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Abstract—Malicious software (malware) is a relevant cyberse-
curity threat, as it can damage target systems, hijack data or
credentials, and allow remote code execution. In recent years,
researchers and companies have focused on uncovering distinct
methods for malware detection to avoid system infection. This
paper assesses a method that employs opcode sequence analysis,
Graph Theory, and Machine Learning to identify malware on
Portable Execution files without the need for execution. An
approach used by many researchers is to find patterns through
the opcode sequences of a file and use some Artificial Intelligence
based strategy to classify the file as malware or benign. In
this work, we introduce the OSG (Opcode Sequence Graph),
a concept for malware detection based on Opcode Sequence,
Graph Theory, and Artificial Intelligence with two new methods:
the OSGT (Opcode Sequence Graph Theory) detector and the
OSGNN (Opcode Sequence Graph Neural Network). The OSGT
extracts the opcode sequence linearly, creates a graph for each file
section, calculates features from a combination of Pagerank and
node degree of each section, and uses ensemble learning to classify
the files. The OSGNN logically extracts the opcode sequence to
construct a control flow graph, uses the longest available path to
create a graph, and applies a graph neural network to classify
the files. We also propose a novel dataset composed of 28,000 files
that contain 14,000 updated malware and 14,000 trusted portable
executable Windows files. The experimental results show that
both methods outperform the baseline methods and provide up
to 99% malware detection. The outcomes of this study shows that
the OSGT is suitable for real-world application considering the
processing time and malware detection capacity, and the OSGNN
achieves state-of-art detection capacity for malware with an extra
cost of computational cost.

Index Terms—Malware detection, Opcode sequence, Graph
theory, Opcode graph, Feature Extraction

I. INTRODUCTION

Recently, many people use the internet in the most diverse
ways possible, such as accessing social networks, performing
instant banking transactions, and buying online items. For
this reason, criminals also act in the virtual world, using
technology to commit virtual crimes and spread malware to

Identify applicable funding agency here. If none, delete this.

access confidential data of people and companies. Malware
is a software that intentionally executes malicious payloads
on victim machines with different goals, such as damaging
the targeted system, allowing remote code execution, data
hijacking, stealing confidential data, etc [1].

To avoid unwanted malware execution, and of course be a
victim of cybernetic attacks, this work proposes a framework
to identify malware on Portable Execution (PE) files. The
relevance of the proposed method relies on identifying the
malware before its executing, i.e., the PE file does not need
to be executed to evaluate if the file is a malware or not.
We present two different methods that rely on extracting the
opcode sequence from files, create a graph that represents the
opcode sequence of a file, create features from the graph,
and train a binary classifier to identify if a file is trusted or
malware. To evaluate the performance on real world scenario,
we compare multiple evaluation metrics of the proposed
methods against two variations of Long Short-term Memory
(LSTM) Recurrent Neural Networks depicted along this paper.
The main contribution of this paper are:

• The method to convert the opcode sequence of a PE file
into a single or multiple graphs;

• The featurization process based on an opcode sequence
and its graph representation;

• Using a graph neural network or an ensemble tree-based
method for classification for malware detection;

• Evaluation of processing time on different disassembler
methods for real-world usage;

• A real-world dataset;

The proposed work is relevant to both academia and real-
world usage as it introduces two different methods for malware
detection without the need for file execution, and it explores
and compares the usage of a graph representation of opcode
sequences for PE files using different disassembling, featur-
ization, and classification methods.

In the malware files investigation, there are two techniques
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to determine if the software has malicious behavior, such
as static and dynamic analysis [2]. While the static method
examines a program without executing it, the dynamic analysis
must run the malware using virtual machines or a sandbox. In
this paper, we explore the static method as a way to parse
the portable executable file (PEFile) using the disassembly
process.

Disassembling software reveals opcode sequences that are
useful for a binary classification between benign and malware.
Opcodes are machine instruction codes that specify the CPU
to operate internally [3]. Traditional approaches to static
detection are signature-based [4], which consists of comparing
file bytes against a database of malicious files. Although it
is a simple method, it becomes ineffective for malware with
new variants and mutations. In these cases, opcode-based
approaches are more efficient, as they are concerned with
parsing the machine instructions in the file’s source code.

Many approaches use opcodes as a feature to create ad-
vanced machine learning models for static malware detection
[5]–[16]. For opcodes feature extraction the file sample needs
to be dissasembled, and it is not trivial considering that an
opcode sequence might have an extended length. Thereupon,
the opcodes features can be extracted in two ways, using linear
order or logical order. In the first case, the opcodes sequence
is stored in a one-dimensional array, in which the operators
are in the same order as they appear in the source code. In
the second case, the opcodes sequence is a control flow graph
(CFG), which follows the logical flow of operator instructions
execution.

The use of opcode sequences to identify or classify malware
is a common technique among many works [5] [6] [7] [8]
[9] [10] [11]. More closely related to this work, there are
multiple studies that use opcode sequences as a text to apply
Natural Language Processing (NLP) on malware detection or
classification.

On [17], the authors classify malicious code using continu-
ous bag-of-words model (CBOW) in the word2vec method
to vectorize opcodes, a block selection method to reduce
analysis overhead, and a text convolutional neural network
(text-CNN) to classify the files. The highest accuracy achieved
on the Malicous Code Classification Challenge by Microsoft
on Kaggle [18] is 98,62%, and for the SOREL-20M dataset
[19] the accuracy among all classes varies from 100% to
86,26%.

[20] proposes a semi-supervised approach with deep learn-
ing, feature engineering, image transformation, and processing
techniques for malware detection. The work extracts features
from ASM files (opcode, segment, pixel count, number of
lines and characters), applies PageRank methodology on the
opcode sequence to select opcodes given scores threshold. The
pixel count is used to create grayscale images that represent
each file. The authors use an ensemble of three XGboost
models trained on different combination of opcode, segment
and secondary features, and a CNN model to classify images.
The ensemble model achieved an accuracy of 99,12% in the
Malicous Code Classification Challenge [18].

The work of [21] presents malware detection with a convo-
lutional recurrent neural network using opcode sequences. The
proposed method randomly extracts several opcode sequences,
applies a convolutional autoencoder to compress the opcode
sequences, and uses a dynamic recurrent neural network to
classify the target code. The evaluation was performed in a
dataset with 1000 benign and 1000 malware files, collected
from Windows 10 Pro System 32 folder and VirusShare.com
[22] respectively, and the method achieved an accuracy of
96.2%.

The method proposed by [23] use a word2vec based long
short-term memory (LSTM) network to analyze opcodes and
API function names. To disassemble the files the authors
uses the Interactive Disassembler Pro (www.hex-rays.com/
products/ida/) (which is a logical disassembler), but does not
provide the average, minimum or maximum time to disassem-
ble each file. The Microsoft Malware Classification Challenge
was used to validate the method, achieving 97.59% of accuracy
on malware classification, however, there is no analysis on
identifying malware against trusted files.

There are also several approaches to detecting malware
using graph-based techniques and opcode sequences. [12]
proposes the Sequential Opcode Embedding-based Malware
Detection (SOEMD). The method is composed of the follow-
ing phases: i) obtain the opcode sequence instructions using
diStorm3 [24] and create an opcode graph; ii) edge selection
to reduce the size of the graphs and extraction of short
random paths to indicated substructures in the opcode graph;
iii) opcode sequence extraction by performing random walk;
iv) node selection to select a node subset from each opcode-
subgraph; and v) sequence embedding to model the sequence
opcode patterns using a skip-gram model. The results show
that SOEDM achieved 100% true positive rate in identifying
malware or benign classes in the proposed VXHeaven-based
dataset.

The work of [14] proposes a method that disassemble
portable executable files (using the Distorm3 [24] disassem-
bler) into a sequence of opcode instructions to create a graph
that connects each opcode instruction with its neighbors.
From the created graph, many sub-graphs are created by
removing the edges that connect different opcodes, and a node
degree histogram is formed by the combination of the many
subgraphs, resulting in the feature vectors that are used to
train and evaluate the machine learning models. The authors
state that the proposed method achieves a detection accuracy
of 98% in the used dataset.

[13] introduces a ransomware detection method based
on opcodes and k-nearest neighbors. The work consists in
extracting the Control Flow Graph (CFG) from a file to
obtain the opcode instructions sequence. To create the feature
vector of a file, an N-gram algorithm is used on the opcode
instructions with N from 1 to 4, and a K-Nearest Neighbor
classifier detects if a file is malware or benign. The best
accuracy achieved is 98,86% with N=1.

One study by [15] classifies Android malware using
Opcode-level Function Call Graph (FCG) and deep learning.
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The method gets the Dalvik code from the Opcode sequences,
creates the FCG, and encodes the Opcode sequence from the
FCG into a feature vector. The study trains a Long short-term
memory (LSTM) based neural network to classify the android
malware achieving an accuracy of 97%.

II. THE SCIENTIFIC METHOD

This work follows the positivist epistemology with a quanti-
tative research using experiments on numerical data as method.
We introduce the data collection process in Section VI-A,
and the objective is to explore the usage o graph-theory and
machine learning on malware detection. Section VII presents
an statistical analysis on the experiments defined in Section VI.

III. PROPOSED METHOD

We introduce the OSG (Opcode Sequence Graph), a
methodology to detect malware using Opcode Sequence as
input, a Graph theory to create features, and machine learning
classifiers. The OSG was designed considering the detection
time, feature size, and capacity to detect malware. The detec-
tion time is a crucial component to the system because it can
not compromise the user experience, i.e., consume a significant
amount of memory or spend too much time in processing a
single file. The feature size is a relevant factor when making
the inference in a cloud infrastructure, as smaller features use
fewer data from users and cost less to be uploaded to the cloud.
To implement the methods using the OSG methodology, the
following steps are necessary:

• Extract the Opcode Sequence
• Create the Opcode Graphs
• Create features from the Opcode Graphs
• Train a machine learning classifier
To further evaluate the proposed method, we implemented

two variations of text classifiers based on Long short-term
Memory (LSTM) neural networks adopted to the Opcode
Sequence context, an C-LSTM [25] and a bi-LSTM with
attention using the opcode sequence as text for comparison
purposes.

IV. THE OSG

The OSG brings the concept of using graph theory to
represent a file, hence, from this concept we present two
different approaches: i) the OSGT, which create features from
multiple graphs created from each file section and use tree-
based models to classify, and the ii) OSGNN which uses a
graph neural network to classify the control flow graph (CFG).

A. Basic Concepts

We use the following definitions and notations throughout
the paper. Consider S a collection of sample files and ops
the opcode sequence of a sample s ∈ S. For each sample
s, and opcode graph can be created as Gs{Vs, Es}, where
Vs is a set of nodes from a finite set of possibilities P =
{1, ·, t} (which t is the number of opcode instructions), Es is
a set of edges that denotes the relation between the nodes, and
Madj is the adjacency matrix representation of the graph Gs.

To each opcode graph Gs or opcode sequence ops a feature
vector is created, and we define the problem in the feature
space in a n−dimensional space Rn. An input instance is
defined as xi ∈ Rn, and the training set as D = {(xi, yi)∥i =
1, 2, . . . , l}, where l is the number of instances in the training
set. The malware detection is a binary classification problem,
hence, we assign a positive label (for benign files) or a negative
label (for malware files) yi ∈ {+1,−1}. The training set D
is a composition of the aggregation per binary problem X =
[X⊤

+X⊤
− ], and it denotes all input instances from both classes,

where each class is contains X± = l± × n.

B. OSGT

The OSGT is a method that combines characteristics from
graph theory, feature engineering, and ensemble classifiers.
The proposed creates a graph for each section of the file
that contains instructions, creates features that summarize
characteristics of the graphs, and uses tree-based models to
classify the files as malware or benign. Figure 1 illustrates the
general workflow process of the OSGT.

Fig. 1: OSGT workflow

To create the features that define an input instance xi, we
first linearly disassemble the PE file (using the Library to
Instrument Executable Formats (LIEF) [26]) by disassembling
all sections from a file that contains instructions and extracts
an Opcode sequences ops to each section. Second, we create
a graph from the ops generated by assuming that each in-
struction is a node and the edges are the connection between
consecutive instructions, i.e., we start in the position 0 of ops
and iterate in a pairwise sliding window connecting the nodes
until the end of the list. Each connection adds 1 to the edge
weight, and to avoid creating graphs with different sizes, it
only considers opcode instructions from a predefined Opcode
list (that contains 931 instructions), resulting in a weighted
undirected graph (in the NetworkX library [27] format) that
may contain isolated nodes. Figure 2 illustrates the graph
creation process.

Fig. 2: Graph creation process
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Each graph is represented as an adjacency matrix Madj to
calculate the node degree and Pagerank [28]. The node degree
is the number of edges connected to the node and is defined
by Equation 1.

VNDi =
∑

j

ei,j (1)

where ei,j is an edge between nodes i and j, and j ∈ Es. The
output of the node degree calculation is a vector.

We calculate the Pagerank using the Power iterative approx-
imation method [29], as defined by Equation 2.

PR(v) = c
∑

u∈ev

PR(u)

Numu
+ cE(u) (2)

where PR(v) is the Pagerank of the node v, c is the nor-
malized factor, Numu is the number of links from u, and
E(u) is a vector over the graph that corresponds to a source
of rank. The Equation 3 presents the Pagerank as a matrix
multiplication, so we can describe a Pagerank row vector in
terms of the H row-normalized adjacency matrix.

π(k+1)T = π(k)TH (3)

where πT is the 1 × u Pagerank row vector, and at the
k − th iteration, the successive iterations π(k)T converge to
the Pagerank vector πT , and the the matrix H is defined by
Equation 4:

Hu =
Au∑n

k=1 Auk
(4)

where Au is the adjacency matrix at row u. To guarantee
stochasticity and irreducibility of the matrix H , we first define
the stochastic S as Equation 5.

S = H +
aeAT

u
(5)

where a is a column vector that au = 1 if
∑n

k=1 Huk = 0 and
0 otherwise, and e is a column vector of ones. To guarantee
that S has a unique stationary distribution vector, S must be
irreducible, thus, the graph must be strongly connected. So, we
define the irreducible row-stochastic matrix G by Equation 6,
also known as the Google matrix.

G = αS + (1− α)E (6)

where 0 ̸= α ̸= 1 and E = eeT

Numu
. Finally, we define the

power method to calculate the Pagerank as Equation 7.

π(k+1)T = π(k)TG (7)

After calculating both node degree and Pagerank to each
node, we apply the Hadamard product (i.e., multiplying
element-wise) in both vectors and sum all vectors (nodes),
creating a feature vector that represents a section, as presented
by Equation 8.

Seci =

u∑

k=i

VNDi ◦ πT
i (8)

After iterating throughout all the sections of a file, we have
p features vectors where each vector represents a section of
the file that contains executable code. Hence, we can create a
feature vector xi that represents the file by summing all feature
vectors Seci (Equation 9).

xi =

p∑

k=i

Seci (9)

where p is the number of sections of a file that contains
executable code, and xi has a fixed length of u (number of
Opcode instructions in the predefined list).

1) The ensemble classifier: We evaluate two ensemble
strategies with three different tree-based classifiers to classify
the files: an XGBoost [30], a Catboost [31], and a Light Gra-
dient Boosting Machine (LGBM) [32]. We use a major voting
scheme, i.e., at least two classifiers must predict the instance as
malware; and a consensus scheme, where all classifiers must
predict the instance as malware. To select the hyperparameters
of each model we use a Bayesian optimization from the Scikit
Optimize project with negative mean absolute error from a
5-fold cross validation as objective function and the ROC
curve (AUC) as score. We split the training set in an 80-20%
ratio (following the Paretto principle [33]) for the training
and validation sets (in a stratified manner) respectively, and
perform 50 runs to each classification algorithm. Table I
presents the best hyperparameters found in each model are:

C. OSGNN

The OSGNN creates a weighted undirected graph Gs to
each file by extracting the opcodes instructions following the
CFG order and uses the General Graph Neural Networks
(GeneralGNN) [34] to classify the files. Figure 3 depicts the
overall workflow process for the OSGNN.

Fig. 3: OSGNN workflow

To create a graph Gs, we extract the Opcode instructions
using a logical disassembler that follows the CFG using the
R2pipe, which is a python interface to Radare2 [35] (The Libre
Unix-Like Reverse Engineering Framework ) for disassembler
and CFG construction. From the extracted CFG, we select

0https://scikit-optimize.github.io/stable/
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XGboost Hyperparameters Catboost Hyperparameters Lgbm Hyperparameters
colsample bylevel 0.8638616319679682 bagging temperature 4.57 bagging fraction 657
colsample bytree 0.6254544089121741 depth 8 feature fraction 76
eta 0.24323177277623972 iterations 87 learning rate 0.541
gamma 1.7603487694545775e-07 l2 leaf reg 0.117 logloss 1.216
max delta step 19 learning rate 0.936 max bin 65
max depth 36 max depth 0.523
min child weight 5 min child samples 40
n estimators 141 n estimators 0.878
reg alpha 0.02445570898036228 num leaves 0.195
subsample 0.9986177687592744 subsample 44

TABLE I: Table with best hyperparameters found to each classifier

the longest available path that starts from the entry section to
create a list of Opcodes sequence ops. To build the graph from
the Opcodes sequence, we use the same method as described
in Section IV-B and illustrated in Figure 2. For this case, each
input instance xi is a Gs graph.

We select the GeneralGNN model for graph classification,
using the Spektral library [36] implementation, with the fol-
lowing characteristics: 256 hidden channels, four message
passing layers, two pre-processing layers, two post-processing
layers, skip connections with concatenation, batch normal-
ization, no dropout, PReLU activations, sum aggregation in
the message-passing layers, and global sum pooling. Table II
presents the model summary, and to train the model we define
the following parameters:

• Batch size: 32
• Epochs: 25
• Early Stopping: 10
• Learning rate: 1e− 3
• Activation: softmax
• Loss function: Categorical Cross-entropy
• Optimizer: Adam

Model: ”generalGNN
Layer (type) Output Shape #Param
concatenate 1 (Concatenate) multiple 0
global sum pool 1 (GlobalSumPool) multiple 0
mlp 2 (MLP) multiple 69632
general conv 4 (GeneralConv) multiple 67072
general conv 5 (GeneralConv) multiple 132608
general conv 6 (GeneralConv) multiple 198144
general conv 7 (GeneralConv) multiple 263680
mlp 3 (MLP) multiple 329738
Total params: 1,060,874
Trainable params: 1,057,286
Non-trainable params: 3,588

TABLE II: Graph classification model summary

V. OTHER METHODS

To enhance comparison, we introduce two baseline meth-
ods: C-LSTM and a bidirectional LSTM (bi-LSTM) with
attention module. For both baseline methods, we create the
input features xi by extracting linearly up to 3000 opcodes
instructions from the entry section, iterating throughout the
sections.

The Table III describes the C-LSTM model, where the
LSTM layers are the Tensorflow Keras implementation.

Model: C-LSTM
Layer (type) Output Shape #Param
embedding 1 (Embedding) (None, 3000, 500) 1500000
conv1d 3 (Conv1D) (None, 3000, 128) 192128
max pooling1d 3 (MaxPooling1D) (None, 1500, 128) 0
conv1d 4 (Conv1D) (None, 1500, 64) 24640
max pooling1d 4 (MaxPooling1D) (None, 750, 64) 0
conv1d 5 (Conv1D) (None, 750, 32) 6176
max pooling1d 5 (MaxPooling1D) (None, 375, 32) 0
lstm 1 (LSTM) (None, 200) 186400
dropout 1 (Dropout) (None, 200) 0
dense 1 (Dense) (None, 2) 402
Total params: 1,909,746
Trainable params: 1,909,746
Non-trainable params: 0

TABLE III: C-LSTM model summary

Table IV depicts the bi-LSTM with attention module.

Model: bi-LSTM with attention
Layer (type) Output Shape #Param
embedding 1 (Embedding) (None, 3000, 500) 1500000
conv1d 3 (Conv1D) (None, 3000, 128) 192128
max pooling1d 3 (MaxPooling1D) (None, 1500, 128) 0
conv1d 4 (Conv1D) (None, 1500, 64) 24640
max pooling1d 4 (MaxPooling1D) (None, 750, 64) 0
conv1d 5 (Conv1D) (None, 750, 32) 6176
max pooling1d 5 (MaxPooling1D) (None, 375, 32) 0
bidirectional 1 (Bidirectional) (None, 375, 400) 372800
dropout 1 (Dropout) (None, 375, 400) 0
attention 1 (attention) (None, 400) 775
dense 1 (Dense) (None, 2) 802
Total params: 2,097,321
Trainable params: 2,097,321
Non-trainable params: 0

TABLE IV: bi-LSTM with attention model summary

VI. EXPERIMENTAL PROTOCOL

To the experimental protocol section, we introduce the OSG
academic dataset, compare the performance of the previously
described methods, and evaluate the results by considering
relevant metrics for real-world usage.

A. OSG academic dataset

The OSG academic dataset has 28,000 portable executable
files (53,4 GB size) in the .exe or .dll format, where 14,000

0Further information about the LSTM based models can be found at
https://github.com/areeberg/OSG
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OSGT (s) OSGNN (s)
Maximum 1.2738 2852.2582
Minimum 0.0007 0.0881
Median 0.0189 0.4733
Mean 0.0246 1.7783

TABLE V: Feature extraction processing time metrics

files are malware and 14,000 are benign files collected from
January to March 2022. The malware was downloaded from
the Malware Bazaar website https://bazaar.abuse.ch/, and the
benign files were randomly selected, and individually evalu-
ated, from several computers (with Windows OS) from non-
administrative employees To avoid data leakage during tests,
i.e., the model does not have access to future samples, the first
10,000 files acquired from each class (malware and benign)
are considered the training set, and the last (newest) 4,000 files
are the test set.

To encourage reproducibility, we share the hash func-
tion (sha256) of each file in the project’s repository
https://github.com/areeberg/OSG.

VII. RESULTS

The feature creation for each file is a critical step for the real
use case of the proposed methods. Table V presents the feature
creation processing time (in seconds) comparison between
OSGT and OSGNN methods, where 100% of the codebase
were covered, excluding only the data sections.

Table V shows that the OSGT processing time is sub-
stantially faster (especially on large files) compared to OS-
GNN. Considering the mean value of the feature extraction
processing time and 100,000 files, the OSGT would take
approximately 41 minutes, and the OSGNN roughly 49 hours.

To evaluate the performance of all methods, we evaluate the
proposed methods regarding the accuracy VII, true positive
rate (TPR) VII, false positive rate (FPR) VII 1, and malware
detection rate (MDR) VII. Table VI shows the results of the
detection performance of all methods described in this work.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

TPR =
TP

TP + FN
(11)

FPR =
FP

FP + TN
(12)

MDR =
TN

FN + TN
(13)

0The benign files were evaluated by different methods to ensure that are
not malware.

1The false-positive rate must be as low as possible to avoid a bad user
experience.

Accuracy(%) TPR FPR MDR
OSGT XGboost 97.32 0.9846 0.0214 0.9846
OSGT LGBM 96.48 0.9803 0.0511 0.9808
OSGT Catboost 96.91 0.9854 0.0471 0.9854
OSGT Consensus Voting 98.29 0.9740 0.0082 0.9746
OSGT Major Voting 98.24 0.9910 0.0259 0.9910
OSGNN 97.92 0.9732 0.0350 0.9725
C-LSTM 89.69 0.9423 0.0765 0.8978
bi-LSTM w/ att 92.69 0.8954 0.1330 0.9451

TABLE VI: Detection performances on OSG academic
dataset.

where TP is true positive, TN is true negative, FP is the
number of false positives (wrongly classified benign file),
and FN is the number of false negatives (wrongly classified
malware).

We analyze the results and summarize them as follows:
• The Consensus Voting scheme composed of XGboost,

LGBM, and Catboost presents the best accuracy with
lower FPR, thus less wrongly classified malware which
is a critical metric.

• The files that are misclassified contain, commonly, a short
and homogeneous opcode sequence, hence, the graph
representation only has a few nodes. Fig 4 presents a
PE file (sha256 - a25429265e315df2e3fe02b577a7c9a
415c206de228b224483abbf3417fbe0cf ) with low op-
code variance (three nodes) and length, whereas Fig-
ures 5 and 6 depicts a ”regular” file (sha256 -
bce9a61970f6ac977552a785a4e
233fbe76bd492f4428d2507afd4ea393b46fb) with long
and heterogeneous opcodes sequence.

• The usage of ensemble learning appears to be effective
in reducing the false positive rate.

• Both LSTM architectures achieve lower accuracy and
higher FP and FN compared to the other methods. The
reason is that LSTM-based methods use truncation, which
is pruned to lose or ignore information when submitted
to an extended length of opcode instructions.

• Despite the OSGNN achieving promising results, the
feature extraction process takes considerable time, which
makes the method impractical for real-world usage. The
main contributor to the extended processing time is the
CFG construction (especially on large files), as disassem-
bling a file into a CFG is a complex task and requires a
logical disassembly.

VIII. CONCLUSION AND FUTURE WORK

This paper presents the OSGT and the OSGNN, two meth-
ods for static-based malware detection. Both methods combine
graph theory with artificial intelligence using the opcode
sequences inputs for detecting malware portable executable.
The OSGT uses a linear disassembly method to extract the
opcode sequence from a file, create a graph from the sequence
and calculate the features using the Pagerank and node degree
calculations. The classification method is an ensemble method
composed of an XGBoost, a Light Gradient Boosting Machine,
and a Catboost. The OSGNN uses a logical disassembly

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

6



Fig. 4: Complete CFG and opcodes sequence.

method to construct the control flow graph from a file and,
using the longest available path from the entry section, It
extracts the opcode sequence to create a weighted undirected
graph. To perform the classification, it uses a graph neural
network (using the Spektral library, hence Tensorflow) as the
framework. Both proposed methods handle the challenge of
processing long opcode sequences without losing information
in the learning process. Another strong aspect of the proposed
method is that it is scalable for extended opcode sequences,
as the set of opcodes is predefined, so there is a maximum
number of nodes to each graph.

We propose a dataset of real-world files, i.e., some files
are auxiliary functions (especially .dlls) that do not have all
fields from a regular portable executable structure, and recent
malware. The results show that OSGNN provides 99% on
malware detection, and the OSGT has the best accuracy overall
with a fast feature extraction process.

For future work, we will evaluate including new opcode
instructions for the graph creation, expanding the dataset with
new malware and benign files, exploring new logical disas-
sembly strategies, and new graph neural network architectures
for classification.
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