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Abstract—A large steel plant receives up to millions of tons of
scrap metal through road transportation each year in its inbound
logistics process. The Length of Stay (LOS) of vehicles is one
of the most critical metrics that represent the performance of
the unloading operation of raw materials. Accurately predicting
this metric enables managers to make data-driven decisions at
operational, tactical, and strategic levels. This study proposes
implementing a Machine Learning (ML) approach for predicting
the LOS of vehicles loaded with scrap metal in the inbound
operation of a large Brazilian steel plant. The performance
of five ML models - Linear Model Ridge, k-nearest neighbors
Regressor, Gradient Boosting Regressor, Decision Tree Regressor,
and ePL-KRLS-DISCO - was evaluated in terms of Root Mean
Squared Error (RMSE), Mean Average Error (MAE), and exe-
cution time. The results are compared with the current method
of prediction and statically validated through an Analysis of
Variance (ANOVA) test. The ML approach applied in this study
achieved better accuracy, reducing by 64% the RMSE, and has
the potential to enable more reliable data-driven decisions for
the company.

Index Terms—Machine Learning, Steel Industry, Logistics,
Regression models

I. INTRODUCTION

Steel production relies heavily on raw materials, mainly
scrap metal [1]. A complex system moves millions of tons of
scrap metal annually via road transportation to transport this
material from scrapyards to steel plants. Accurately predicting
the unloading times of these materials enables managers
to make better-informed operational, tactical, and strategic
decisions [2]. Such predictions can benefit the operation’s
performance by minimizing the negative impact of uncertainty
in a context where information is carried throughout the supply
chain [3].

Predicting the LOS metric for inbound operations is chal-
lenging because of the incredible variety of vehicles and
material combinations to be considered, and external factors
such as machinery breakdown, process interruptions, shift
change, and first-time inside the plant vehicle drivers often
create fluctuations that are difficult to predict. The current

method used by a large steel plant in Brazil is to divide the net
weight of each cargo by a flow rate factor plus a fixed amount
of time. This method presents high values and variability of
error metrics.

To address this issue, a novel Machine Learning (ML)
approach is applied to predict the LOS metric using classic
models from the literature. The chosen models, namely Linear
Model Ridge, KNN Regressor, Gradient Boosting Regressor,
and Decision Tree Regressor, have been selected from the
Scikit-Learn library [4]. Also, to explore more complex and
advanced models, ePL-KRLS-DISCO [5] was selected. Our
approach is not limited to the weight of the cargo, like the
current method. We propose a comprehensive view that con-
siders different types of vehicles and materials, Key Process
Indicators (KPIs), and time-related variables to improve the
accuracy of the prediction. The models’ results are compared
to the current method’s performance based on error metrics
and execution time. The statistical relevance of this compari-
son is evaluated using an ANOVA test.

This paper presents the LOS metric and its importance to the
company in Section II. It also discusses the current prediction
method and presents the dataset. Section III briefly recalls the
ML models implemented to predict the LOS metric. Section
IV presents the tools used in this study and compares the
error metrics of the ML models. Additionally, a statistical test
evaluates the performance of the proposal. Finally, Section V
presents the main conclusions and suggests future research.

II. PROBLEM FORMULATION

A. The dataset

The data for the inbound scrap metal process was collected
by extracting several months’ worth of information from
the company’s database. In total, 23,974 observations were
recorded and divided into nine datasets, one for each month.
Each observation represents a truck whose cargo was unloaded
at the steel plant.
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TABLE I
EXAMPLE OF THE DATASET

Attributes Vehicle 1 Vehicle 2 Vehicle 3
day of the week 2 6 5
No. half of the month 1 1 1
group of vehicle 1 0 0
type of vehicle 75 127 127
bin sweeping 1 1 1
sweeping time 2.58 0.88 0.76
unload location 27 14 14
id material 32 30 30
multi material 1 1 1
net weight 48,220 72,960 72,920
amount of vehicles day 119 95 125
amount of vehicles inside 40 40 40
LOS 6.06 5.68 5.37

Table I presents a random sample of three vehicles to
describe the dataset used in this study. The first column
shows 12 attributes that characterize the cargo, the vehicle,
and the current state of the inbound process. The following
columns are example values for each of these attributes of
the vehicles. Each observation collected from the company’s
database contains the twelve attributes and the LOS time.

Table II presents mean values, standard deviation (SD), and
the 25th, 50th, and 75th percentiles of the LOS metric, divided
into nine datasets. The LOS metric is recorded in hours.

TABLE II
DESCRIPTIVE STATISTICS OF THE LOS METRIC

Dataset Size Mean SD 25th 50th 75th
DS 1 3,009 4.93 6.32 2.92 4.30 6.05
DS 2 3,026 4.74 3.04 2.86 4.18 5.94
DS 3 3,577 4.91 2.51 3.09 4.45 6.23
DS 4 2,889 4.94 3.68 3.01 4.32 6.36
DS 5 2,492 4.56 5.49 2.75 3.98 5.72
DS 6 2,884 4.48 6.59 2.40 3.69 5.76
DS 7 1,814 4.67 2.91 2.54 3.89 6.24
DS 8 2,196 3.85 2.52 2.15 3.27 5.03
DS 9 2,087 3.81 2.64 2.45 3.36 4.74

Entire Dataset 23,974 4.60 4.37 2.71 3.99 5.84

B. The LOS metric

The Length of Stay metric is a KPI constantly monitored
by the managers of the steel plant. It represents the total time
spent by a vehicle loaded with raw material to unload its
cargo. The importance of this indicator relies on the fact that
it directly impacts productivity, safety, and laws that protect
truck drivers against long hours of unloading cargo.

The histogram of the LOS metric is presented in Figure 1.
Based on the histogram, it’s possible to observe a wide range
of values for LOS, from less than an hour up to 19 hours.

The descriptive statistics of the LOS metric in Table II
show high standard deviation values when compared to the
mean values for each dataset. The main causes for variation
in the total time a vehicle spends at the plant can be attributed
to several factors. These factors involve a range of elements,
including the variety of vehicles and materials combinations
to be considered, machinery breakdown, process interruptions
and overload, shift change, queues, and first-time inside the
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Fig. 1. Histogram of LOS values

plant vehicle drivers. The high variability associated with
this metric brings uncertainty to the daily operation, such
as planning resources like machinery and workers. Also, an
example of the impact of this uncertainty on a tactical level is
related to the scrap metal’s purchase planning process, which
is directly influenced by the capacity of the plant to receive
scrap metal.

C. Current method of prediction

Equation 1 represents the current estimation method of
the LOS metric. The method consists of the division of the
net weight (ton) of each cargo (W ) by a flow rate factor
(ton/minute) (F ) plus a fixed amount of time (T ) to absorb
other activities of the process, such as clearance, weighing
and motion inside the plant. The flow rate factor is typically
established as an average value, not subject to frequent re-
assessment, and is applied uniformly across all vehicles.

LOS =
1

60

(
W

F
+ T

)
(1)

Table III summarizes two error measures of the current
method of LOS prediction: Root Mean Square Error (RMSE)
and Mean Absolute Error (MAE).

TABLE III
ERROR METRICS FOR THE CURRENT METHOD OF LOS PREDICTION

Dataset RMSE MAE
DS 1 6.37 2.05
DS 2 3.12 1.95
DS 3 2.55 1.88
DS 4 3.74 2.00
DS 5 5.53 1.94
DS 6 6.63 2.25
DS 7 2.95 2.24
DS 8 2.65 1.97
DS 9 2.70 1.65
Mean 4.03 1.99

The RMSE of the method presents high variability among
the datasets, with values ranging from 2.55 hours up to 6.63
hours. The MAE presents more stability than the RMSE but is
notably smaller. This discrepancy in the magnitude of the error
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metrics shows that the current predictions have large residues
due to the quadratic nature of the RMSE. [6].

III. PROPOSED MODELS

A. Linear Ridge Regression

Linear Regression is a widely used statistical method that
aims to predict the value of a target variable based on a linear
combination of the input features. The method, proposed by
[7], is based on the Ordinary Least Squares (OLS) approach,
which minimizes the residual sum of squares between the
observed targets in the dataset and the targets predicted by the
linear approximation. However, the OLS method can be prone
to imprecision when the input features are highly correlated,
a situation known as collinearity.

In summary, Linear Ridge Regression is a useful method for
addressing the problem of collinearity in Linear Regression,
by applying a penalty on the size of the coefficients to make
them more robust. It is an important technique for data analysts
and statisticians to be familiar with, especially when working
with datasets that have highly correlated features.

B. k-Nearest Neighbors Regressor

The k-Nearest Neighbors algorithm is a non-parametric
method, meaning it does not make any assumptions about the
underlying distribution of the data. This makes it a versatile
algorithm that can be applied to various regression problems
[8], [9], [10]. One of the key advantages of the kNN algo-
rithm is its ability to handle both continuous and categorical
variables, making it well-suited for problems with mixed data
types.

The application of kNN is based on the idea that data
generated by a specific process may exhibit recurring patterns
of behavior [10]. The kNN algorithm, first proposed by [11],
predicts a new value by comparing it to the k most similar
past patterns and using that information to make a prediction.

C. Gradient Boosting Regressor

A boosting process is a method for improving the accuracy
of learning algorithms by fitting an initial model to the data and
then building a second model focused on accurately predicting
the cases in which the first had a bad performance [12].
Proposed by [13], the Gradient Boosting Regressor uses a
differentiable loss function (e.g. squared error) to guide an
additive method of creating weak learners in a greedy way,
following a gradient descent procedure and, thus, minimizing
loss.

According to [14], the performance of the Gradient Boosting
Regressor can be affected by three parameters: maximum
number of trees, learning rate, and max depth of the tree.
The best combination of the parameters enables the optimal
result of the model. The first refers to the total number of
trees (i.e. weak learners) integrated into Gradient Boosting
Regressor. The second parameter sets the contribution of each
weak learner to the final results, with values between 0 and
1. The third parameter expresses the complexity of the tree.
Gradient Boosting Regressor is a strong learner formed by the

combination of weak learners. Therefore, the max depth of
each tree must be controlled in order to limit the complexity
of the whole system [14].

D. Decision Tree Regressor

Decision Trees are among the earliest statistical algorithms
to be implemented in electronic form and are widely used
for regression problems [15], [16], [17]. The primary char-
acteristic of this model is its recursive subsetting of the data
according to the values of the predictors, which progressively
narrows the possible values into decision nodes until the model
reaches a prediction (leaf nodes).

Also, decision trees are widely used in regression problems
due to their simplicity and interpretability. The recursive
subsetting of the data, the concepts of splitting and pruning,
and the criteria used to split the data are some of the key
aspects of decision trees. However, it is important to note that
decision trees can be prone to overfitting, especially when the
tree becomes too deep or detailed, so it is necessary to use
techniques such as pruning to control the complexity of the
model.

E. ePL-KRLS-DISCO

Fuzzy logic is a mathematical approach based on the
concept of degrees of truth, rather than the traditional binary
boolean logic of true or false [18]. It is used to deal with the
uncertainty and vagueness that is often present in real-world
systems and problems.

Fuzzy rule-based systems, like the ePL-KRLS-DISCO
model [5], express their knowledge base using a collection
of fuzzy if-then rules. These rules are used to infer the
output based on the input. Each rule has an antecedent,
which defines the conditions for the rule to be activated,
and a consequent, which defines the output when the rule is
activated. The antecedent and consequent are defined using
fuzzy sets, providing a flexible and intuitive way to express
the knowledge of the system.

The ePL-KRLS-DISCO [5] model also incorporates Evolv-
ing Participatory Learning (ePL), which is an evolution of
the Participatory Learning (PL) method proposed by Lima et
al. [19]. PL is a recursive unsupervised clustering algorithm
that implements convex combinations between input data
and the closest cluster center. Additionally, the model uses
Kernel Recursive Least Squares (KRLS), a nonlinear version
of the recursive least squares algorithm, which performs linear
regression in a high-dimensional feature space using kernel
methods [20].

Moreover, the model incorporates Distance Correlation
(DISCO). This method forms the rules with a reduced standard
deviation, which improves the quality of the clusters and the
models’ capacity for learning. This is an addition to the algo-
rithm proposed by Alves and Aguiar [5] and has substantially
superior performance compared to previous models. The ePL-
KRLS-DISCO model can perform precise simulations even
with complex data, making it a powerful tool for data analysts
and researchers.

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

3



IV. EXPERIMENTAL RESULTS

The five ML models mentioned in Section III were trained
and tested using the free version of the Google Colabo-
ratory platform, a serverless Jupyter notebook environment
for interactive development [21]. The Python Notebook file
and the datasets used for this study can be found at:
https://bit.ly/33qoJZe

TABLE IV
RESULTS OF THE PREDICTIONS

DS ML Model RMSE MAE Time (s)

1

LR Regression 1.49 ± 0.14 1.00 ± 0.06 0.02 ± 0.01
KNN Regressor 3.01 ± 0.13 1.41 ± 0.02 0.02 ± 0.00
GBR 1.36 ± 0.12 0.92 ± 0.04 1.78 ± 0.33
DT Regressor 1.54 ± 0.11 1.01 ± 0.04 0.03 ± 0.02
ePL-KRLS-DISCO 1.31 ± 0.11 0.97 ± 0.07 651.99 ± 750.32

2

LR Regression 1.59 ± 0.11 1.03 ± 0.04 0.01 ± 0.01
KNN Regressor 2.88 ± 0.18 1.35 ± 0.04 0.02 ± 0.00
GBR 1.52 ± 0.11 0.98 ± 0.04 1.85 ± 0.48
DT Regressor 1.64 ± 0.10 1.06 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.49 ± 0.18 1.07 ± 0.05 558.88 ± 682.01

3

LR Regression 1.46 ± 0.10 0.97 ± 0.04 0.01 ± 0.00
KNN Regressor 2.87 ± 0.17 1.36 ± 0.04 0.01 ± 0.00
GBR 1.45 ± 0.09 0.96 ± 0.03 2.22 ± 0.67
DT Regressor 1.49 ± 0.09 1.00 ± 0.04 0.02 ± 0.00
ePL-KRLS-DISCO 1.40 ± 0.15 1.04 ± 0.10 600.13 ± 771.50

4

LR Regression 1.69 ± 0.10 1.06 ± 0.04 0.02 ± 0.01
KNN Regressor 3.10 ± 0.15 1.42 ± 0.04 0.02 ± 0.01
GBR 1.75 ± 0.12 1.05 ± 0.04 1.96 ± 0.68
DT Regressor 1.71 ± 0.10 1.07 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.55 ± 0.19 1.11 ± 0.07 443.58 ± 568.89

5

LR Regression 1.55 ± 0.10 1.00 ± 0.04 0.02 ± 0.01
KNN Regressor 2.91 ± 0.21 1.36 ± 0.05 0.02 ± 0.01
GBR 1.47 ± 0.11 0.95 ± 0.04 1.56 ± 0.46
DT Regressor 1.57 ± 0.11 1.00 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.44 ± 0.16 1.03 ± 0.05 375.96 ± 474.09

6

LR Regression 1.71 ± 0.11 1.06 ± 0.03 0.01 ± 0.00
KNN Regressor 2.53 ± 0.17 1.23 ± 0.04 0.01 ± 0.00
GBR 1.24 ± 0.11 0.80 ± 0.03 1.71 ± 0.45
DT Regressor 1.63 ± 0.08 1.04 ± 0.03 0.01 ± 0.00
ePL-KRLS-DISCO 1.48 ± 0.16 1.06 ± 0.05 420.83 ± 544.15

7

LR Regression 1.82 ± 0.15 1.09 ± 0.05 0.04 ± 0.02
KNN Regressor 3.49 ± 0.31 1.49 ± 0.07 0.03 ± 0.01
GBR 1.76 ± 0.18 1.03 ± 0.06 1.16 ± 0.35
DT Regressor 1.82 ± 0.14 1.10 ± 0.05 0.01 ± 0.00
ePL-KRLS-DISCO 1.60 ± 0.25 1.11 ± 0.06 171.51 ± 221.97

8

LR Regression 1.55 ± 0.11 0.99 ± 0.04 0.01 ± 0.00
KNN Regressor 2.93 ± 0.25 1.34 ± 0.06 0.01 ± 0.00
GBR 1.54 ± 0.10 0.96 ± 0.04 1.61 ± 0.52
DT Regressor 1.48 ± 0.10 0.97 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.38 ± 0.13 1.00 ± 0.05 266.15 ± 344.02

9

LR Regression 1.27 ± 0.11 0.90 ± 0.04 0.02 ± 0.01
KNN Regressor 2.42 ± 0.21 1.24 ± 0.06 0.02 ± 0.01
GBR 1.34 ± 0.14 0.90 ± 0.05 1.45 ± 0.41
DT Regressor 1.34 ± 0.12 0.91 ± 0.04 0.01 ± 0.00
ePL-KRLS-DISCO 1.27 ± 0.11 0.94 ± 0.05 287.04 ± 366.55

Since most transports’ characteristics were categorical vari-
ables (Table I), it was necessary to perform some preprocess-
ing in the database to have only integers and floats as inputs
to the models. For this, the technique Label-Encoding [22]
was implemented, converting the categorical variables into an
associated integer number. To preserve the company’s sensitive
information, the original data is not shown in this study. Due
to the quality of the data extracted, with a 0% missing rate,
no additional work was needed to replace missing values.

Then, each of the 9 datasets was separated into random
training and test subsets on the ratio of 85:15 using the func-
tion train test split from the scikit-learn Python ML library
[4]. A parameter of this function, named random state, is a

TABLE V
MEANS COMPARISON

DS # Rank ML Model Differs from

1

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 3, 4, 5
3 Linear Model Ridge 1, 2, 4, 5
4 Decision Tree Regressor 1, 2, 3 ,5
5 KNN Regressor 1, 2, 3, 4

2

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 3, 4, 5
3 Linear Model Ridge 1, 2, 5
4 Decision Tree Regressor 1, 2, 5
5 KNN Regressor 1, 2, 3, 4

3

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 5
3 Linear Model Ridge 1, 5
4 Decision Tree Regressor 1, 5
5 KNN Regressor 1, 2, 3, 4

4

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Linear Model Ridge 1, 5
3 Decision Tree Regressor 1, 5
4 Gradient Boosting Regressor 1, 5
5 KNN Regressor 1, 2, 3, 4

5

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 3, 4, 5
3 Linear Model Ridge 1, 2, 5
4 Decision Tree Regressor 1, 2, 5
5 KNN Regressor 1, 2, 3, 4

6

1 Gradient Boosting Regressor 2, 3, 4, 5
2 ePL-KRLS-DISCO 1, 3, 4, 5
3 Decision Tree Regressor 1, 2, 4 ,5
4 Linear Model Ridge 1, 2, 3, 5
5 KNN Regressor 1, 2, 3, 4

7

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Gradient Boosting Regressor 1, 5
3 Decision Tree Regressor 1, 5
4 Linear Model Ridge 1, 5
5 KNN Regressor 1, 2, 3, 4

8

1 ePL-KRLS-DISCO 2, 3, 4, 5
2 Decision Tree Regressor 1, 3, 4, 5
3 Gradient Boosting Regressor 1, 2, 5
4 Linear Model Ridge 1, 2, 5
5 KNN Regressor 1, 2, 3, 4

9

1 ePL-KRLS-DISCO 3, 4, 5
2 Linear Model Ridge 3, 4, 5
3 Decision Tree Regressor 1, 2, 5
4 Gradient Boosting Regressor 1, 2, 5
5 KNN Regressor 1, 2, 3, 4

pseudo-random number generator and controls the shuffling
applied to the data before applying the split [4]. The algorithms
were put inside a loop structure, altering the random state
parameter from 1 to 50. The results of each iteration were
recorded to compare the average outcome of each model and
its standard deviation.

A. Evaluation method

The evaluation of the models was measured with two error
measures - Root Mean Square Error (RMSE) and Mean Ab-
solute Error (MAE). Also another relevant metric to compare
the performance of the models is computational complexity.
The model execution time is usually a good representation
since faster computational speed increases the possibility of
algorithm deployment. [23].

B. Models’ results

Table IV summarizes the results of the models for each
dataset, evaluated with the metrics presented above, and Figure
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DS_1 DS_2 DS_3 DS_4 DS_5 DS_6 DS_7 DS_8 DS_9
Dataset
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 KNN Regressor 
 Gradient Boosting Regressor 
 Decision Tree Regressor 
 ePL-KRLS-DISCO 
Current method

Fig. 2. Plot of the RMSE values of the models and current method of prediction
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Fig. 3. Plot of the MAE values of the models and current method of prediction

2 shows the graphics of the predictions.
To statistically validate the results, a One-Way ANOVA

test was performed. According to [24], the procedure uses
the variances of the groups to determine whether the means
are different. The comparison of variance between group
means against the variance within groups works to determine
whether the groups are all part of a larger population or
distinct populations with different characteristics. The null
hypothesis states that all populations’ means are equal, while
the alternative hypothesis states that at least one is different
[25]. The categorical factor used in the test is the ML models,
while the continuous response variable is the RMSE of each
model for each dataset.

Considering a significance level (α) of 0.05. If the p−value
is lower than α, there’s not enough information to conclude the
null hypothesis is true, and the statement that all the models
have equal accuracy is rejected.

For all datasets, p-value < 0.001 and thus, at least one
of the models has a different accuracy. Analyzing the means

comparison outcome from One-way ANOVA, it’s possible
to identify which models each model has different accuracy.
Table V presents the ranking of the models in terms of better
accuracy for each dataset, and Figure 2 shows the graphics of
the predictions. Also, it presents for each model the models to
which it does not overlap the confidence interval for its RMSE
value.

The results of the statistical test show that ePL-KRLS-
DISCO demonstrated the best accuracy for datasets 1, 2, 3, 4,
5, 7, 8, and 9, compared to the other presented ML Models,
with a 95% confidence level, achieving the lowest values of
RMSE and not overlapping the confidence interval of its mean
RMSE with any other model. Considering all datasets, the
model’s mean value of RMSE presents a reduction of 64%
when compared to the current prediction method. Regarding
dataset 6, Gradient Boosting Regressor demonstrated the best
result, with an RMSE of 1.24 ± 0.11, followed by ePL-KRLS-
DISCO, with an RMSE of 1.48 ± 0.16. The KNN Regressor
performed the worst results of accuracy in all datasets. Linear
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Model Ridge and Decision Tree Regressor achieved average
results compared to the other models. Also, according to the
One-way ANOVA Test, these models’ accuracy results are
statistically equal for datasets 2, 3, 4, 5, and 7.

Regarding the computational cost, estimated by the algo-
rithm’s execution time, ePL-KRLS-DISCO presented values
starting at 171.51 ± 221.97 seconds up to 651.99 ± 750.32
seconds. Gradient Boosting Regressor performed the second-
worst results with values ranging from 1.16 ± 0.35 seconds
to 2.22 ± 0.67 seconds. All other models presented execution
time values lower than 0.04 seconds with almost zero standard
deviation.

C. Discussions

Despite the KNeighbors Regressor, the results of the ML
models tested show that it can reduce the variance and achieve
significantly lower RMSE values than the currently used
method, which presents values ranging from 2.55 hours up to
6.37 hours. RMSE values considerably higher than MAE are
a good indicator of significant residues in the prediction due
to the quadratic nature of the RMSE [6]. The ML approach
also presented lower values of MAE in all datasets tested, with
errors inferior to 1 hour. The results of this approach reveal
the potential to enable more reliable data-driven decisions
regarding the inbound process of scrap metal.

V. CONCLUSIONS

This study presented the results of a ML approach to pre-
dicting vehicles’ Length of Stay for the inbound operation of
scrap metal in a Brazilian steel plant. The results’ simulations
show a feasible solution to improve the accuracy of the LOS
prediction issue.

The current prediction method is a simple model that only
considers one attribute to make a prediction. Therefore, the
ML approach is justifiable by the importance of the KPI to
the company, the amount of data available that needs to be
analyzed, and the need to have more reliable and accurate
values for the LOS prediction.

The results of this study presented five ML models that
achieved lower metrics of error than the current method used.
This represents an opportunity for the company to consider
using ML to predict important indicators and enable more
robust data-driven decisions.

Future work includes evaluating other related data sources to
improve accuracy (e.g., scrap metal purchase plan data, stock
level, and weather conditions). Also, this study is an initial
step for implementing a decision model based on the predicted
LOS metric. In the State-Of-The-Art of 4.0 Industry, a decision
model could optimize the process in real time. In the context
of the inbound process of scrap metal, entrance anticipation,
selection of unloading location, and priority pass of vehicles
are routine decisions that could be optimized and automated.
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