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Abstract—Fuzzy systems are a class of machine learning
introduced by Zadeh that combine accuracy and interpretability.
This class of models consists of two main parts, the antecedent
and the consequent. While the antecedent is responsible for
modeling the inputs, the consequent concerns modeling the
output. The literature reports two main types of fuzzy systems:
Mamadani and Takagi-Sugeno. While Mamdani uses fuzzy sets
in the consequent part, Takagi-Sugeno uses polynomial functions.
Consequently, Mamdani provides better understandable models
and Takagi-Sugeno more accurate ones. In this paper, we propose
a new Takagi-Sugeno model. Still, instead of defining the rules
based on the input, the proposed model designs the rules based
on the output variation to capture linearities in the output and
clusters them in the same rule. The model is applied in the
regression problems of benchmark series and real datasets of
power transformers. The performance of the proposed model is
compared with the performance of classical models and evolving
Fuzzy Systems. The results are evaluated using error metrics,
the number of final rules, and runtime.

Index Terms—Fuzzy Inference System, Takagi-Sugeno, time
series forecasting, thermal modeling of power transformers

I. INTRODUCTION

Zadeh [1], [2] inspired a new class of machine learning
models known as fuzzy inference systems (FIS). FIS are well-
known for their capability to provide accurate results that can
be easily interpreted by the user. Such models have a basic
structure that consists of an antecedent and a consequent part.
While the antecedent part regards the modeling of the input,
the consequent concerns the computation of the output. Two
main types of FIS are found in the literature: Mamdani fuzzy
inference systems (MFIS) and Takagi-Sugeno (TS). The only
difference between the two models is that in the consequent
part, MFIS uses fuzzy sets, so MFIS results tend to be more
understandable [3]. On the other hand, TS models are based
on gain scheduling, meaning that a collection of local linear
approximations models a nonlinear system. Each region is
fuzzily designed with a set of linear parameters. Furthermore,
TS approaches can model a nonlinear system using a collection
of local linear approximations called fuzzy regions. The final

output is a weighted average of the outputs of each rule.
Consequently, the TS models usually present computationally
efficient and accurate solutions to a wide range of control
problems [4].

Another advantage of using TS models is that they require
just a few rules to describe highly nonlinear and complex
systems. TS usually presents fewer rules than Mandani-
based models. Unfortunately, compared to Mandani, TS is
less understandable [5]. In problems where interpretability is
important, TS models are not suggested as they use local
model parameters identified from the data and, consequently,
there’s no guarantee of interpretability [6]. There is no unique
method to design the TS fuzzy rules, but they all build the rule-
base structure based on the input vector. Furthermore, many
hybrid models are proposed to form improved rules using
optimization algorithms, such as simulated annealing (SA),
particle swarm optimization (PSO), and gravitational search
algorithm (GSA) [7], [8]; reinforcement learning (RL) [9].

The evolving Takagi-Sugeno (eTS) model was proposed
by Angelov and Filev [4]. The eTS approach is an evolving
Fuzzy System(eFS), a class with its parameters and struc-
ture continually updated as new input/output pair enters the
system, creating and excluding rules when necessary. The
eTS algorithm inspired the proposal of other rule-based eFS
approaches, such as Simpl eTS [10], exTS [11], ePL [12],
ePL+ [13], eMG [14], ePL-KRLS-DISCO [15], FLEXFIS
[16].

In all those models, the rules are managed based on a
distance metric or compatibility measure. When a new input
vector enters the system, the model compares the input with all
existing rules, and if the input is considered compatible with
the current structure, the number of rules remains the same.
Otherwise, the model will create a new rule. Consequently, the
model’s performance will be directly dependent on the metric
of compatibility chosen. However, those metrics are applied
to the input vector to form the rules. It implies that the input
vectors will be close or similar but doesn’t guarantee that the
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rules will have outputs with linear curves. Furthermore, the
models usually have many hyperparameters [15].

To overcome such limitations, we propose a new model,
called Semi-evolving Output Based model (SeOB), that clus-
ters the input space based on the forecasted value and with
just one hyperparameter. The proposed approach is called
Semi evolving because it inherits some characteristics of eFSs,
such as self-learning of parameters and adaptive consequent
parameters, but it is not possible to update the rule-based
structure. The proposed model defines the rules by estimating
the variation between the actual and previous values so that
we will have clusters with curves close to a linear distribution.
The model is evaluated using three benchmark time series, the
Mackey-Glass, nonlinear system identification, and the Lorenz
Attractor. Finally, the model is applied to the datasets of a
power transformer to predict the hot spot temperature. The
performance is estimated regarding RMSE, NDEI, and MAE
errors, the number of final rules, and the runtime.

The remainder of the paper is organized as follows: Section
II describes the proposed model. Section III presents and
discusses the results. Finally, Section IV

II. THE PROPOSED MODEL

This paper proposes a new regression algorithm based on
Takagi-Sugeno (TS) composed of an antecedent and conse-
quent part. The antecedent part consists of the definition of
the model’s rules. On the other hand, the consequent part
corresponds to the recursive update of consequent parameters.
The remainder of the section explains in detail how the
algorithm works.

A. The Antecedent Part

The antecedent part defines how the model forms the rules.
This paper proposes a new mechanism to create the rules using
the outputs instead of the inputs. When the model receives the
data, the model computes the value of the consecutive outputs
according to Equation (1).

∆yk = yk − yk−1 (1)

where ∆yk represents the difference between two consecutive
outputs, for k = [2, 3, . . . , n], n is the number of samples,
yk is the desired output for the kth sample, and yk−1 is the
desired output for the previous sample.

This model is adequate for data streams since it computes
the difference between two consecutive samples to form the
rules. After calculating the ∆y for all data samples, the model
computes the intervals according to Equation (2).

LI =
max {∆yk} − min {∆yk}

Rmax
(2)

where LI is the length of each interval and Rmax is an integer
value greater or equal to 1, representing the only hyperparam-
eter of the model. Rmax defines the number of rules the model
will create, i.e., if the user defines Rmax = 3, the model will
create three rules. Rmax must be set considering the trade-off
accuracy interpretability.

After calculating the length of each interval, the model
labels the samples with the number of the rule that they will
be included, as follows:

Rk = int

(
∆yk − mink {∆yk}

LI

)
(3)

where Rk represents the rule that the kth sample pertains to.
Furthermore, LI ̸= 0 ⇔ max ̸= min.

After those calculations, the model computes the mean
and the standard deviation of the samples that pertain to the
same rule and starts computing recursively the consequent
parameters for each rule.

B. The Consequent Part

The parameters of the consequent part are estimated using
the weighted Recursive Least Squares (wRLS). First, the
model computes the normalized firing level of the ith rules
as follows:

λi =
f i

∑Rmax

j=1 f j
(4)

where f i is the firing level of the ith rule, calculated according
to Equation (5)

f i =

p∏

l=1

exp

[
1

2

(
vi,l − xk

l

)2

σ2
i,l

]
(5)

where vi,l is the lth element of the vector vi (rule center) for
the ith rule that represents the mean value of the attribute, vi =
[vi,1, . . . , vi,p]

T , p is the dimension of the inputs, xk
l is the lth

attribute of the input vector (Xk) for iteration k, and σi,l is the
lth element of the vector σi for the ith rule that represents the
standard-deviation of the attribute, for σi = [σi,1, . . . , σi,p]

T .
Then, the model can estimate the consequent parameters as

follows:

θki = θk−1
i + P k

i x
k
eλi

(
yk − (xk

e)
T θ

)
(6)

where P k
i is the Rp+1 × Rp+1 covariance matrix, calculated

according to the Equation (7), and xk
e = [1, (xk)T ]T .

P k
i = P k−1

i − λiP
k−1
i xk

e(x
k
e)

TP k−1
i

1 + λi(xk
e)

TP k−1
i xk

e

(7)

where Pi is initialized with 1000 × I(p+1)×(p+1), and
I(p+1)×(p+1) is the identity matrix Rp+1 ×Rp+1.

Finally, the model’s output is calculated as follows:

ŷk =

Rmax∑

i=1

λi(x
k
e)

T θi (8)
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III. EXPERIMENTAL RESULTS

Three benchmark series are implemented to evaluate the
performance of the proposed model: the Mackey-Glass, non-
linear system identification, and Lorenz Attractor, widely used
in the literature. Finally, the model is applied to a real-
world dataset from a power transformer. The root-mean-
square error (RMSE), non-dimensional index error (NDEI),
and mean absolute error (MAE) measures the error of the
models, calculated according to Equations (9), (10), and (11),
respectively.

RMSE =

√√√√ 1

T

T∑

k=1

(yk − ŷk)2 (9)

NDEI =
RMSE

std([y1, ..., yT ])
(10)

MAE =
1

T

T∑

k=1

|yk − ŷk| (11)

where yk is the kth actual value, ŷk is the kth predicted value,
T is the sample size, and std() is the standard deviation
function. The number of final rules is also presented. The
hyperparameters are heuristically defined by computational
experiments aiming to produce the lowest RMSE, NDEI, and
MAE. Furthermore, the models’ execution time is estimated
in seconds, computing the mean runtime and the standard
deviation of thirty simulations. All codes were executed using
Python 3.9 in a PC device that has Intel Core i7-8565U, 1.99
GHz Turbo, and 8 GB RAM.

A. Lorenz Attractor Time Series

Lorenz [17] introduced a multivariate time series composed
of three ordinary differential equations, known as the Lorenz
Attractor. The expressions are described in Equations (12),
(13), and (14).

dx

dt
= σ(y − x) (12)

dy

dt
= x(ρ− z)− y (13)

dz

dt
= xy − βz (14)

The parameters of Lorenz’s time series were defined as σ =
10, β = 2.667, and ρ = 28, with initial conditions x(0) = 0,
y(0) = 1, and z(0) = 1.05, to obtain a chaotic behavior. 10000
data samples were generated. The goal is to predict xk+1 using
as input vector [xk, yk, zk] for any k value. The k value is set
as k ∈ [1, 10000], where the first 8000 data samples trained
the models, and the last 2000 data samples tested them.

Table I shows the simulations’ results. The proposed model
obtained the best results among all the models concerning the
errors. It also got one of the lowest number of rules. The eMG
achieved the highest number of final rules and the highest error

values. Not only SeOB achieved the lowest errors but also the
lowest runtime among all models. Figure 1 depicts the graphic
of the predictions of the proposed model.

TABLE I: Simulations’ results of Lorenz Attractor time series

Model RMSE NDEI MAE Rules Runtime (s)
ARIMA [18] 0.0005543 0.0000677 0.0004575 - -

eTS [4] 0.0002608 0.0000319 0.0002108 4 12.65 ± 0.66
Simpl eTS [10] 0.0001561 0.0000191 0.0001103 1 5.75 ± 0.18

exTS [11] 0.0001467 0.0000179 0.0000304 7 23.01 ± 0.45
eMG [14] 0.5598119 0.0683843 0.3872295 56 225.88 ± 1.72
ePL+ [13] 0.00000156 0.0000019 0.0000110 1 9.52 ± 0.33

ePL-KRLS-DISCO [15] 0.0294889 0.0036022 0.0191308 17 277.43 ± 3.50
SeOB 4.7× 10−8 5.8× 10−9 3.6× 10−8 1 3.89 ± 0.19

Fig. 1: Predictions of the proposed model for the Lorenz
Attractor time series

B. Mackey–Glass Time Series Forecasting

Mackey and Glass [19] introduced a long-term time series,
proposed as a model of white blood cell production, obtained
through the following differential equation:

dx(t)

dt
=

0.2x(t− τ)

1 + x10(t− τ)
− 0.1x(t− 1) (15)

where x(0) = 1.2 and τ = 17.
The goal is to predict xk+85 using as input vector

[xk, xk+6, xk+12, xk+18] for any k value. The simulations
were trained using 3000 data samples for k ∈ [201, 3200],
and then, 500 data samples were collected to test the model
for k ∈ [5001, 5500].

Table II shows the models’ results. The PL-KRLS-DISCO
model obtained the best error values, followed by the ePL-
KRLS, then the eMG, with 19, 21, and 40 final rules, respec-
tively. SeOB achieved lower errors than eTS and Simpl eTS.
Furthermore, SeOB performed simulations with the second-
best runtime. The eTS model performed the best runtime.
Figure 2 shows the graphic with the SeOB predictions.
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TABLE II: Simulations’ results of Mackey-Glass time series

Model RMSE NDEI MAE Rules Runtime (s)
ARIMA [18] 0.1079377 0.4812567 0.0851530 - -

eTS [4] 0.0835134 0.3723572 0.0676656 4 4.92 ± 0.43
Simpl eTS [10] 0.0850095 0.3790278 0.0683714 3 8.80 ± 0.27

exTS [11] 0.0778960 0.3473112 0.0629018 6 8.06 ± 0.32
eMG [14] 0.0583901 0.2603414 0.0307220 40 76.30 ± 0.90
ePL+ [13] 0.0753687 0.3360384 0.0595750 25 65.17 ± 3.59

ePL-KRLS-DISCO [15] 0.0025689 0.0114539 0.0014560 19 52.23 ± 1.21
SeOB 0.0778081 0.3469191 0.0626661 8 6.40 ± 0.38

Fig. 2: Predictions of the proposed model for the
Mackey–Glass time series

C. Nonlinear Dynamic System Identification

The classic nonlinear dynamic system identification, de-
scribed in [20], is obtained through the following difference
equation [21]:

yk =
yk−1yk−2(yk−1 − 0.5)

1 + (yk−1)2 + (yk−2)2
− uk−1 (16)

where uk = sin( 2πk25 ), and y0 = y1 = 0.
The goal is to predict yk using as input vector

[yk−2, yk−1, uk−1] for any k value. The k value is set as
k ∈ [2, 5201], where the first 5000 data samples trained the
models, and the last 200 data samples tested them.

Table III shows the results of the simulations. The proposed
model achieved lower errors than ARIMA with 8 rules.
These results show that, although the model presents a simple
structure, it can get accurate results. The ePL-KRLS-DISCO
algorithm reached the best error results with 20 final rules.
The eMG model performed the second-lowest errors with 25
final rules. SeOB performed the third-best runtime. The eTS
model obtained the lowest runtime among the models. Figure
3 shows the graphic of the predictions of ePL-KRLS-DISCO.

D. Hot Spot Temperature Forecasting

And finally, the model is applied in the thermal modeling
of the power transformer. Table IV presents the characteristics
of the power transformer.

The aim is to predict the hot spot temperature using as
inputs the load current (K), the top oil temperature (ΘTO),
and one step delayed load current (q−1K, where q−1 is

TABLE III: Simulations’ results of nonlinear time series

Model RMSE NDEI MAE Rules Runtime (s)
ARIMA [18] 0.0453301 0.0413639 0.030261 - -

eTS [4] 0.0082345 0.0075140 0.0048862 5 9.12 ± 0.46
Simpl eTS [10] 0.0021659 0.0019764 0.0014770 19 30.01 ± 0.78

exTS [11] 0.0178349 0.0162744 0.0144450 4 9.25 ± 0.46
eMG [14] 1.2× 10−7 1.1× 10−7 3.7× 10−8 25 80.73 ± 0.25
ePL+ [13] 0.0216558 0.0197610 0.0124800 31 194.47 ± 1.19

ePL-KRLS-DISCO [15] 6.0× 10−8 5.50× 10−8 1.3× 10−8 20 46.43 ± 0.65
SeOB 0.0364501 0.0332608 0.0260871 8 10.12 ± 0.26

Fig. 3: Predictions of the proposed model for the nonlinear
dynamic system identification

TABLE IV: Characteristics of the power transformer

Copper losses 776 W
Factory year MACE/1987
Iron losses 195 W

Nameplate rating 25 kVA
Tank dimensions 64× 16× 80 cm3

Top oil temperature rise at full load 73.1 ◦C
Type of cooling ONAN

Vprimary/Vsecondary 10 kV / 380 kV
Weight of core and coil assembly 136 kg

Weight of oil 62 kg

the delay operator). Three datasets were collected for the
simulations. Each one consists of measurements taken every 5
minutes for 24 hours. The first dataset corresponds to the first
day of measurements. The second dataset corresponds to the
second day and has no overload conditions. The last dataset
has overload conditions and corresponds to the last day of
measurements. The first dataset was implemented to train the
models, and datasets 2 and 3 were implemented to test the
model.

Table V shows the performance of the models for dataset 2.
The proposed model obtained the lowest errors and just three
final rules. The ePL+ performed the lowest number of final
rules. The eMG model achieved the highest number of final
rules. Table VI presents the simulation results in the presence
of overload conditions. One can note that the proposed model
also achieved the best error values. Furthermore, although the
ePL+ performed the second-best error values in dataset 2, it
obtained sixth in dataset 3. The eMG and ePL achieved the
lowest number of final rules, and the Simp eTS obtained the
highest. SeOB achieved the best results with just 2 final rules.
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SeOB performed simulations with the lowest runtime in both
datasets.

TABLE V: Simulations’ results of the power transformer -
dataset 2

Model RMSE NDEI MAE Rules Runtime (s)
ARIMA [18] 0.3201851 5.0613831 0.3015114 - -

eTS [4] 0.0236377 0.3736580 0.0164963 4 0.57 ± 0.04
Simpl eTS [10] 0.0184061 0.2909584 0.0144366 15 2.06 ± 0.11

exTS [11] 0.0208743 0.3299738 0.0147444 6 0.92 ± 0.06
eMG [14] 0.0207822 0.3285185 0.0138175 19 2.67 ± 0.14
ePL+ [13] 0.0162218 0.2564288 0.0132873 1 0.40 ± 0.03

ePL-KRLS-DISCO [15] 0.0233095 0.3684689 0.0179699 2 2.70 ± 0.13
SeOB 0.0095076 0.1502933 0.0061835 2 0.27 ± 0.00

TABLE VI: Simulations’ results of the power transformer -
dataset 3

Model RMSE NDEI MAE Rules Runtime (s)
ARIMA [18] 0.6066052 2.9606032 0.5587693 - -

eTS [4] 0.1810075 0.8834273 0.1257706 4 0.57 ± 0.06
Simpl eTS [10] 0.1630808 0.7959338 0.1196723 15 2.06 ± 0.11

exTS [11] 0.1668536 0.8143476 0.1224999 5 0.81 ± 0.01
eMG [14] 0.1699642 0.8295290 0.1267486 1 2.28 ± 0.00
ePL+ [13] 0.1692664 0.8261234 0.1223584 1 0.41 ± 0.03

ePL-KRLS-DISCO [15] 0.0933427 0.4555695 0.0736821 3 2.34 ± 0.20
SeOB 0.0443827 0.2166146 0.0251311 2 0.28 ± 0.2

Fig. 4: Estimation of hot spot temperature without overload
condition

E. Discussion
In this paper, a new model is proposed to time series fore-

casting. The model is applied to three benchmark series and
thermal modeling from a real power transformer. Among the
benchmark datasets, the proposed model achieves the lowest
errors and runtime in the Lorenz Attractor, a dataset well-
known as chaotic. In this series, the model uses exogenous
variables. Consequently, the results suggest that the proposed
model is suitable to be applied in time series forecasting of
high chaotic series using as predictors the exogenous vari-
ables. Furthermore, as the model presents a simple clustering
structure, and in Lorenz’s example, it created just one rule, the
model obtains the lowest execution time in this simulation.

On the other hand, concerning the Mackey-Glass time
series, the proposed model obtained the fourth-lowest errors

Fig. 5: Estimation of hot spot temperature with overload
condition

and the second-lowest runtime. Mackey-Glass is a series with
chaotic behavior that uses as predictors the same delayed se-
ries. In this case, the best results were achieved by ePL-KRLS-
DISCO, with errors approximately 97% lower than SeOB
but with a runtime approximately 8 times higher. Moreover,
the second-best model concerning the errors achieves error
values approximately 25% lower than SeOB with runtime
about 12 times higher. The last benchmark series is called
nonlinear. It doesn’t present a chaotic behavior but simulates
a non-linear series. The proposed model performed the second-
highest errors but the third-lowest runtime and number of final
rules. The best performance in the nonlinear series is obtained
by ePL-KRLS-DISCO, followed by the eMG model.

Finally, SeOB achieved the best error values and runtime to
predict the hot-spot temperature of power transformers, indi-
cating that the proposed model is suitable to be implemented in
control areas, presenting faster and more reliable outputs. Still,
the simplicity of the model’s structure makes it a light and fast
algorithm required in many control areas. Another advantage
of the proposed model is the number of hyper-parameters.
SeOB needs just one hyper-parameter to be set: the number
of rules. The number of hyper-parameters is an issue in many
machine learning models, as it demands more time to find the
best combination of hyper-parameters that leads to the best
results possible.

IV. CONCLUSIONS

This paper proposes a new machine learning model for time
series forecasting. The Takagi-Sugeno inspires the introduced
model but introduces new concepts that make it robust and can
be applied in many control areas. One of the main advantages
of this model is that it has just one hyperparameter, making
it also suitable for people starting in machine learning. The
model was tested using the Lorenz Attractor, Mackey-Glass,
nonlinear time series, and datasets of a real-world power
transformer. The model obtained satisfactory results in the
Mackey-Glass and nonlinear and achieved the lowest errors
in the Lorenz Attractor and the power transformers’ datasets.
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As the demand for mechanisms that can guarantee the safe
operation of critical systems has increased, the model proposed
in this paper is indicated to be implemented as a control tool
for its reliability and simplicity. The correct operation of these
systems helps to prevent unexpected failures due to ageing or
deterioration and, consequently, reduces costs. In future works,
we suggest testing SeOB performance in the presence of noise.
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