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Abstract—Wind power has gained increasing attention as a
rapidly growing source of sustainable electricity generation.
As variable renewable energy, however, its reliability, stability,
and efficiency depend on factors such as wind speeds, air
density, and turbine characteristics. As a result, an effective
energy management strategy requires the accurate forecasting of
wind power generation. Machine learning approaches have been
applied to forecasting wind power generation, but their proper
fine-tuning is still not fully understood. In this work, we trained
using 5-fold cross-validation and fine-tuned using a GridSearch
tree-based machine learning models, namely, Extreme Gradient
Boosting (XGBoost) and Random Forest, for the forecasting of
wind power generation. We evaluated XGBoost and Random
Forest using data from the Cristaldndia wind farm in Brumado-
BA. The results suggest that tree-based models can accurately
forecast wind power generation. Since they are relatively simple
and easy to train when compared to machine learning models
based on neural architectures, tree-based models are competitive
approaches to forecast wind power generation.

Index Terms—Machine learning. Prediction. Linear Regres-
sion. Random Forest. XGBoost.

I. INTRODUCTION

2Renewable and sustainable electricity generation has
gained increasing attention worldwide [1]. In Brazil, hydro-
electric plants play a crucial role in electricity generation,
corresponding to 65.2% of its electricity matrix in 2020 [2].
However, the lack of regular rains has led to a water crisis
that increased the search for other renewable energy sources
such as wind, biomass, and solar. Among those sources, Wind
power rapidly emerged as an outstanding alternative.

According to the Brazilian Energy Operation Plan 2020,
wind power generation will grow 11% in 2024 [3]. Besides,
the Brazilian Wind Energy Association highlights that wind
power is the second-largest contribution to the electricity
matrix in Brazil, which has 795 wind farms with 21.5 GW
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of installed capacity [4]. However, this power generation
modality depends on ever-changing wind availability over the
year. Such fluctuations in the wind patterns affect the power
generation efficiency and require power substitution from other
sources that might not be available in the short term, e.g., coal
plants. Accurately forecasting wind power generation arises as
a challenging and relevant task.

In this work, we use artificial intelligence to build a fore-
casting model of wind power generation for the Cristalandia
wind farm in Brumado-Brazil. The machine learning model is
represented in Figure 1. With this model, we aim to reduce
the economic losses regarding the power generation deficit in
the wind farm, which has an installed capacity of 90 MW
and consists of 45 wind turbines with a nominal power of 2
kW. The motivation for choosing this wind farm regards its
importance to the local economy, e.g., its power generation can
serve around 170,000 families [5]. Also, Cristalandia has open
data on daily wind generation, in addition to the anemometric
tower in Brumado.

Fig. 1. Forecasting wind power generation model.
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By developing a forecasting model for the daily wind power
generation, we expect to provide the following benefits to the
company that manages the wind farm:

o Create more effective predictive maintenance plans;

o Define energy efficiency projects;
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« Avoid paying fines to the concessionaire due to the power
generation deficit;

o Monitor whether the enterprise is supplying the genera-
tion value foreseen in the project;

« Through energy efficiency projects, increase the availabil-
ity of transmission lines.

This work is organized as follows: in Section I (Intro-
duction), we present the problem, motivation, proposal, and
contributions of this work. Section II (Related Work) lists
the published works related to the forecasting of wind power
generation. Section III (Materials and Methods) presents the
dataset and methodology used in this work. In Section IV
(Results), we present and discuss the results achieved, and
in Section V (Conclusion), we make the final considerations
about the study developed.

II. RELATED WORK

In the scientific community, studies about the forecasting
of wind power generation gained prominence as the countries
started investing in renewable energy sources.

Demir and Tasgct [6] used machine learning-based ap-
proaches to forecast the power generated by a wind turbine.
They used the following algorithms to perform the power
forecasting: linear regression, polynomial regression, decision
tree, AdaBoost, and random forest. Those algorithms were fed
with wind direction and speed data, collected for 12 months in
2018 at a 10-minute sampling rate. The metric R? was used to
evaluate the forecasting models, and linear regression achieved
the best results.

Ahmed et al. [7] also used linear regression models to
forecast wind generation. However, the wind speed data was
the only input available. Also, the study focused on using
Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Root Mean Squared Error (RMSE) metrics to evaluate
the forecasting.

Chen et al. [8] combined deep learning and genetic al-
gorithms to perform wind power forecasting. They trained
convolutional neural networks using different algorithms, e.g.,
backpropagation, and genetic algorithm. They used the metrics
Mean Absolute Percentage Error (MAPE), RMSE, and R? to
compare different training algorithms for wind power forecast-
ing. The forecasting models were fed with wind direction and
speed data, collected for 65 hours in July 2017 at a 10-minute
sampling rate. The genetic algorithm provided the best training
performance.

Vaitheeswaran and Ventrapragada [9] and Niu et al. [10]
forecast the wind generation with gated recurrent units. The
former evaluated the forecasting models with MAE and used
the following input variables: wind speed, wind direction, wind
cube height, time of day, seasonal index, and horizon index.
On the other hand, Niu et al. used wind speed, direction,
temperature, pressure, air density, and seasonality as input
variables. The resulting models were evaluated by metrics such
as Normalized Root Mean Square Error (NRMSE), MAPE,
and Coefficient of the Variation of the Root Mean Square Error
(CV-RMSE).

Dong et al. [11] used deep and traditional machine learning-
based models to forecast wind power. The deep learning
models were recurrent neural networks with long short-term
memory cells, which are suitable structures for tasks regarding
time series. The recurrent neural networks were compared
with other machine learning models: linear regression, random
forest, and gradient boosting. In this study, only the wind
speed fed the forecasting models. The metric used to evaluate
the model was the MSE, and the deep learning-based models
achieved the best results. Chandran ef al. [12] also used deep
learning for this task. Their forecasting models were based on
Long Short-Term Memories (LSTMs), Gated Recurrent Units
(GRUs), and Recurrent Neural Networks (RNNs), using input
variables such as temperature, wind speed, and wind direction.
The MSE was the evaluation metric as well.

Demolli et al. [13] also used machine learning-based ap-
proaches to perform wind power forecasting. The authors
performed a Least Absolute Shrinkage and Selection Operator
(LASSO), k-nearest neighbors, Extreme Gradient Boosting
(XGBoost), random forest, and support vector machines.
Those models performed the forecasting by using wind speed
and turbine data as input information. They trained the fore-
casting models with data collected for four years at a 1-hour
sampling rate and used R?, MAE, and RMSE as evaluation
metrics. In Fahim et al. [14], wind forecasting is performed
by artificial neural networks and XGBoost algorithms, with
wind speed and power as inputs and RMSE as an evaluation
metric.

These paper have as contributing use only weather data
to do wind power generation forecast with RMSE, MAE
and R? how metrics and using Linear regression, XGBoost
and Random Forest like the machine learning models. These
algorithms had as input wind speed data and wind direction
how long 2018-2021 as wind power forecasting daily average.
The results obtained was wind power forecasting average one
day forward.

III. MATERIALS AND METHODS

We used weather and wind power generation data to train
and evaluate the artificial intelligence models. A total of 1,097
daily samples were collected from the Cristalandia wind farm,
in Brumado-BA, from January Ist, 2018 to January 1st, 2021.
The weather data source was the Brazilian National Institute
of Meteorology [15], and the wind power generation data
were obtained from the Brazil’s National Grid Operator [16].
The wind power generation data contained the wind power
generation (Figure 2.a), and the weather data consisted of the
wind speed (Figure 2.b) and wind direction (Figure 2.c).

A. Data preprocessing

Both weather and wind power generation data presented
missing data. Thus, we performed data imputation using the
moving average method where the solution of missing value
is the average of five numbers prior to them.

We normalized the data to the range [0, 1] through
MinMaxScaler function contained in sklearn library based on
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Fig. 2. Daily wind (a) power generation dataset, (b) speed dataset and (c) direction dataset.
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Equation (1).

Xi - Xmin

X =
Xmar - Xmin

(D
Where X’; is the rescaled value, X; is the original value,
X,nin the minimum value in feature and X,,,, is the maxi-
mum value in feature.
It provides the time series a consistent scale and can improve
the performance of machine learning-based algorithms.

B. Forecasting models

Section II presented some algorithms commonly employed
in wind power forecasting. Algorithms based on deep learning
tend to perform better, especially when dealing with a complex
and large amount of data. However, they impose a high
computational burden on the process. As seen in Subsection
III-A, our dataset consists of 1,097 low-dimensional samples.
Thus, by using regular machine learning models, e.g., linear

regression, random forest, and XGBoost, we achieve satisfac-
tory results with less computational burden. Those models are
presented in the remainder of this Subsection.

1) Linear regression: Linear regression is a supervised
machine learning algorithm used for regression tasks. It maps
a set o input values x to output values y by a linear function
whose parameters are learned from data [7]. Equation (2)
illustrates the linear regression model.

y(t) = a0+ a;-ai(t) +r(t) ©))
i=1

in which y(¢) is the predicted value, z;(¢) are the input values,
and r(t) is the residual value at time ¢. a; are the linear
regression parameters.

2) Random forest: Random forest is a supervised machine
learning algorithm suitable for classification and regression
tasks. It is a set of decision trees trained with random samples
extracted from the complete dataset. Concerning regression
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tasks, the Random Forest returns the average forecasting of
the individual trees [17], [18].

This algorithm presents some advantages: it optimizes the
use of computational resources by allowing parallelization,
and deals with noisy data better than other machine learning
algorithms. However, since the random forest consists of a
large combination of trees, it compiles slowly and requires a
lot of computational memory [19], [20].

3) EXtreme Gradient Boosting: XGBoost is a supervised
machine learning algorithm used for classification and regres-
sion tasks. It is a decision tree-based ensemble algorithm that
uses a gradient boosting framework.

In this algorithm, decision trees are created in sequential
form. Then, weights are assigned to all independent variables,
which feed the decision tree for forecasting. The weight of
variables wrongly predicted by the tree increases, and then
these variables will feed a second decision tree, repeating the
process.

XGBoost outperforms other machine learning-based algo-
rithms in problems with small-to-medium structured data.
Also, it is a resilient and robust method that prevents and
cubs over-fitting quite easily. However, this algorithm does
not perform well on sparse and unstructured data. Besides, it
is sensitive to outliers since every classifier is forced to fix the
errors in the predecessor learners [21].

C. Hyper-parameterization

We split the data into training and testing sets to perform the
hyper-parameterization. The proportion was 80% of samples
for training and 20% for testing. To determine the best
hyperparameters for each forecasting model, we used the grid
search algorithm with 5-fold cross-validation [22], and for
each technique we performed the grid search 30 times to
achieve more reliable results. The hyperparameters assessed
in this process were: tree depth and number of trees. Table I
lists the hyperparameters regarded in this process and their
respective range of values.

TABLE I
MACHINE LEARNING PARAMETERS AND LEVELS.

Technique Parameters Levels

Random forest ‘
XGBoost Tree From 10 to 130, step 30
Random forest .

XGBoost Maximum depth ~ From 2 to 10, step 2

In order to carry out the comparative analysis of different
configurations of the studied models, we selected the root
mean squared error (RMSE) and mean absolute error (MAE)
metrics to assist the choice of the forecasting model with the
best performance, that is, the most accurate model. The choice
of metrics was justified, as they were present in most of the
related works [7]-[10], [13].

The RMSE is obtained when the difference between the true

value and the predicted is squared to then takes the square root
of the average of these values like represented on Equation (3).

3

y; 1s the true value, ¢; the predicted value and n corresponding
the sample size.

The MAE is the average of module difference between true
value and the predicted as represented on Equation (4) [23].

1 n .
MAFE = ZZ lyi — 9il “
i—1

The R? is the coefficient of determination regression score
function. How much more the R? approaches of 1.0 the better
the forecasting model. R? can be represented in Equation (5)
[23].

Ri(y.g) = 1 - T 0 )
b - n —
>im (Wi —9)?

A baseline was also selected for comparison purposes, the
linear regression technique.

IV. RESULTS

Our first step was calculating the baseline using the linear
regression technique. We adopted the grid search to choose
the best fitting regression technique parameters [24]. Table II
lists the average grid search results for the linear regression
baseline. We observe that setting the intersection parameter
to True provided the lowest forecasting errors regarding both
metrics. The R? presented the better value 0.465252 what it
means that the variance of generation is few explained by X.

TABLE 11
MAE, RMSE aND R? OF
linear regression FOR
DIFFERENT INTERSECTION VALUES.

True False
MAE 0.134552  0.137738
RMSE  0.169004 0.174679
R2 0.465252  0.423481

Figure 3 presents the grid search results for XGBoost and
random forest. According to both RMSE and MAE metrics,
the XGBoost achieved the best performance for a maximum
depth equal to 2 (Figure 3.a and Figure 3.c). On the other hand,
the number of trees was different regarding each metric. While
the RMSE, which penalizes the most significant individual er-
rors, suggested that 40 trees provided the best results, the MAE
suggested 70 trees. This way, we can assume that by using
40 trees, the absolute error slightly increased regarding the
configuration with 70 trees, but the most significant forecast
errors were reduced.

For parallel runtimes models machine learning we repre-
sented the Table III. How hoped the linear regression have
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Fig. 3. Grid search result for (a) XGBoost - RMSE, (b) random forest - RMSE, (c) XGBoost - MAE and (d) random forest - MAE.
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the smaller runtime because is a simple model where relates
linearly independent variables with dependent variables doing
then your runtime be little [25].

TABLE III
RUNTIMES IN SECONDS OF MODELS MACHINE LEARNING

Models Mean fit time ~ Mean score time
Linear Regression 0.0042 0.0024
Random Forest 4 - 130 1.1425 0.2844
XGBoost 2 - 40 0.0608 0.0032
XGBoost 2 - 70 0.1833 0.0194

TABLE IV

RMSE AND MAE RESULTS FOR THE
SELECTION OF ANALYZED MODELS.

Models RMSE MAE

Linear regression 0.169004  0.134552
Random forest 4-130  0.162119  0.129373
XGBoost 2-40 0.167933  0.135295
XGBoost 2-70 0.168127  0.135000

Table IV summarizes the results achieved by the best config-
uration of each forecast algorithm regarding the RMSE and
MAE. We observe that the random forest presented the best
performance for both metrics. The RMSE of random forest
was about 3.5% lower than the second-best result, achieved
by the XGBoost with 70 trees and a maximum depth of 2.
The MAE, on the other hand, was about 3.9% lower than the
second-best result, achieved by the linear regression baseline
with intersection parameter True.

Concerning the random forest, both metrics suggested that
the best configuration of hyperparameters was the maximum
depth four with 130 trees (Figure 3.b and Figure 3.d). The
performance of random forest is depicted in Figure 4, which
shows the daily wind power forecasts for the algorithm with a
maximum depth of four and 130 trees. They suggested that
this configuration was the best one to reduce the absolute
forecasting error and the variation among the individual errors.
We choice these model too because random forest allow
optimize parameters besides is a algorithm of high perform
precision and for the lenght sample was needed little storage
of computacional memory. The random forest describe well
phenomenous that have missing data how the case study where
sometimes anemometric tower can’t measure winds speed.

When compared with random forest the linear regression
is most fast but the linear regression have limitations in
your model like impaired precision due outliers and the daily
wind energy generation have big variance due winds speed
oscillation.

Then when we go select a model for describe one problem
first is need understand the nature of phenom and your
behavior to that the machine learning model be consistent with
case study.

V. CONCLUSION AND FUTURE WORK

The wind is an attractive alternative energy source since
it is natural, renewable, relatively cheap, and carbon-free.
In principle, it is possible to produce energy from wind
turbines every day. Even systems that require the energy to be
continuously supplied can exploit wind energy. However, using
wind energy is challenging because it demands a high initial
investment in analysis before establishing a wind plant. Some
challenges are the varying wind period, the distance of wind-
efficient areas to the national grids, and its environmentally
disruptive effects.

Regarding these challenges, this study used machine learn-
ing algorithms to perform wind power forecasting based on
daily wind speed and direction data. In particular, we used
data from the Cristalandia wind farm in Brumado-Brazil. The
classification algorithms used to forecast wind power were:
linear regression, random forest, and XGBoost. The results
showed that the best algorithm to fit wind power is the random
forest using the number of trees equal to 130 and depth equal
to four.

An essential outcome of this study is that machine learning
algorithms can be successfully used to forecast wind power
production based on wind direction and speed. So, before
establishing wind plants in an unknown geographical location,
it is reasonable to use our approach to forecast wind power
based on local data.

This study suggests that machine learning models may be
used to forecast daily average wind power production. Further
we can a good wind power forecasting only using weather as
input and understanding how the o behavior of phenomenon
have relationship for use the better machine learning model
these choice is very important in construction of a artificial
intelligence project. However, ensemble solutions combining
machine learning and deep learning may provide better results
and are worthy of exploration. Another relevant topic to be
studied is adopting others time windows for forecasting. Our
result only forecasts wind production to the next day; however,
we can evaluate our model to predict the next three days or
one week, for instance. Finally, we can apply our method to
evaluate data from other farm plants worldwide.
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