
Hand Gesture Classification using sEMG Data:
Combining Gesture Detection and Cross-Validation

Gabriel S. Chaves
PEE/COPPE

Universidade Federal do Rio de Janeiro
Rio de Janeiro, RJ, Brazil
gabriel.chaves@smt.ufrj.br

Anderson S. Vieira
PEE/COPPE

Universidade Federal do Rio de Janeiro
Rio de Janeiro, RJ, Brazil

anderson.vieira@smt.ufrj.br

Markus V. S. Lima
Poli & PEE/COPPE

Universidade Federal do Rio de Janeiro
Rio de Janeiro, RJ, Brazil
markus.lima@dee.ufrj.br

Abstract—Prosthetic hands play a vital role in the rehabilita-
tion of upper limb amputees. Gesture recognition using surface
electromyography (sEMG) data has emerged as an excellent
option for controlling such prosthetic devices since one does
not require invasive methods to obtain these data. In order to
improve gesture recognition, we must extract the muscle activity
from the raw data before classification, as each gesture has its
own patterns. In this paper, we use an artificial neural network
classifier with individualized data segmentation based on gesture
detection to identify six hand movements. We used data from ten
healthy volunteers. By combining data segmentation and cross-
validation, we were able to refine the amplitude thresholds used to
determine the beginning and end of muscle contractions for each
person. We designed several experiments using different types
of cross-validation. The performance achieved by the proposed
model using 4-fold cross-validation was (93.6 ± 0.7)%, which
represents 3.5% more than the mean accuracy of the baseline
model, in which there is a single arbitrarily-chosen segmentation
threshold for all volunteers.

Index Terms—Hand gesture classifier, classification, segmenta-
tion, cross-validation, sEMG data, artificial neural network

I. INTRODUCTION

The hand gesture recognition problem consists of detecting
and classifying the muscle contraction from a hand movement.
The solution for such a problem can improve human-machine
interface (HMI) applications, such as robotic hand control [1],
game interface [2], augmented reality [3], and active prosthe-
ses [4]. The last one is of great concern since the loss of a
limb can be traumatic, impacting a person’s body, emotions,
relationships, vocation, and way of life [5]. In the case of
transradial amputation, a prosthetic hand can help a person to
better adapt to the new life. Hence, the usage of myoelectric
prostheses has gained relevance recently [6], [7].

Myoelectric devices are controlled by electromyography
(EMG) signals generated by muscle contractions. For such
a prosthesis to be suitable, the residual limb must possess
measurable EMG signals [6], [8]. In most cases, the range
of movements is limited to open and close hands. The user
can increase the complexity of the gestures through training
in sequential control strategies. However, controlling this pros-
thesis can be an arduous task, requiring a high level of skill
and long training sessions [8]. These factors contribute to a
higher rejection rate of upper extremity prostheses than lower
extremity ones [9]. To ease the rejection, data acquired through

non-invasive approaches, such as surface electromyography
(sEMG) signals, are highly recommended for HMI applica-
tions [10].

The sEMG is the spatial and temporal interference pattern
of the electrical activity of the motor neuron and several
muscle fibers [11]. This electrical pulse is the response of the
motor neuron when it receives a movement command from
the brain [11]–[14]. In other words, the movement of a hand
is made up of various muscle stimuli, and an sEMG sensor
can capture them over the person’s skin. Therefore, it can be
used to drive an external device, such as in the prosthetic
domain. Another advantage of these sensors is their easiness
of operation, which makes possible the existence of many
devices that are simple and with high reliability [15]–[17].
However, a common problem in the recognition of such an
sEMG is identifying the moment in which the muscle activity
begins and ends. Due to the stochastic and non-stationary
nature of the sEMG, extracting such a time range is quite
challenging. To address this, we segment the sEMG to separate
the gesture of interest from the data signal. We can categorize
the sEMG segmentation techniques as sliding windows or
gesture detection. By using sliding windows, the sEMG is
segmented into several time windows that can be adjacent
or overlapped. In gesture detection, we extract only muscle
contraction from the sEMG data, identifying the beginning
and end of muscle activity.

The sEMG-based hand gesture recognition can be divided
into five main modules [18]. The data acquisition is the
first module, responsible for capturing and reading the data
examples. In this module, we decide how many gestures
and sensors will be used during the experiments. The pre-
processing module segments the sEMG, that is, extracts the
hand movement data from the sEMG signal. The feature
extraction/selection module selects a proper set of features
relevant to the gesture recognition problem. The classification
module is where the classifier operates by matching the
features to their respective classes. Recently, new machine
learning approaches have achieved excellent performance in
the design of natural gesture interfaces [10], [18]–[20], whose
methods aim to identify muscle contraction patterns in the
sEMG signal and match them with predefined gestures through
supervised learning [19]. At last, the post-processing module

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

1



refines the classification output, which helps one to interpret
and evaluate the model results.

In [21], the authors achieved 94.0% accuracy in identifying
four hand postures using k-nearest neighbor (kNN) and an
adjacent sliding window approach to segment the data. The
solution proposed in [22] used Gaussian mixture models
(GMM), hidden Markov models (HMM), and a combination of
overlapped sliding windows with gesture detection in order to
classify six hand movements, achieving 99.0% accuracy. The
authors of [23] recognized nine hand gestures that were clas-
sified with the linear discriminant analysis (LDA) method and
an overlapped sliding window approach, attaining an accuracy
of 92.2%. In [24], by using a support vector machine (SVM)
and gesture detection to classify seven hand movements, the
authors reached an accuracy of 89.2%. We also have reports
of modern machine learning techniques that have achieved
great results in the gesture classification problem. The authors
in [25] reached 93.0% accuracy using a convolutional neural
network (CNN) and adjacent sliding windows to classify eight
hand gestures. Another example is the solution in [26], where
the authors achieved an accuracy of 97.2% using CNNs and
overlapped sliding windows to recognize seven gestures.

In this paper, we use [18] as the baseline model, because
it is a recent work coming from an active research group
and whose datasets are publicly available. We propose an
ANN to classify six hand movements from 10 people. We
study the segmentation process and its relevance to the gesture
recognition problem. We also apply the k-fold cross-validation
methodology to fine-tune the hyperparameter necessary in
such a processing [27], [28].

This work is organized as follows. Section II describes
the datasets and classification system used in this study. In
Section III, we describe the pre-processing, as well as the
segmentation process. Section IV presents the results of the
models’ performance. Finally, the conclusion is drawn in
Section V.

II. DATASETS AND CLASSIFICATION MODEL

In this section, we describe the database. We also briefly
introduce the classification model used to identify hand ges-
tures. We can define the present classifier by dividing it
into five modules: data acquisition, pre-processing, feature
extraction/selection, classification, and post-processing. Each
module is responsible for particular tasks, which we will
introduce in this section.

A. Datasets

We use the public datasets created by [18]. The data signals
were recorded using the Myo armband, a commercial low-cost
EMG sensor built by Thalmic Labs. By wearing this device
on the forearm, the sensor returns the digital EMG signal from
the flexor, pronator, and extensor muscles to a computer via
Bluetooth [20]. The resulting Myo armband EMG signal is
a combination of 8 channels operating at a sampling rate of
200 Hz. Each channel outputs the measurement of a sensor
that makes up the armband. It is worth mentioning that the

sensors are not placed on specific muscles. Instead, they are
distributed to cover the surface of the forearm.

The datasets are comprised of EMG signals from 6 hand
gestures. Among those, the gestures of interest are fist (fi),
wave-in (wi), wave-out (wo), open (op), and pinch (pi). The
sixth gesture is the rest position, representing the absence of
any muscle activity. Although its classification is not of interest
to us, we use many of its characteristics to help distinguish
the various EMG patterns of interest. We use the label no-
gesture (no) for all the gestures our model cannot classify or
the non-interesting ones, including the rest position.

1 1

2 23

4

1. Rest
2. Transient
3. Steady-state
4. Gesture

Fig. 1: The gesture structure of a one-channel sEMG example
of the database.

The database comprises data signals acquired from 10
healthy volunteers. For each data example, volunteers were
instructed to perform specific hand movements. Each example
consists of an eight-channel sEMG signal representing con-
tinuous hand movements: rest, the final position of interest,
and rest again. Each example also carries a single label
corresponding to the final position of interest. Fig. 1 illus-
trates a typical sEMG present in the database, demonstrating
amplitude variations based on the types of movement of the
hand. The amplitude remains low during resting and increases
when the user is executing the gesture. Our classification
objective is to classify the signal segment marked as (4) in
the figure, representing a gesture. This gesture is considered
a random process comprising transient and steady-state com-
ponents [11], [12], [18], [29], [30].

The training dataset Dtrain = {(F1, Y1), . . . , (FN , YN )} of
each person contains a total of N = 30 data examples, where
the matrix Fi ∈ [−1, 1]400×8 corresponds to the ith EMG
signal measured. Each Fi has a duration of approximately
2 s. Fig. 2 shows one column of the signal Fi. The categorical
variable Yi ∈ {1, 2, 3, 4, 5, 6} denotes the label for the signal
Fi, with i = 1, 2, . . . , N . Table I shows the relation between
Yi and the gestures of interest. Each one of the classes has
5 examples, resulting in a total of 30 training examples for
each user’s dataset. Given that the database comprises data

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

2



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6
Am

pl
itu

de
Raw sEMG

Fig. 2: The sEMG representing one channel of an example Fi

from the training dataset Dtrain.

from 10 subjects, we have 300 training data examples in total.
It is important to note that the users maintained their hands
in the rest position throughout the measurement period when
recording the no-gesture class.

TABLE I: Indices and the corresponding hand gestures

Index Y Gesture/Class
1 “rest/no-gesture” (no)
2 “fist” (fi)
3 “wave-in” (wi)
4 “wave-out” (wo)
5 “open” (op)
6 “pinch” (pi)

The testing dataset Dtest = {(G1, Ŷ1), . . . , (GM , ŶM )}
of each user is made by M = 150 examples, each recorded
for a duration of 5 seconds. An important characteristic of
the testing sets is the absence of the no-gesture class. Due
to that, the testing set Dtest has 30 examples of each class of
Ŷi ∈ {2, 3, 4, 5, 6}, culminating in 150 testing examples for
each user. Each matrix Gi within the testing set is an element
of the space [−1, 1]1000×8, with i = 1, 2, . . . ,M . The test

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Seconds

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Raw sEMG

Fig. 3: The sEMG representing one channel of an example Gi

from the testing dataset Dtest.

sEMGs are longer than the training ones because it is easier
to position the EMG segment that corresponds to the gesture
in any region within the 5 s of measurement. Fig. 3 depicts
one column of the signal Gi, the data from Dtest.

B. Classification Model

The data acquisition is the first module of the system. It is
responsible for reading the data signals from the datasets. In
this module, we define a time window W = (w1, . . . , wm),
where wi ∈ Z+, with i = 1, 2, . . . ,m [11], [31]–[35]. In
the training stage, we set the length mtrain of the window W
as mtrain = 400 points, that is, a time window that selects all
points of each training example. In the testing stage, we choose
mtest = 500, representing half of the total data points in each
testing example. Thus, the current module outputs observations
represented by the matrix E = [E1; . . . ;E8] ∈ [−1, 1]m×8,
where the column vector Ei = [Ei1, . . . , Eim]T corresponds
to the ith channel of the observation E, with i = 1, 2, . . . , 8.

The pre-processing is the second module in the classifier. In
this module, we perform some mathematical operations in each
observation window E outputted by the previous module. The
main goal of the pre-processing is to segment the sEMG signal.
Such a process extracts only the portion of data related to
muscle contraction. The output of the pre-processing module
is Z.

The feature selection is the third module of the classification
model, and is crucial for machine learning approaches. Since
the sEMG is a spatial and temporal interference pattern of the
muscular electrical activity near the detection surface, we need
a feature capable of synthesizing a large amount of temporal
and spatial data. Dynamic time warping (DTW) is a technique
that can “align” two time series by returning the minimal cost
to match such signals, i.e., the DTW outputs the “distance”
between two time series [18], [36]. In other words, it can
store the similarity between two functions independently of
their distances in time or space. In this module, we first
calculate the DTW between all the pre-processed training
examples with the same labels. This approach generates the
DTW distances between the training examples inside the same
class. Next, we choose the pre-processed signal H∗

i ∀ i =
1, . . . , 6 that is closest to all elements in each class. Finally,
the module outputs the feature vector for the signal Z as
X = (dtw(H∗

1,Z), . . . , dtw(H∗
6,Z)), where dtw denotes

the DTW distance for multichannel time series.
The classification module is where we predict the gestures.

This module receives the feature vector X as an input and
outputs the predicted gesture Y . The predictive model is given
by the following equation

ψ(X) = argmax
y∈{1,2,3,4,5,6}

P(Y = y|X) , (1)

subject to the constraint that the conditional probability that
maximizes (1) is equal to or greater than λ, i.e., the minimum
probability for X be classified. Otherwise, X always receives
the no-gesture label. In this work, we used a feedforward
neural network (FNN). We opt for a shallow FNN having only

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

3



three layers: input, hidden, and output. We used 6 neurons in
each layer, so the neural network topology is 6×6×6. It should
be noted that the input layer receives the signal X standardized
by (Xj −µ)/σ, where µ and σ denote the mean and standard
deviation of X, respectively, with j = 1, 2, . . . , 6.

Post-processing is the last module of the system model.
It is responsible for processing the data before presenting it
to the user. This module processes the classifier’s response
by eliminating consecutive labels. We use a time delay of
one observation for this task. For example, the classification
module outputs two labels ψ(X)k−1, ψ(X)k for some k ∈ Z+.
When the label ψ(X)k is equal to ψ(X)k−1, the current
module returns ψ(X)k = no. Otherwise, we return the label
ψ(X)k unchanged.

III. SEGMENTATION PROCESSING

In this section, we propose some modifications to the
original study. As stated in the previous section, the authors
in [18] do not explore some parameter adjustments. For
example, in [18], the threshold responsible for the muscle
activity detection τu has the same value for all subjects.

A. Gesture Detection

There are several approaches to segmenting an sEMG sig-
nal, such as sliding windowing and gesture detection. Sliding
windowing methods use windows of fixed length to segment
the data at each moment, in which they can overlap or be
adjacent to each other. However, we used a gesture detection
technique. Such a method identifies the beginning and end of
the muscle activity, resulting in the signal range where there
is only the desired information.

We start by defining the input signal as the matrix E =
[E1; . . . ;E8] ∈ [−1, 1]m×8, where the column vector
Ei = [Ei1, . . . , Eim]T corresponds to the ith channel of
E, with i = 1, 2, . . . , 8, and m is the number of points
acquired by a time window W . In the first step, we take the
absolute values of E by rectifying it, which results in the new
signal R = abs(E) ∈ [0, 1]m×8. The second step consists of
filtering R with a low-pass Butterworth filter Φ with a cutoff
frequency of 10 Hz [37]–[40]. This process yields the signal

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

0.00

0.05

0.10

0.15

0.20

0.25

Am
pl
itu

de

Filtered sEMG

Fig. 4: Filtered signal Vi of an one-channel rectified sEMG
Ri.

V = Φ(R) ∈ [0, 1]m×8. Fig. 4 shows the envelope Vi of the
one-channel signal of Fi in Fig. 2. We decrease the dimensions
of the data in the third step by summing along the channel
axis of V, which results in S = sum(V) ∈ [0, 8]m×1. In the
fourth step, we analyze the signal in the frequency domain.
We use the short-time Fourier transform (STFT) to compute
the spectrogram PC = S(S) ∈ C26×p of S, dividing the
sampling frequency interval [0, 100] Hz into 26 points, where
p = floor((m − 10)/15) and m is the length of E, R and
V [41]. We take the modulus of PC and sum its columns,
obtaining the vector U ∈ R26×1 in the fifth step.

The last step consists in extracting the gesture of interest
muscle activity sEMG. We denote by is as the beginning of the
hand movement and ie as the end. It is worth highlighting that
both indices are obtained from U. We analyze the entries of U
and save the indices where the difference of two consecutive
values is equal or greater than τu. Thus, we set is and ie as
the first and second indices, respectively. We also determine
a fixed range of points a where ie − is must be greater. In
other words, if the difference ie− is is less than a points, then
the segmentation returns the signal Z = V. Otherwise, we
segment V, obtaining Z = V(is : ie, :). One can notice that

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Raw sEMG
Filtered sEMG

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

Am
pl
itu

de

Raw sEMG
Segmented sEMG

(b)

Fig. 5: One-channel sEMG data signal and its respective pre-
processed version: (a) Filtered; (b) Segmented.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

4



such a segmentation procedure outputs signals with different
lengths, depending on the duration of muscle activity. Next, if
is = 1 and ie = m, we return the no-gesture label and proceed
directly to the post-processing module. Otherwise, we send the
resulting signal Z to the next module. One can notice that the
pre-processing module will output an unsegmented signal in
two cases: the muscle activity is shorter than a points, and
when the module cannot segment the muscle contraction at
all. Fig. 5 depicts the one-channel sEMG signal compared to
its filtered and segmented versions. Fig. 6 summarizes all the
operations until segmentation,

SEGMENTATION
Rectify E → R = abs(E) ∈ [0, 1]m×8

Envelope E → V = Φ(R) ∈ [0, 1]m×8

Φ is a low-pass Butterworth filter
Segmentation of V:

Sum along the channel axis → S = sum(V) ∈ [0, 8]m×1

Spectrogram → PC = S(S) ∈ C
26×p

Modulus of PC → P ∈ R
26×p

Sum along the columns of P → U = sum(P) ∈ R
26×1

Detect the muscle activity by finding is and ie where U > τu

Segment V → Z = V(is : ie, :)

If (ie − is) < a:
Z = V

Else if is = 1 and ie = m:
V receives the no-gesture classification
Else:

Fig. 6: Block diagram of the segmentation processing.

B. Muscle Activity Detection Threshold

Choosing the muscle activity threshold value τu can be
a challenging task. Such a value depends on the entries of
the array U, which is composed of low- and high-magnitude
components that refer, ideally, to the relax and gesture of
interest, respectively. Since this array carries information about
the sEMG signals from the muscles, we expect each person
to have his/her own τu. That is, although a given gesture
requires the contraction of a specific group of muscles, the
contraction strength is a more particular characteristic that may
vary between different people.

Fig. 7 depicts the segmentation of two training examples
from the same gesture and person using different threshold
values. It is worth highlighting that the base value used in [18]
was τu = 10. Fig. 7(a) illustrates the segmentation result using
τu = 16 and the raw one-channel sEMG. One may notice that
such a threshold value selects the beginning and end of the
gesture of interest. However, the wrong choice of τu can give
us the segmentation in Fig. 7(b), which was generated using
the base threshold value τu = 10. In this example, the signal
did not have segmentation, which resulted in the selection of
the entire filtered signal. Therefore, the usage of this threshold
value does not result in the extraction of muscle activity.

Fig. 8 shows another example of what may happen when
we wrongly choose τu. In Fig. 8(a), we perform segmentation
using τu = 16, and as in the scenario depicted in Fig. 7(a),
the processing selects a time range where there is, most likely,

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Am
pl
itu

de

Raw sEMG
Segmented sEMG

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Am
pl
itu

de

Raw sEMG
Segmented sEMG

(b) .

Fig. 7: Segmentation and raw sEMG from the same data
example with different threshold values: (a) τu = 16; (b)
τu = 10.

only the muscle contraction. On the other hand, we used
τu = 13 in Fig. 8(b). As a result, the segmentation was faulty.
Despite selecting the beginning of the gesture precisely, the
segmentation was unable to track the end.

Since there are many threshold values τu that can be ade-
quate, we treat the threshold as a hyperparameter, transforming
its search into a fine-tuning problem. A common method to
solve such a problem is using validation. In this section, we
propose to use the k-fold cross-validation method. In such an
approach, we divide the training dataset, which is composed
of five data examples, into five folds for cross-validation, as
depicted in Fig 9. We utilized the k-fold cross-validation for
k = 3, 4, 5. Fig. 10 illustrates the folds used in each iteration
of cross-validation. We used folds 1, 2, and 3 as validation sets
for the 3-fold cross-validation. In the 4-fold, we worked with
folds 1, 2, 3, and 4. Finally, we used all folds in the 5-fold
cross-validation approach. Table II shows the best values for τu
that we found with the cross-validation method. As expected,
the best threshold value changes from subject to subject.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

5



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

−0.6

−0.4

−0.2

0.0

0.2

Am
pl
itu

de
Raw sEMG
Segmented sEMG

(a)

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Seconds

−0.6

−0.4

−0.2

0.0

0.2

Am
pl
itu

de

Raw sEMG
Segmented sEMG

(b)

Fig. 8: Segmentation and raw sEMG from the same data
example with different threshold values: (a) τu = 16; (b)
τu = 13.

d1 d2 d2 d3 d3 d4 d4 d5 d5 d1

d1 d2 d3 d4 d5 d1

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Training

Dataset

Fig. 9: Training dataset splitting for the cross-validation pro-
cedure.

IV. RESULTS AND DISCUSSIONS

In this section, we present the simulation results. We
designed some experiments to evaluate the cross-validation
method in the current testing dataset. We also compare the
performance using validation with the results reported in [18].

The testing dataset Dtest has a total of 10 healthy volunteers.
Considering only the testing set, each person recorded 30
examples of each gesture of interest. Due to this and the
fact that our aim is to develop individual classifiers, one may
consider having 10 testing datasets with 150 examples each.
It is worth highlighting that the classification accuracy of the

d1 d2

d2 d3

d3 d4

d3 d4 d5

d1 d4 d5

d1 d2 d5

Iteration 1

Iteration 2

Iteration 3

d3 d4d1 d2 d5Iteration 4

d3 d4d1 d2 d5Iteration 5

3-fold

4-fold

5-fold

Fig. 10: Training and validation sets for 3-, 4-, and 5-fold
cross-validation in each iteration.

TABLE II: Best threshold values τu for each subject obtained
by cross-validation.

Subject

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

τu,3cross 10 13 12 15 16 10 17 10 13 19
τu,4cross 10 13 15 15 17 10 19 10 13 19
τu,5cross 10 13 15 15 17 19 19 10 13 19

simulations is computed by averaging the outcome of 100
independent trials.

The baseline classification model has mtrain = 400 and
mtest = 500 with a stride between two consecutive time
windows equal to 10 points in the data acquisition module.
We used a 5th order Butterworth filter with a cutoff frequency
of 10 Hz in the pre-processing module. Additionally, the
frequency range of the spectrograms is [0, 100] Hz divided
into 26 points. In this calculation, we used Hamming windows
of length equal to 25 points, with a stride of 15 points. We
chose the muscle activity detection threshold as τu = 10 for
all the subjects. We set the minimum length of segmentation
as a = 100 points. In the classification module, the constraint
for the conditional probability was λ = 0.5, the regularization
weight of the ℓ2-norm equal to 0.01, and the learning rate of
0.01. We used the hyperbolic tangent function in the hidden
layer and the softmax transfer function for the output layer.
We trained the FNN with the cross-entropy cost function and
gradient descent methods [27], [42]–[44]. The neural network
topology used was 6× 6× 6. It is worth mentioning that this
is the same configuration as in [18].

The datasets we used for this work are part of [18] and
can be downloaded at https://drive.google.com/drive/folders/
1ZCsaHNc08MYvOS1lfMC wchioix6srpB, along with the
Matlab code for the baseline model. The python code for the
proposed model presented in this study can be downloaded at
https://github.com/gschaves/gabriel cbic23.git, as well as the
datasets and the parameters setup.

The experiment consists in comparing the mean accuracy
classification of the baseline model and the proposed model.
The proposed model is the baseline setup but the threshold

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

6



value, which was acquired by validation. Hence, we evaluate
both classification models under the same conditions. We used
the same testing datasets for each model to properly compare
the results.

We used the 3-, 4-, and 5-fold cross-validation methods
described in Section III-B to tune the hyperparameter τu.
We considered the range of 10 to 20 as the search space.
This range of values was obtained by analyzing the entries of
U, the array where we extract the indices for segmentation.
Another reason we chose such a range was the threshold
τu = 10 used in the baseline model by the authors in [18].
The proposed classification models used the best threshold
values, presented in Table II. It can be seen in Table III that
with such values, all models with cross-validation achieved
better mean classification accuracy and standard deviation
compared to the results of the baseline model. The 3-fold
cross-validation method reached (92.0 ± 0.8)%, an increase
of 1.9% in the mean accuracy compared to the baseline. By
using 5-fold cross-validation, we achieved 2.9% more mean
accuracy than the baseline model. The best classifier was the
4-fold cross-validation, which produced (93.6±0.7)% of mean
accuracy and standard deviation. On the other hand, the model
without gesture detection reached a mean accuracy of 88.1%,
representing the worst result among the experimented models.

It is worth reminding that cross-validation is performed
in the learning stage. In other words, such a method only
interferes with the training process, making the model take
more time to be trained. Due to that, its implementation
does not increase the system response in the testing. Hence,
the proposed model achieves the same classification window
processing time reported in [18] of 11 ms.

TABLE III: Mean accuracy and standard deviation results for
different classification models, where “no seg” is the model
without gesture detection, 3fCV represents the τu tuning by
the 3-fold cross-validation method, 4fCV is the 4-fold cross-
validation, and 5fCV is the 5-fold cross-validation.

Model Accuracy (%)

baseline + no seg 88.1± 0.1
baseline 90.1± 0.8

baseline + 3fCV 92.0± 0.8
baseline + 4fCV 93.6 ± 0.7
baseline + 5fCV 93.0± 0.7

Another interesting result to evaluate is the individual per-
formance of the proposed model using 4-fold cross-validation.
In other words, we look at how the system performs when
considering each subject separately. Table IV depicts the mean
accuracy and standard deviation that we have achieved for each
subject model. It is worth highlighting that the results were
calculated by averaging the 150 test examples for each person
and the outcome of 100 independent trials. The mean accuracy
we reached ranges from 78.1% to 99.9%, which shows that the
sEMG data can drastically vary from person to person. Even
in our case, where each subject has an individually trained
model, the sEMG signal patterns may differ due to the unique

ways that each person performs a hand movement. Evaluating
the model in this manner, we attained a performance of
(93.6± 6.7)%.

TABLE IV: Mean accuracy and standard deviation results
for each subject separately considering the proposed model
(baseline + 4fCV).

Subject Accuracy (%)

#1 97.8± 0.7
#2 97.2± 0.8
#3 78.1± 3.6
#4 96.0± 0.2
#5 88.5± 4.8
#6 88.0± 1.6
#7 92.3± 2.7
#8 99.9± 0.3
#9 98.8± 0.5

#10 99.9± 0.1

V. CONCLUSION

A classification system using ANN and dtw features was
able to classify six hand gestures using sEMG data from
10 healthy people as the input. An important part of the
system is the segmentation performed by the pre-processing
module. In order to reach better results, we used user-specific
setups in the segmentation processing for each person. Every
model using any validation method attained better results
than the baseline configuration and the model without any
segmentation. However, the best performance was 93.6%,
which we achieved by using 4-fold cross-validation to train
individual hyperparameters. Furthermore, we conclude that
each person has a unique way of performing a hand movement,
as expected.

For future research, we can increase the classifier mean
accuracy and standard deviation by using other validation or
segmentation techniques since several research works reached
great results by combining the sliding window approach with
gesture detection.

ACKNOWLEDGMENT

This study was financed in part by the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001. It was also partially financed
by CNPq and FAPERJ.

REFERENCES

[1] G.-C. Luh, Y.-H. Ma, C.-J. Yen, and H.-A. Lin, “Muscle-gesture robot
hand control based on semg signals with wavelet transform features and
neural network classifier,” in 2016 International Conference on Machine
Learning and Cybernetics (ICMLC), vol. 2, 2016, pp. 627–632.

[2] N. Nasri, S. Orts-Escolano, and M. Cazorla, “An sEMG-controlled
3D game for rehabilitation therapies: Real-time time hand gesture
recognition using deep learning techniques,” Sensors, vol. 20, no. 22,
2020.

[3] C. L. Toledo-Peral, G. Vega-Martı́nez, J. A. Mercado-Gutiérrez,
G. Rodrı́guez-Reyes, A. Vera-Hernández, L. Leija-Salas, and
J. Gutiérrez-Martı́nez, “Virtual/augmented reality for rehabilitation
applications using electromyography as control/biofeedback: Systematic
literature review,” Electronics, vol. 11, no. 14, p. 2271, 2022.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

7



[4] D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and
O. C. Aszmann, “The extraction of neural information from the surface
emg for the control of upper-limb prostheses: Emerging avenues and
challenges,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 22, no. 4, pp. 797–809, 2014.

[5] Marlis Gonzalez-Fernandez. Amputation: Recovery and Rehabilitation.
https://www.hopkinsmedicine.org/health/treatment-tests-and-therapies/
amputation/amputation-recovery-and-rehabilitation. Accessed: June 02,
2022.

[6] C. Behrend, W. Reizner, J. A. Marchessault, and W. C. Hammert,
“Update on advances in upper extremity prosthetics,” The Journal of
Hand Surgery, vol. 36, no. 10, pp. 1711–1717, 2011.

[7] M. E. Huang, C. E. Levy, and J. B. Webster, “Acquired limb deficiencies.
3. prosthetic components, prescriptions, and indications,” Archives of
Physical Medicine and Rehabilitation, vol. 82, no. 3, pp. S17–S24, 2001.

[8] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. Mittaz Hager,
S. Elsig, G. Giatsidis, F. Bassetto, and H. Müller, “Clinical parameter
effect on the capability to control myoelectric robotic prosthetic hands,”
Journal of Rehabilitation Research and Development, vol. 53, no. 3, pp.
345–358, 2016.

[9] A. A. of Orthopaedic Surgeons, Atlas of Limb Prosthetics: Surgical,
Prosthetic, and Rehabilitation Principles, 2nd ed., ser. Medical, Physical
Medicine & Rehabilitation. Maryland Heights, Missouri: Mosby Year
Book, 1992.

[10] M. Zanghieri, S. Benatti, A. Burrello, V. Kartsch, F. Conti, and L. Benini,
“Robust real-time embedded emg recognition framework using temporal
convolutional networks on a multicore iot processor,” IEEE Transactions
on Biomedical Circuits and Systems, vol. 14, no. 2, pp. 244–256, 2019.

[11] E. A. Clancy, E. L. Morin, and R. Merletti, “Sampling, noise-reduction
and amplitude estimation issues in surface electromyography,” Journal
of Electromyography and Kinesiology, vol. 12, no. 1, pp. 1–16, 2002.

[12] W. Li, P. Shi, and H. Yu, “Gesture recognition using surface elec-
tromyography and deep learning for prostheses hand: State-of-the-art,
challenges, and future,” Frontiers in Neuroscience, vol. 15, 2021.

[13] D. Farina and O. Aszmann, “Bionic limbs: Clinical reality and academic
promises,” Science Translational Medicine, vol. 6, no. 257, pp. 257ps12–
257ps12, 2014.

[14] E. J. Scheme, K. B. Englehart, and B. S. Hudgins, “Selective classifi-
cation for improved robustness of myoelectric control under nonideal
conditions,” IEEE Transactions on Biomedical Engineering, vol. 58,
no. 6, pp. 1698–1705, 2011.

[15] C. Nissler, N. Mouriki, and C. Castellini, “Optical myography: Detecting
finger movements by looking at the forearm,” Frontiers in Neurorobotics,
vol. 10, 2016.

[16] S. Amsuess, I. Vujaklija, P. Goebel, A. D. Roche, B. Graimann, O. C.
Aszmann, and D. Farina, “Context-dependent upper limb prosthesis
control for natural and robust use,” IEEE Transactions on Neural Systems
and Rehabilitation Engineering, vol. 24, no. 7, pp. 744–753, 2015.

[17] N. Jiang, H. Rehbaum, I. Vujaklija, B. Graimann, and D. Farina, “In-
tuitive, online, simultaneous, and proportional myoelectric control over
two degrees-of-freedom in upper limb amputees,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 22, no. 3, pp.
501–510, 2014.

[18] M. E. Benalcázar, C. E. Anchundia, J. A. Zea, P. Zambrano, A. G.
Jaramillo, and M. Segura, “Real-time hand gesture recognition based on
artificial feed-forward neural networks and emg,” in 2018 26th European
Signal Processing Conference (EUSIPCO), 2018, pp. 1492–1496.

[19] A. Jaramillo-Yánez, M. E. Benalcázar, and E. Mena-Maldonado, “Real-
time hand gesture recognition using surface electromyography and
machine learning: A systematic literature review,” Sensors, vol. 20, no. 9,
2020.

[20] X. Chen and Z. J. Wang, “Pattern recognition of number gestures based
on a wireless surface emg system,” Biomed. Signal Process. Control.,
vol. 8, pp. 184–192, 2013.

[21] W. Shi, Z.-J. Lyu, S.-T. Tang, T.-L. Chia, and C.-Y. Yang, “A bionic hand
controlled by hand gesture recognition based on surface emg signals: A
preliminary study,” Biocybernetics and Biomedical Engineering, vol. 38,
pp. 126–135, 2018.

[22] J. Yang, J. Pan, and J. Li, “sEMG-based continuous hand gesture
recognition using GMM-HMM and threshold model,” in 2017 IEEE
International Conference on Robotics and Biomimetics (ROBIO), 2017,
pp. 1509–1514.

[23] C. Yang, J. Long, M. A. Urbin, Y. Feng, G. Song, J. Weng, and Z. Li,
“Real-time myocontrol of a human–computer interface by paretic mus-

cles after stroke,” IEEE Transactions on Cognitive and Developmental
Systems, vol. 10, no. 4, pp. 1126–1132, 2018.

[24] S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle,
S. Fateh, T. Burger, Q. Huang, and L. Benini, “A versatile embedded
platform for emg acquisition and gesture recognition,” IEEE Transac-
tions on Biomedical Circuits and Systems, vol. 9, no. 5, pp. 620–630,
2015.

[25] D. V. Redrovan and D. Kim, “Hand gestures recognition using machine
learning for control of multiple quadrotors,” in 2018 IEEE Sensors
Applications Symposium (SAS), 2018, pp. 1–6.

[26] U. Côté Allard, F. Nougarou, C. L. Fall, P. Giguère, C. Gosselin,
F. Laviolette, and B. Gosselin, “A convolutional neural network for
robotic arm guidance using sEMG based frequency-features,” in 2016
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2016, pp. 2464–2470.

[27] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine
learning. Springer, 2006, vol. 4, no. 4.

[28] K. P. Murphy, Machine learning: a probabilistic perspective. MIT
press, 2012.

[29] B. Hudgins, P. Parker, and R. N. Scott, “A new strategy for multifunction
myoelectric control,” IEEE transactions on biomedical engineering,
vol. 40, no. 1, pp. 82–94, 1993.

[30] M. Atzori, A. Gijsberts, C. Castellini, B. Caputo, A.-G. M. Hager,
S. Elsig, G. Giatsidis, F. Bassetto, and H. Müller, “Electromyography
data for non-invasive naturally-controlled robotic hand prostheses,”
Scientific data, vol. 1, no. 1, pp. 1–13, 2014.

[31] J. Fan, M. Jiang, C. Lin, G. Li, J. Fiaidhi, C. Ma, and W. Wu, “Improving
semg-based motion intention recognition for upper-limb amputees using
transfer learning,” Neural Computing and Applications, pp. 1–11, 2021.

[32] S. Thusneyapan and G. Zahalak, “A practical electrode-array myopro-
cessor for surface electromyography,” IEEE Transactions on Biomedical
Engineering, vol. 36, no. 2, pp. 295–299, 1989.

[33] V. T. Inman, H. Ralston, J. De C.M. Saunders, M. Bertram Feinstein,
and E. W. Wright, “Relation of human electromyogram to muscular
tension,” Electroencephalography and Clinical Neurophysiology, vol. 4,
no. 2, pp. 187–194, 1952.

[34] J. G. Kreifeldt, “Signal versus noise characteristics of filtered emg used
as a control source,” IEEE Transactions on Biomedical Engineering, vol.
BME-18, no. 1, pp. 16–22, 1971.

[35] Y. St-Amant, D. Rancourt, and E. Clancy, “Effect of smoothing window
length on rms emg amplitude estimates,” in Proceedings of the IEEE
22nd Annual Northeast Bioengineering Conference, 1996, pp. 93–94.

[36] M. Müller, Information Retrieval for Music and Motion. Berlin,
Heidelberg: Springer-Verlag, 2007.

[37] P. S. R. Diniz, E. A. B. da Silva, and S. L. Netto, Digital Signal
Processing: System Analysis and Design, 2nd ed. Cambridge University
Press, 2010.

[38] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing,
3rd ed. USA: Prentice Hall Press, 2009.

[39] S. K. Mitra, Digital Signal Processing: A Computer Based Approach,
1st ed. USA: McGraw-Hill, Inc., 1997.

[40] M. H. Hayes, Statistical digital signal processing and modeling, 1st ed.
John Wiley & Sons, 1996.

[41] S. Haykin, Communication Systems, 5th ed. Wiley Publishing, 2009.
[42] ——, Neural Networks: A comprehensive foundation, 2nd ed. USA:

Prentice Hall, 2004.
[43] P. S. R. Diniz, M. L. R. de Campos, W. A. Martins, M. V. S. Lima, and

J. A. Apolinário, Jr, Online Learning and Adaptive Filters. Cambridge
University Press, 2022.

[44] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2nd ed.
USA: Wiley-Interscience, 2000.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

8


