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Abstract—Two-phase flow through porous media is a complex
problem since changes in the porous media geometry can cause
a significant impact on the fluid flow. The geometry change
affects the system permeability of each phase, which is the
coefficient linking the flow rate response to an imposed pressure
differential. The phase permeability is also a function of the
system saturation (ratio between the phases). This flow is costly
to predict through direct simulation methods. Moreover, it
is tricky to compute the two-phase flow behavior by simpler
methods due to the high variability associated with geometry
and fluid properties. In this work, we take 2D porous media
images as input. We consider the porous media to be initially
fully saturated with oil. Water is injected on a porous media
side to displace the oil to the opposite extreme. We assembled a
neural network system using the DeepONet concept to predict
the volume of oil produced over time. The networks demonstrate
to calculate the total oil produced presenting a small relative
error.

Index Terms—Neural Networks, VGG-16, DeepONet, Oil
Production, two-phase flow, porous media

I. INTRODUCTION

Porous media are solid structures with empty regions,
which can be connected, such as rocks and sponges. In the
cases where the voids are connected, fluid flow can happen,
which produces applications ranging from filtration to aquifer
exploration to petroleum extraction. Oil recovery is a process
that submits the oil stored in rocks to a pressure differential
to force the fluid to come out through the production well.
Therefore, this activity associated with porous structures
leads to the investigation of flow through rock-like porous
media.

The inference time of machine learning methods is sig-
nificantly lower than the convergence time of direct numer-
ical methods that solve physical modeling. Aiming to save
computational resources, several works have been employing
machine learning algorithms to approximate certain func-
tions, parameters, or system states. Recently, some works
employing computational intelligence appeared to infer rock
properties related to fluid flow. Wu et al. [1] used convolu-
tional neural networks (CNN) to estimate the permeability,
which can be interpreted as the inverse of the resistance to

fluid flow, of a 2D porous medium image. The traditional
approach would require a flow simulation using a direct
solver. As permeability is the measure linking the flow rate to
the pressure differential, the simulation solution allows us to
calculate the permeability associated with the image. [1] took
the CNNs characteristic of learning patterns from images and
built a CNN architecture to infer the permeability associated
with the porous media image. The porosity and the surface
area of porous media were also accounted as inputs of the
[1] networks. Wang et al. [2] developed a U-Net model [3]
to assist the direct simulation of fluid flow in porous media.
Although the fluid flow prediction using the network is not
accurate enough, it produces a field that is a good initial guess
for the direct simulation method, reducing its convergence
time. Tembely et al. [4] applied machine learning methods
to predict rock permeability based on 3D images obtained
using microtomography. Zhou et al. [5] employed a super-
resolution network to improve the flow field of a coarse grid
direct simulation. In this way, [5] performed a cheap direct
simulation to be improved by the neural network system.
Santos et al. [6] developed a deep neural network to predict
the flow velocity field in 3D porous media images.

Although some works regarding flow through porous me-
dia have been developed, we have not found any work
concerning the flow properties estimation in two-phase flow
systems using machine learning tools directly from porous
media images. The physics behind two-phase flow in porous
media involves capillarity effects [7] that appear on the
interface of fluids and viscous effects. As capillary forces
depend on interface curvature, flow streams of a displacing
fluid meeting multiple channels may not displace the initial
fluid of all channels. As pressure builds up and the displacing
fluid invades the neighboring channels, the resisting channel
cannot have its filling fluid displaced since there will not be
a pressure differential between its extremities. This behavior
brings high variability in the two-phase fluid flow in porous
media and makes system analysis complex. Water flooding is
a common technique of enhanced oil recovery [8], [9]. This
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Fig. 1. Graphical overview of the developed system. We generate a dataset of porous media to estimate the volume of oil displaced by a water injection
process.

technique consists of injecting water into a well to improve
the oil production at the producing oil well. The two-phase
flow in a porous media of water displacing the oil stored
in the rock happens in the pore-scale of the water flooding
process. The determination of the oil recovery factor, which
determines the percentage of the oil that is stored in the
porous media can be extracted. This parameter provides rele-
vant information about a reservoir regarding its management.
This factor provides a reference to the volume of resources
that can be exploited in a field. There are experimental and
numerical approaches to performing the estimation of the oil
recovery factor [10]–[14]. The experimental process involves
displacing oil in a porous medium with another fluid, which is
expensive and time-consuming [10]. The numerical approach
uses inferences from statistical methods [10]–[13], which
rely on measurement data to develop a model. Han et al.
[10] proposed a model based on support vector machines
combined with particle swarm optimization. Their analysis
evaluated geological variables, such as permeability, to pre-
dict the oil recovery factor. Other works [15]–[19] developed
models analyzing the variables and their importance to their
prediction.

CNNs are notoriously known for extracting patterns from
images [20]–[24] and performing tasks, such as image
classification, semantic segmentation, and object detection.
Therefore, it is natural to try to use these architectures
to develop systems that consider image-like inputs. It is
possible to train entire networks from scratch or leverage pre-
trained networks e.g. [25], [26], by fine-tuning or freezing
their weights and possibly adding extra layers tailored to
the desired application. Another network architecture is the
DeepONet [27], that was recently introduced to approximate
an operator between two independent functions. Therefore,
this architecture can build a structured connection between
the representation of different measures connected by the
problem, such as the domain variables and their boundary
conditions.

The goal of this paper is to introduce a machine learning-
based method to predict the volume of oil displaced by
the injection of another fluid into the porous medium. This
machine learning algorithm will predict the recovered volume
only from tomography-like images. We propose convolu-
tional networks and a DeepONet structure to perform the
desired intent consuming lower computational resources than
the traditional simulation methods. The proposed methods
presented relatively good performance considering the met-
rics adopted.

The remainder of this work is organized as follows. Section
II refers to the dataset used to develop the networks. Section
III discusses the methods applied, and Sec. IV presents
the discussion on the results. Finally, Sec. V states the
conclusions.

II. DATASET ASSEMBLY

The dataset employed in this work was constructed using
the results from Finite Element Method direct simulations.
It considers porous media initially filled with oil that is dis-
placed by the injection of another fluid. To build the dataset,
first, we generated images representing some 2D porous
media. These images were generated by setting a number of
ellipses in random positions. The image represents a porous
media with 14 mm height and 21 mm width as dimensions
in 165 by 248 pixels. The number of ellipses and their sizes
ranges from 30 to 70 and 0.8 to 1.5 mm, respectively. We
used uniform random distributions to define these values. The
conceived images have a black background with white shapes
distributed through its extension, as shown in Figure 2. The
white forms in the Figure 2 represent solid grains, where
fluid cannot flow through, while the black region represents
empty spaces or voids, where the fluid flow happens. Then,
we build the meshes based on the images. On the meshes,
we assign inlet boundary conditions on the image’s left
side, no-slip conditions on the top and bottom sides and the
edges of the solid grains, and a pressure point on a point
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in the bottom right corner. The inlet boundary condition is
a uniform pressure imposed. The no-slip condition imposes
null velocity. The pressure point establishes the referential
point where pressure is zero. Therefore, the inlet pressure
(pin) causes a pressure differential relative to the referential
point (po). This pressure differential (dP = pin − po)
drives the flow. The inlet boundary condition considers the
saturation of the displacing fluid as 1, which means that the
displacing fluid is injected with no mixture (single phase).

Fig. 2. Sample of image generated to simulate a porous media. The white
pixels represent solid grains, while the black pixels represent empty spaces
or voids.

The simulation using the Finite Element Method consid-
ered the momentum conservation and continuity equations
present in the Navier-Stokes formulation to solve the flow
field, Eqs. 3, 4, and 5. The interaction between the two phases
is computed by the chemical species diffusion equation, Eq.
6. In the equation system presented in Eqs. 1-6, the term ρ
is relative to the fluid density, µ to the fluid viscosity, t to
time coordinate, x and y to spacial coordinates, u and v the
velocity in the x and y directions, p to the pressure, and Sw
is the injected fluid saturation. The indexes 1 and 2 represent
the injected fluid phase and the initial oil phase respectively.

ρ = Swρ1 + (1− Sw)ρ2 (1)

µ = Swµ1 + (1− Sw)µ2 (2)

ρ
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∂Sw

∂t
+ v · ∇Sw = D∇2Sw (6)

We considered the physical parameters in the simulation
as ρ1 = ρ2 = 1000 [kg/m3], µ1 = 0.01 [Pa.s], µ2 =
0.1 [Pa.s], D = 1E − 10 [m2/s], dP = 1 [Pa]. The

simulations were run for 200 (∆t = 2s) time steps. Figure
3 shows the saturation at the last time step of the simulation
in the porous medium presented in Figure 2. The green area
is filled with the injected fluid, while the blue area is where
there is the reminiscent oil in the porous medium.

The constructed dataset is composed of 2274 samples. The
porous media images are the raw input to the system to be
developed, while the output is the volume of oil produced
over time. The produced oil volume is computed using Eq.
7.

V (t = T ) =

∫ T

0

∫ h

0

Sw(t, x, y)u(t, x, y)dydt|x = 0.021

(7)

[m]

[m]

Fig. 3. Last simulation time step saturation. The blue region corresponds
to places where the oil is trapped, while the green region corresponds to the
area filled with the injected fluid. In the initial time step, the porous medium
is fully saturated with oil (the image would be entirely blue for t = 0). The
fluid flows from left to right.

III. METHODOLOGY

In this work, we use feature extraction techniques as a
pre-processing step. The networks trained by pre-processed
features consume less memory during their training phase and
have a greater propensity to converge quicker than networks
trained directly by the porous media images. We used two
pre-processing tools to the image dataset, a trained autoen-
coder, and the pre-trained VGG-16 [25] network, which will
be explained in Subsec. III-A and III-B. The pre-processing
techniques produce separated processed datasets. Subsec.
III-C and III-D presents the networks employed to predict
the produced oil volume signal, which are a convolutional
network and a network based on the DeepONet concept.

A. Autoencoder

Autoencoders [28] are neural networks designed to take
some information on their input and give back similar in-
formation in their output. Its structure is composed of an
encoder that condenses the input features and then a decoder
that expands the information back. The encoder part of the
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network takes the input and has a descending number of
neurons in each of the encoder layers until it reaches the
bottleneck, which is the layer with the least number of
neurons in the entire network. The output of the encoder can
be interpreted as a representation of the input in a space with
reduced dimensions. Therefore, the encoder’s output can be
used to transform a dataset’s features. The decoder part of the
network has an ascending number of neurons in each layer
in a way that the entire network is symmetrical in relation
to an axis placed in the bottleneck layer. The output of the
decoder should be a representation of the input in the same
space. So, this network concept can also be employed for
denoising purposes. In this work, we use the autoencoder
concept to have a representation of the input images in a
reduced feature space.

The first layer of the constructed autoencoder flattens the
165 by 248 pixels of the image matrix in a vector and has
the same number of neurons as the number of pixels. The
second layer is the bottleneck with 1000 neurons. Finally,
the third and last layer has the same number of neurons as
the first layer and transforms their output back into the 165
by 248 matrix. So, this autoencoder transforms the images to
a 1000 dimensions space. Then, the autoencoder transforms
the dataset into a 1000 features dataset. This autoencoder was
trained using the binary cross-entropy loss, using the Adam
optimizer with learning rate lr = 1E − 3, β1 = 0.9, and
β2 = 0.999. We take 30% of the data to perform a validation
process during the training phase. The validation considered
the mean squared error as its metric. The autoencoder was
trained for 500 epochs without early stopping criteria. Figure
4 and Figure 5 show the loss and the validation values across
the training epochs.

training epochs

tr
ai

ni
ng
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ss

Fig. 4. Binary cross entropy loss evolution over training epochs for the
autoencoder training phase.

B. VGG-16

The VGG-16 [25] is a network introduced to classify
images of the imagenet [29] challenge. The VGG-16 archi-
tecture is split into two parts. Its first part is composed of
convolutional layers, while fully connected layers compose
its last part. We take the output of the convolutional layers to
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Fig. 5. Mean squared error loss evolution relative to the validation group
over training epochs for the autoencoder training phase.

transform the image dataset from a 165 by 248 matrix to a 5
by 7 by 512 matrix. This transformation not only compresses
the dataset features but also puts the dataset in a latent
space that has been successful as a feature extraction tool for
different problems [30]–[32]. Therefore, we employ the use
of this tool as a pre-transformation of the input dataset. The
imagenet VGG-16 was employed only as a feature extraction
method, meaning that we do not perform fine-tuning to its
weights.

C. Convolutional Network (CNN)

Convolutional Networks (CNN) [33], [34] are the standard
approach to dealing with image-like data. Therefore, we
use a convolutional network approach to estimate the oil
volume production over time. In this approach, we take the
dataset formed through the VGG-16 network. This dataset
passes through convolutional layers with filter size (2, 2) with
hyperbolic tangent activation function and padding. The final
layer has filter size (5, 7) with either ReLU or no activation
function and does not consider padding. All convolutional
layers have 200 filters. Table I compiles the configurations
of activation functions tested for the convolutional networks.

activation functions by layer
[tanh none]
[tanh relu]

[tanh tanh none]
[tanh tanh relu]

TABLE I
THE TABLE RESUMES THE CONVOLUTIONAL NETWORKS TESTED. IT

SHOWS THEIR LAYER’S ACTIVATION FUNCTIONS. EACH LAYER HAS 200
FILTERS.

D. DeepONet Network

The Deep Operator Network (DeepONet) [27] is a configu-
ration of the network developed to approximate operators G
that maps two independent inputs u and y, G(u)(y). [27]
shows using theorems that G(u)(y) can be approximated
through the dot product between functions of those inputs,
G(u)(y) ≈ f(u)·g(y). Then, [27] extrapolates the theorem to
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neural networks. Two separate neural networks approximate
the f(u) and g(y) functions. The vector output of those
networks is merged through a dot product operation to
reproduce the theorem statement. The functions f(u) and
g(y), as well as the networks that approximate them, are
called branch and trunk functions.

Inspired by the DeepONet concept, we developed a
network that takes as input information from the porous
media geometry in the branch network and trunk network the
values considering the previous oil volume predictions with
the time step of the current prediction. Figure 6 exhibits the
structure of the DeepONet network. As shown in the scheme,
this network takes three inputs to perform a prediction. The
‘input img’ is the input of the branch network. This input
can be either the dataset transformed by autoencoder or
the dataset transformed by the VGG-16. The trunk network
takes two inputs. Let us name the predicted signal as
q =

[
q(1), q(2), · · · , q(k − 1), q(k), q(k + 1), · · · , q(200)

]
.

The ‘input previous’ in the trunk network takes
the previous 15 time steps q values to predict
the volume in the next time step. Then, we take[
q(k − 14), q(k − 13), · · · , q(k − 1), q(k)

]
to predict

q(k + 1). Therefore, the prediction in this network type
is interactive, since it needs to know information about
previous time steps to infer the next one. The ‘input time’
is also in the trunk network and has the k + 1 value. We
evaluate the network performance by changing the number
of neurons (‘n neurons’) in the Dense layers, and the
number of filters (‘n filters’) in the convolutional layer.
The convolutional layer considers padding and the ReLU
activation function. The Dense layers consider the hyperbolic
tangent activation function, except the last two Dense layers
merged through the dot product, which adopts the ReLU
activation function.

IV. RESULTS

This work adopts the methods described in Sec. III to deal
with data from the porous media images and estimate their
oil volume production. We first transform the dataset using
the autoencoder, described in Subsec. III-A, and the VGG-16,
described in Subsec. III-B. Then, we use the two transformed
input datasets in the CNN and DeepONet systems, described
in Subsecs. III-C and III-D.

The dataset used to train and evaluate the system is com-
posed of 2274 cases, as described in Sec. II. This dataset was
split into three to perform the training, validation, and testing
tasks. Those datasets are composed of 1455, 364, and 455
cases, respectively. All systems were trained for a maximum
of 250 epochs, with stopping criteria of 50 validation checks
without a loss improvement. The loss considered for both
the training and validation processes was the Mean Squared
Error (MSE). The training procedure employs 256 samples in
each batch. We fix the algorithm’s random seeds to ensure the
results reproducibility. The CNN training process adopted the
Adam optimizer with learning rate lr = 1E − 4, β1 = 0.9,
and β2 = 0.999. Meanwhile, it was employed the Adam

input_img input_previous input_time

Dense(tanh)(n_neurons)

Dense(tanh)(n_neurons)

Dense(relu)(n_neurons)

Dense(tanh)(n_neurons)

Dense(tanh)(n_neurons)

Dense(relu)(n_neurons)

Conv1D(n_filters) Dense(tanh)(n_neurons)

Dense(tanh)(n_neurons)

q(k+1)

Fig. 6. Sketch of the DeepONet assembled. This network takes in three
inputs, respectively ‘input img’ with information of the porous medium
geometry, ‘input previous’ with the previous oil volume predictions in-
formation, and ‘input time’ with time step information. According to the
DeepONet concept, the network line emerging from ‘input img’ is the
branch network, while the line related to ‘input previous’ and ‘input time’
is the trunk network.

optimizer with learning rate lr = 9E − 4, β1 = 0.9, and
β2 = 0.999 to train the DeepONet.

The model evaluation considers the MSE and the R-
Squared coefficient (R2) of the signal predicted. We consider
the total volume of oil produced error as metric, given by
Eq. 8, in which Nt is the number of samples used for testing
purpouses, Vo is the volume of oil produced at the last time
step, and Vo is the predicted volume of oil produced at the
last time step.

ϵoil =

∑Nt

i=0(Vo − Vo)i/Voi

Nt
(8)

Table II displays the metrics for the CNN systems developed,
while Tab. III shows the metrics for the DeepONet systems
developed. The CNN hyperparameters adopted are described
in Subsec. III-C. We vary the DeepONet number of neurons
in the Dense layers from 10 to 90 neurons in each layer.
The number of filters in the convolutional layer is fixed
at 20 filters. Considering the three metrics analyzed, the
best model is the DeepONet with 70 neurons in each layer
and its input transformed by the VGG-16. Figures 7 and
8 show the volume over time estimate for the best CNN
model and the best DeepONet. The DeepONet model not
only presented the best metric values but also shows a smooth
prediction, in contrast with the CNN model prediction, which
is considerably noisy.

V. CONCLUSION

This work shows an approach to predict the oil volume
displaced by fluid injection in porous media using Neural
Networks. The dataset employed to develop the system was
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CNN system metrics
MSE R2 ϵoil

[tanh none] 0.002 0.866 0.073
[tanh relu] 0.091 -1852.353 1.000

[tanh tanh none] 0.002 0.887 0.070
[tanh tanh relu] 0.055 0.608 0.070

TABLE II
METRICS EVALUATED TO THE CNN SYSTEM. THE INPUT FOR THIS

SYSTEM IS DATASET TRANFORMED BY THE VGG-16.

Fig. 7. Prediction of the produced oil volume performed by the CNN model
for a test sample.

Fig. 8. Prediction of the produced oil volume performed by the DeepONet
model for a test sample.

constructed using the Finite Element Method to solve equa-
tions of mass and momentum conservation, and the diffusion
equation. We propose a system that takes images representing
2D porous media tomography. These images are subjected to
a feature extraction method that transforms the image to a
space that makes it easier to train the Neural Networks. Then,
we use the transformed dataset in the proposed Networks.
The proposal consists of a convolutional network and a
DeepONet to predict the volume of oil produced at the end of
the porous media. The combination of hyperparameters tested
achieved an apparent better performance in the DeepONet

model. Moreover, the prediction of the DeepONet showed to
be smoother than the convolutional system prediction.

Future works should incorporate an initial prediction
method in the DeepONet system since it needs previous steps
information. Then, it does not predict the first time steps.
We also plan to perform statistical measures of the models
to offer a more solid base to compare the achieved results.
Moreover, we should explore a dataset with porous media of
lesser permeability and porosity values, as explored by [10].
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