantic representation, and another one to
decode that representation and generate an output image with
the respective semantic classes for each pixel. The main
challenges lies with in properly setting up a set of images
to train the network, to understand how it performs on the
buble detection problem. Further details about this method are
presented next.

B. Proposed method

In order to perform the segmentation of bubbles in mul-
tiphase flow through PIV images, a neural network with a
encoder-decoder structure is proposed, based on the U-Net
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architecture [20]. The network is composed of two parts, as
shown in Figure 4. The structure on the left side (encoder) is
responsible for the feature extraction process. The right side
of the network (decoder) establishes a feature map restoration
model. The proposed model also densely connects all feature
maps in the down-sampling stage, as proposed by [20].

The network consisted of two 2×2 convolutional layers
followed by batch normalization (BN), and ReLU activation
function in each block. In the contracting path, the number of
filters in each block was increased by a factor of 2, starting
from 64 filters in the first block to 1024 filters in the last block,
with 2 pixel-window max-pooling layers between blocks. In
the expanding path the last 1 layer were has sigmoid as
the activation function. The whole network has 31,054,145
parameters in total, from which 31,042,369 are trainable. The
architecture of the U-Net is shown by Figure 4.

C. Evaluation Metrics

The performance of the algorithms was assessed by calculat-
ing four evaluation metrics, namely Pixel Accuracy (PA), Bal-
anced Pixel Accuracy (BPA), Intersection over Union (IoU),
and the Dice Similarity Coefficient (DSC). Since the classes in
the images are unbalanced, the PA should be evaluated with
other supporting evaluation metrics in this case. In this way,
the three other metrics take into account that the dataset ist
not balanced, and also the overlap between the ground truth
and model prediction. The value of MeanIoU varies between
0% and 100%, respectively, for no overlap and complete
overlap between two regions. The DSC varies between 0 and
1, following the same idea as the previous metric.

1) Pixel Accuracy: The Pixel Accuracy (PA) is the percent
of pixels in the image that are classified correctly. It simply
calculates the ratio between the amount of adequately clas-
sified pixels and the total number of pixels in the image, as
shown by (1)

PA =

∑k
j=1 njj

∑k
j=1 tj

(1)

where njj represents the total number of pixels both classified
and labeled as class j, and tj is the total number of pixels
labeled as class j.

2) Balanced Pixel Accuracy: The Balanced Pixel Accuracy
(BPA) computes the balanced PA in order to avoid inflated
performance estimates on imbalanced datasets. In the binary
case, the BPA is equal to the arithmetic mean of sensitivity
and specificity

BPA =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
(2)

where TP is number of true positives, TN is the number of
true negatives, FP are the false positives, and FN are the false
negatives.

3) Intersection over Union: Intersection over Union (IoU)
is essentially a metric to quantify the percent overlap between
the ground truth and the prediction of the model.

IoU(A,B) =
|A ∩B|
|A ∪B| (3)

where |A ∩B| is the area of overlap, and |A ∪B| is the area
of union.

4) Dice Similarity Coefficient: The Dice Similarity Co-
efficient (DSC) measures the spatial overlap between two
segmentations.

DSC =
2 ∗ |A ∩B|
|A|+ |B| (4)

where |A| represents the total of pixels in the ground truth and
|B| in the prediction of the model.

IV. RESULTS

All tests were performed on a server that has multiple CPUs
and GPUs such as NVIDIA Tesla P100 and AMD EPYC 7352
24-Core Processor. The proposed model was implemented
with TensorFlow v2.9.2, with the use of Keras library. We
adopted a basic U-Net architecture framework with four blocks
in the contracting and expanding paths as described in Section
III. We used the Adaptive Moment Estimation (ADAM) as
optimizer with learning rate (LR) of 10−2. We replaced the
cross-entropy loss function from the configuration described
by [20] with the Dice coefficient loss. We use early stopping
in all cases and the models are trained for up to 100 epochs.

Particle image velocimetry data were collected in laboratory.
There are a total of 1161 images that have dimensions of
1000x1016 pixels. The images were resized to 256x256 pixels
to train the neural network from scratch. All annotations
were performed using LabelMe1, which is an open graphical
annotation tool.

Five tests were performed for three holdout percentages
as shown by Table I. We quantitatively evaluate the perfor-
mance of the proposed U-Net using the four complementary
evaluation metrics descriped in the previous section. Table I
illustrates the performance of our U-Net trained to segment
bubbles in multiphase flow of PIV images. According to Table
I, the average pixel accuracy ranges from 86.78% to 99.81%,
for a percentage of 40% and 20%, respectively.

Although the average pixel accuracy for a 40% holdout is
86.78%, the balanced value drops considerably for this holdout
percentage, and the average value of the Mean IoU and the
Dice coefficient are only 64.09% and 0.569, respectively. It
is possible to observe, however, that the standard deviation
is high, indicating that some of the tests have reasonable
performance. This is shown in Figure 5, where a visual
inspection of predictions from two test images has been done.
The network trained in test image #3 has low ability for the
segmentation task. The model is able to classify only part of
the region containing particles, and it is not able to identify and

1http://labelme.csail.mit.edu/Release3.0/
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Fig. 4. Model architecture of the proposed neural network.

TABLE I
EVALUATION RESULTS ON THE TWO-PHASE FLOW TEST SET. COMPARISON BETWEEN THREE HOLDOUT PERCENTAGES.

Holdout (%) Training Time (seg) Pixel Accuracy (%) BPA (%) Mean IoU (%) DSC
40 125.0±73.4 86.79±10.92 75.39±0.21 64.09±26.91 0.5690±0.3851
30 143.4±59.2 99.79±0.01 99.80±0.00 98.62±00.42 0.9960±0.0002
20 171.4±56.8 99.81±0.01 99.80±0.00 99.43±0.06 0.9965±0.0001

segment the region containing the bubble. However, the U-Net
in test image #4 is able to accurately segment an image from
the test set. The tests with other holdout percentages performed
better. As the holdout percentage decreases, both the Mean IoU
and the Dice coefficient increase, reaching values of 99.43%
and 0.9965, respectively. These results show that the proposed
model is robust and reliable.

A complementary visual inspection of the results was also
conducted, by randomly selecting two additional images from
the test set. Figure 6 shows images of the test set with
their respective masks and U-Net predictions. It is possible
to observe that the neural network is capable of accurately
segmenting asymmetrically shaped bubbles and also in the
opposite position in relation to most of the others. Even
regions with reflection and presence of particles were correctly
segmented.

V. CONCLUSION

In this study we evaluated a semantic segmentation method,
i.e. the U-Net neural network architecture, for bubble detection
in multiphase flow PIV. For that, we built a new dataset
with images and manual annotations of the location of the
bubbles, and trained and evaluated the neural network with
1161 images, with varied training-validation partitionings. The
results obtained by simply using an off-the-shelf architecture

for the task indicates that it is possible to further improve
the results presented in many aspects, as the results reached
99.81% and 86.78% of accuracy for 80% and 60% of the
images for training, respectively, and we will try to ellaborate
next.

The main finding is that the methodology for bubble detec-
tion with a reduced number of images is feasible, as it is costly
to generate and annotate data in such a setting. By collecting
and labeling more training data, it will be possible to handle
both the data-hungry requirements of U-Net and have better
results in the hold-out phase. Yet, by using transfer learning
we will possibly be able to use different experiments from
different groups, which possibly might lead to better models
in hold-out without necessarily requiring more labeled data.
Additionally, we also think that non-semantic, more traditional
methods can be used to perform multi-step segmentation, such
as by firstly removing the fluid from the background, then
applying segmentic segmentation only on the more difficult
region containing fluids. By optimizing an architecture such
as the U-net, we may obtain better runtime for the architecture
and thus enable the velocity field to be used in real-time for
feedback by using dedicated hardware with embedded GPUs.
The future research directions highlighted is varied and we
will tackle some of this issues in forthcoming work toward
more rapid, efficient, and accurate PIV for multiphase flow.
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Fig. 5. Result of tests #3 and #4.

Fig. 6. Result of semantic segmentation of asymmetric bubbles.

The impact of the present work will enable different ap-
plications and future research directions. By using such a
image processing method for detecting bubbles will imply
many benefits, such as (i) performing PIV more accurately and
requireing less tedious trial and error tasks for labeling bubbles
manually, (ii) performing PIV on real-time, as currently the

existing methods fail to deal with both pre-processing for
detecting bubbles and assessing particle velocities, to cite a
few. With further development of the bubble detection model,
by providing an increased training set, optimizing the model
architetecture, and enhancing its real-time capabilities, a fully-
automated CV-based system for PIV can be built and even be
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run online.
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