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Abstract—A common issue of DC and universal motors is the
quality of the armature circuit and the commutation process.
Some faults that could happen during the final assembly process,
such as a short circuit between two segments or a broken segment
in the armature’s commutator, may not be detected by a visual
inspection or the regular no-load end-of-line test. A more detailed
analysis, using the feedback of various auxiliary sensors, usually
requires implementing systems with more complex and expensive
hardware. It also may take longer to get a precise analysis, which
may not be suitable for the production process. As a method to
do a fast and accurate detection and classification of faults in the
armature’s circuit of universal motors, this paper suggests the
analysis of the armature voltage and current waveform by an
artificial neural network (ANN). The current and voltage signals
acquired during the no-load test formed a time-series waveform
that was applied to an ANN trained to classify the signal in
three possible outcomes: healthy armature, armature with short-
circuited segments, and armature with a broken part. The results
achieve effectiveness above 98% in the task of detection and
classification of faults. The solution was tested in the production
line of universal motors and proved to be fast, reliable, and
efficient for the usual no-load test, proving to be suitable in an
industrial context.

Index Terms—Artificial neural networks, fault diagnosis, uni-
versal motors.

I. INTRODUCTION

Although DC and universal motors have been replaced in
some industrial applications by induction motors driven by
power electronic circuits, especially for applications where ve-
locity control is needed, there are still applications where they
are preferred [5], [28]. To feed these machines with a direct
current, a process known as commutation is necessary, which
is responsible for periodically reversing the current flowing in
the individual armature coils to maintain unidirectional torque
as the armature coils move [5].

Maintenance problems at the armature circuit, formed by the
brushes, commutator, and armature winding, are common, as
it is in constant wear. Depending on the motor’s construction,
faults such as a short circuit between two commutator seg-
ments or a single broken segment do not cause the machine to
stop. However, these faults can compromise the commutation’s
quality, causing torque oscillations and excessive sparking,
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which causes rapid wear of both commutator and brushes [4],
[5], [27].

Many approaches have been developed through the years
for the monitoring, detection, and identification of faults in
the armature circuit [4], [7], [8], [12]–[16], [18], [20]–[22],
[24], [29], [30].

As failures in the commutation process usually result in
excessive sparking between the commutator and the brushes,
some standards, such as the IEC Technical Report 60638 [1],
suggest a visual inspection for assessing the quality of the
commutation. To make this analysis more objective, it presents
a pattern for classifying and grading the sparks to differentiate
regular sparking from dangerous and possibly fault-related
sparking. Although, there is no direct correlation between the
sparking level and format with a specific failure. But even
with a classification pattern, it is still in the subjective visual
accuracy of the inspector.

This study aims to identify the faults of an armature
with short-circuited segments and an armature with a broken
segment in the universal motor, considering the test scenario of
a no-load test in the production line. The results are based on
the impact on production line optimization, substituting tacit
knowledge with a more reliable, fast, and efficient solution.
The originality of this solution is not based on the theory
development but on the utilization of the standard voltage
and current motor signals for the diagnosis and the practical
application with almost zero modifications in the production
line.

Section II presents the fault characterization problem with
related solutions found in the bibliography, the difficulties, and
which characteristics of the universal motors could be used for
identifying the faults. Then, in Section III, the paper’s proposal
is exposed together with the test setup, and in Section IV, the
signal analysis, based on the selection of the neural network,
is shown. After that, Section V brings information about the
classification method, the data set, the training scenario, and
the effectiveness obtained. Lastly, Sections VI and VII show
the results of tests in the motor’s production line and the
conclusions, respectively.
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II. ARMATURE FAULTS INSPECTION PROBLEM

Through the years, several studies have proposed the re-
placement of visual inspection with a more precise and objec-
tive system.

One of the options studied was the usage of photo sensors
and cameras for fault-related sparking detection. [3] gets a
spark index from the response of an optical sensor, and [10]
uses a video camera image of the sparking at the brush-
commutator interface together with a vibration frequency
measurement for the investigation of excessive commutator
and brush wears. More recently, [12] uses a camera coupled
to the motor for each brush and determines the sparking
severity degree by analyzing its brightness, shape, color, and
distribution along the brush.

As the sparking phenomenon generates radio-frequency in-
terference, another method for getting a sparking level index is
using antennas and analyzing the magnitude and the frequency
of the received signals, as presented by [7] and [20]. Those
non-invasive methods could indicate a sparking level and
analyze its severity and frequency to find a possible motor
fault.

But, even though some faults present a characteristic form
in both methods, they could be more efficient in determining
what kind of failure has occurred. Furthermore, cameras must
be positioned on each brush for an adequate quality assessment
with image monitoring. Therefore, due to their proximity to
the motor, they can become covered with carbon dust, grease,
and other contaminants. RF methods also have some issues,
as they are susceptible to electromagnetic interference, which
may lead to system misjudgment.

Following the advances in data acquisition and analysis,
many approaches were developed for fault monitoring, de-
tection, and identification by the electrical signals’ direct
measurement.

For instance, [18] used the measurements of the input
and output signals of brushless DC motors for parameter
estimation. A difference between the estimated and the rated
parameters of the motor could indicate a fault. [16] expand
this concept using a multilayer perceptron neural network to
classify the fault type based on the identified differences.

Also working on parameter estimation of a signal through
time, [17] uses the DC motor current ripple to select the signal
component related to rotation ripple that could be used for fault
identification.

More recently, [30] and [8] expanded this concept for the
general DC motor using the feedback of many other signals
in the test setup, besides the ones taken from the motor,
to determine more complex faults. This concept sometimes
shows good discrimination between healthy and faulty signals.
However, it requires the reference of input and output signals,
a longer acquisition time, and a high computational cost.

Some studies used a direct signal evaluation instead of a
parameter estimation, as [13] and [14]. They use vibration
and current signature analysis for different types of motors,
including DC motors, for classifying as a healthy motor, a

motor with a short-circuit in the commutator, and a motor
with a displaced permanent magnet out of poles in the polar
axis. The suggestion is that this analysis be implemented in a
diagnostic procedure using a neuro-fuzzy system.

Also, [15] shows an interesting correlation between the
wavelet analysis of a DC motor current and an optical sensor
for sparking monitoring. Both studies show that the current
signal carries the fault information, and it may be possible to
use it as a diagnostic tool. Yet, the current signal alone could
not determine the fault, so the speed rotation feedback was
also necessary. Besides that, for a more generalized model
for different types of motors, a detailed analysis of the faulty
frequencies may be needed.

Some papers applied neural networks or fuzzy inference
systems as a classification method. [22] suggests replacing the
surge test for armature fault identifications with the frequency
response analysis method of the DC machine’s impedance.
Analyzing the impedance curve for all bars and frequencies,
they realized that the faulty and healthy curves for the armature
circuit presented some differences. It was used to classify the
fault type in a neural network, achieving a classification rate
of almost 90%.

Both [29] and [4] used fuzzy inference systems for the
identification and classification of faulty motors, in which the
former did a wavelet analysis of the transient startup current
from a DC motor and the latter did the measurement of the
current and voltage of a DC starter motor in a performance
test, getting a fault diagnosis success rate of 90%.

More recently, [24] uses the AdaBoost technique to classify
a brushless DC motor as healthy or faulty and also detects
an incipient failure with 97% accuracy. It uses a fast Fourier
transform (FFT) analysis of vibration and electric current
signals into the AdaBoost to identify a stator short-circuit fault.

Also, using an FFT analysis on the same signals, [21]
applies a neural network for determining the presence of
some faults in a three-phase motor. The accuracy ranged
from 92% to 100%, depending on the level of the network’s
featurization. The method also showed a fast response, even
when dealing with a high computational cost, which proved
to be an applicable method for the industry.

[17] compares the usage of a time-series current signal in a
Convolutional Neural Network and a wavelet transform for the
classification of magnetization faults in a Permanent Magnet
Synchronous Motor, obtaining above 98% effectiveness in
both methods.

Although these papers worked with other types of motors,
the AI concept for fault identification proved to be a precise
method for detecting faults. This indicates that using AI in
the classification process is a natural step for other types of
motors.

All these previous works show that electrical signals can
carry the fault information, and some methods exist to identify
it. Most of them used mechanical measurements, such as
rotation speed or vibration, or an output signal, as torque,
besides the electrical measurement and analysis. Yet, some
propose the utilization of many sensors, which can add com-
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plexity, increase test time, and make the system’s applicability
unfeasible in an industrial context. It is essential to note that
none of the previous solutions were applied online to the
production line or universal motors.

III. INSPECTION SOLUTION PROPOSAL

This study proposes a method for identifying the faults of a
universal motor during the no-load test using only the electrical
signals. The armature’s electrical voltage and current signals
time-series data are measured and analyzed by a multilayer
perceptron neural network. As the faults of short-circuited
segments in the armature or an armature with a broken segment
in the universal motor appear at each rotation, the analysis of
the time-series waveform of just a few turns could be enough
to characterize the faults. These features can provide a fast
and easy-to-setup test applicable in an industrial environment.

During a no-load evaluation of universal motors, faults
such as a short circuit between two segments or a broken
segment in the armature circuit may not be detected by a
simple measurement. Depending on the armature’s physical
characteristics, these faults could cause slight changes in the
current and voltage signals’ root mean square (RMS) values.

One indicator of these faults is the increased sparking in
the commutator. But, as sparking in the commutator of a
universal motor is a common phenomenon due to the armature
reaction, even a careful visual inspection may not detect the
commutation faults.

Therefore, there is a high risk that some commutator fault
may overcome the general no-load production line test. Al-
though these faults may cause slight changes in the RMS
values of the current and voltage signals, their waveform
presents a characteristic distortion due to a change in the
number of commutations at each rotation and a change in the
commutation time over the faulty segment. As the distortions
in the waveform at each turn carry the fault’s signature, an
analysis of the time-series waveform data of one or more
turns could be enough for a pattern identification artificial
intelligence algorithm to detect the fault.

Hence, the signals were analyzed for this development,
searching for the type, size, and characteristics that contain
sufficient information for the classification pattern develop-
ment. Both signals were tested as the universal motors can be
supplied with an AC or DC power supply. Then, the waveform
signals for the classification model were acquired. After that,
the development and training of the appropriate classification
AI algorithm aimed, as output, a classification of the motor as
healthy, open-circuited, or short-circuited.

A. Test Setup

For the data acquisition, development, and test of the
detection and classification system, a setup similar to the
production line test was assembled, as shown in Figure 2.

A relay activated by a multi-function I/O board was im-
plemented for starting the test (A). The motor supply current
was measured by an LTS 6 NP current transducer (B). The
output, armature, and field voltage signals were acquired with

a voltage transducer and a National Instruments voltage acqui-
sition module NI-9239 (C), configured with an acquisition rate
of 50kHz. For the data transfer, the TCP/IP communication
module cDAQ-9185 (D) from National Instruments was used,
enabling real-time data analysis by the software developed in
LabVIEW.

A test software routine was developed using LabVIEW for
data acquisition and control of the test’s start and stop. A
total of 30 healthy universal motors were available for this
development. The universal motor is a washing machine line
model [9], supplied by WEG, with the field and the armature
windings connected in series for the tests.

IV. SIGNAL ANALYSIS

The first analysis aimed to evaluate which signals’ charac-
teristics could be used for the motor’s condition detection and
classification. The armature voltage and current signals of six
universal motors were measured. Two of those motors were
healthy, and the others were faulty. Two motors had a short
circuit between two segments in the commutator, and the other
two had a broken segment.

Although the AC signals presented a harmonic distortion in
the waveforms corresponding to the faults described (Figure
1), it was difficult to establish a repetitive pattern for detection.
They presented very different distortion levels in the motors
showing the same condition. Therefore, the analysis could not
set a standard possible to distinguish a healthy motor from a
faulty one.

The DC signals showed an interesting pattern for the
classification, as the differences between the waveform of the
healthy motor and the waveforms of the two types of faults
exhibited different shapes and amplitudes, which was more
clear to identify. Figure 3 shows the armature’s voltage and
current signals in the three other conditions. Besides that, the
waveforms showed the same patterns among different motors.

In the DC signals analysis, it was also possible to determine
that the period of the fault’s signal is the same as the motor’s
rotation, as the faults in a commutator’s segment will appear
once in each motor turn. The size of the signal corresponding
to one complete turn of the motor was between 400 and 500
points due to slight differences in the velocity of the motors.

Because of that, the input array size used in the tests were
500, 1000, and 2000 points. These values correspond to the
period of one commutation cycle, two commutation cycles,
and four commutation cycles, respectively. From that, it was
possible to evaluate which data size would provide the best
relationship between the effectiveness and the analysis time,
a critical characteristic of this application.

V. CLASSIFICATION METHOD

As the objective is a pattern recognition model for classify-
ing a non-linear time-series input, an artificial neural network
(ANN) has been chosen. Emulating the brain architecture, an
ANN represents a class of non-linear models capable of learn-
ing from data. One successful and well-consolidated model
of ANN for pattern recognition is the multilayer perceptron
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Fig. 1. AC waveforms of the faults.

Fig. 2. Test setup - (a) relay, (b) current transducer, (c) NI-9239, (d) cDAQ-
9185.

(MLP), a straightforward type of neural network with a wide
range of applications.

Therefore, an MLP neural network was developed using
a backpropagation algorithm with stochastic gradient descent
(SGD) and momentum. The algorithm implemented in Lab-
VIEW 2017 was based on the multilayer perceptron presented
in [2] and [19], and the application of momentum in [23] and
[26] was used.

The proposed solution uses three layers of neurons (two
hidden layers and one output layer). The NN input layer is
a 1D array composed of the armature’s current and voltage
signals through time, as depicted in Section IV. The output
layer is formed by three neurons, corresponding to the motor
status of a Healthy Motor, a Motor with Short-circuited
Segments, and a Motor with a Broken Segment.

The activation functions for each layer were Sinusoid,
Softplus, and Sigmod.

Applying periodic activation functions, such as the sine
function, is uncommon and generally not recommended be-
cause they are monotonic and can often converge to local
minimums. However, the periodic functions in at least one of
the layers could be applied as a generic Fourier decomposition
of the main frequencies. [11] shows a neural network that uses
a sinusoidal activation function to fit repeating nonlinearities
in the data.

Considering the time-series data presented by the universal

motor classification problem, showing different frequencies for
each possible motor state, was adopted the sinusoidal function
at the first hidden layer.

The chosen architecture is fixed, so the number of layers
doesn’t change. However, it sought the best number of neurons
for each layer, choosing different implementations and varying
the number of neurons for each hidden layer, evaluating the
performance of every setup. These tests are summarized in
Section V-B.

Further, for the training, the neurons’ weights were initial-
ized randomly between 0 and 0.1 to avoid the problem of the
local minimum associated with the periodic function at the
first hidden layer. The benefits of a correct weight initialization
in a periodic function should provide faster learning than the
sigmoid function, as seen in [25].

A. Data Set

A total of 30 universal motors were available for data
acquisition. The acquired data were used for the NN analysis,
training, and performance test.

A test software routine was developed using LabVIEW to
execute the data acquisition using the test setup described in
Section III-A. The software acquires the armature’s voltage
and current signals for 0.3 seconds, a sufficient period for
acquiring at least ten complete motor turns. This period could
provide enough cycles to evaluate the motor’s condition, even
if part of the signals presented some electrical noise that could
lead the analysis to a wrong response. After that, the routine
turns the motor off and waits 2 seconds for the complete stop,
ending the acquisition cycle.

Ten consecutive acquisition cycles were measured in each
of the 30 healthy motors. After that, in 10 of these motors,
a short circuit between two commutator segments was put.
In another ten, it was cut one of the commutator’s segments
generating the open circuit fault.

For each one of these faulty motors, ten acquisition cycles
were executed.

After all these tests, a total of 500 signals were acquired
and were separated for the training process as follows:

• 20% of the data for the validation;
• The 80% left was split in half:
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Fig. 3. DC waveforms of the faults.

– 200 signals for the training;
– 200 signals for the performance test;

This separation was based on [6], which recommends using
a ratio between the training and test data in the range of 50/50
to 70/30 for obtaining a network optimally generalized and
trained.

B. Training and effectiveness

The ANN training was implemented, varying the parameters
of the input signal size, input signal type, and the size of the
hidden layers, seeking the best performance.

The graphs in Figures 4, 5, and 6 represent the results for
the three different input signals. The x-axis and y-axis in each
graph represent the number of neurons in the hidden layers,
the colors of the points are the effectiveness values, and the
number above each point is the input array size.

Using armature voltage as an input signal shows low success
at training performance, frequently falling in local minimums
and presenting maximum effectiveness of 85% (Figure 4).

The armature current signal presented better results than
the armature voltage, obtaining results between 84% and 98%
effectiveness (Figure 5).

The best result was achieved in using a composition of
the armature’s current and voltage signals, presenting at least
97.25% effectiveness in classifying the motor in the three
possible outcomes and results between 99% and 100% when
classifying the signals as just healthy or faulty, without indi-
cating the problem (Figure 6).
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Fig. 4. Voltage Signal Results.

VI. CLASSIFICATION METHOD VALIDATION

The best four trained networks, which presented 100%
effectiveness in the test set, were applied in the validation test.
These networks were implemented into the final test software,
used in an environment closest to the production line test. This
test setup made possible the evaluation of the test effectiveness
and the analysis time.

The test was divided into four stages: starting the motor and
stabilization, acquiring data (voltage and current), turning the
motor off, and data analysis. Using the software developed
in LabVIEW, it was possible to identify the times of each

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

5



50 80 90
100

150

240

270

300

500

500

500

1,000

1,000

1,000

2,000

2,000

2,000

Number Neurons of Hidden 2

N
um

be
r

N
eu

ro
ns

of
H

id
de

n
1

75

80

85

90

95

100

Performance [%]

Fig. 5. Current Signal Results.
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Fig. 6. Voltage and Current Signal Results.

step and assess the impact of the test on the production line.
Figure 7 presents a graph of the test time at each step.

The effectiveness results for all four networks presented
values above 90% and effectiveness of 98% as the best result.
The network got an incorrect outcome in only two cases, where
a short circuit between segments was identified as a broken
segment. However, the ANN still signaled the motor as a faulty
motor. The differences in the deepness of the networks under
test caused a slight variation in the total testing time, but all
times presented were small enough not to represent an issue
on the production line time.

The solution was integrated into the production line, pro-
viding an objective and fast way to classify the armature
faults. Figure 8 shows a motor under test with the software
user’s interface showing the result of it, correctly detecting the
problem.

Fig. 7. Test time.

Fig. 8. Software’s interface and motor under test.

VII. CONCLUSION

A solution was developed for detecting and classifying
universal motors’ armature faults in the production line using
AI. It focused on identifying a short-circuit between segments
and a broken segment of the commutator, types of faults that
could pass unnoticed in the fast and general no-load tests.

The implemented neural network could correctly detect an
armature fault in all tested motors. Also, it could classify in
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one of the two described problems with 98% efficacy, replac-
ing a subjective visual test with a reliable and objective one.
The fault classification could also accelerate the process of
fault investigation, indicating what kind of fault has occurred,
leading to a more precise action course for solving it.

The method was implemented in the production line with
a no-load test, using the measurements of the armature’s
voltage and current signals. Using only the electrical signals
allowed the new detection method to be implemented without
additional hardware or mechanical coupling.

Besides that, the method proved to be fast, with less than
200 ms analysis time, so the total test time was similar to
the usual production line test time, assuring quality with a
low impact on the production rate. Those characteristics were
essential for a fast and low-cost test that could be implemented
in an industrial environment.

It’s possible to conclude that using just the electrical signals
time-data array with an ANN is sufficient for evaluating the
faults of short-circuit between two segments and a broken
commutator segment in a regular and fast no-load test, where
these faults may not be evident.
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