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Abstract—The growing demand for renewable energy re-
sources presents a supply management challenge, as photo-
voltaic (PV) energy exhibits intermittent generation due to mete-
orological factors. The unpredictability of these variations leaves
power grids vulnerable to instability, quality, and balance issues.
In this context, accurate forecasting of PV power generation can
improve management through generation planning, allowing for
the balancing of different energy sources, which is crucial for
achieving widespread PV energy adoption. The rapid develop-
ment and significant advancements in deep learning present new
possibilities for the use of satellite imagery in PV power fore-
casting. In this work we build and evaluate several deep learning
models in the context of PV power forecasting, aiming at 30 and
60 minutes horizons. Our models are built for the prediction
of the Global Horizontal Irradiance (GHI) component which,
due to its strong correlation with PV power generation, can be
employed not only to derive the actual PV plant output, but
also as a measure generation potential, regardless of the actual
PV plant. The models take as input images from the GOES-16
satellite and ground-based meteorological measurements, which
are considered as desired outcomes. Several model configurations
demonstrated the viability of GHI forecasting based on satellite
imagery, with the best models achieving relative root mean
squared errors (rRMSE) of 15.6% and 17.2% for 30-minute and
60-minute forecast horizons, respectively.

Index Terms—photovoltaic power forecasting, deep learning,
convolutional neural network, satellite image, GOES-16

I. INTRODUCTION

Electricity is ubiquitous in our daily lives. In the Net
Zero Emissions (NZE) by 2050 Scenario, electricity ac-
counts for approximately 50% of all energy consumed world-
wide [1]. Due to environmental concerns, a great deal of at-
tention has been directed towards electricity generation. More
than ever before, there is now a clearly established distinction
between non-renewable and renewable energy resources, with
a vast accumulated knowledge on their corresponding advan-
tages, limitations, and challenges, specifically for the latter.

Currently, one of the most promising renewable energy
resources available is, perhaps, solar energy, which can be
converted into electricity with the use of photovoltaic pan-
els. Despite its clean status, photovoltaic generation is strongly
dependent of solar irradiation. The irradiation that reaches pho-
tovoltaic panels is, in turn, affected by several meteorological
factors that, combined, determine the generation potential of a
given photovoltaic power plant at a given time [2], [3]. Indeed,
grid managers may face challenges due to the inherent nature

of photovoltaic power generation, which involves inevitable
and sometimes sudden alterations in power output [4].

In this scenario, precise forecasting of photovoltaic power
generation has emerged as a critical factor, whether to obtain
a better integration with other energy resources or to pro-
vide efficient grid management as a whole. It is important
to note that the forecasting horizons may vary significantly
depending on the specific requirements being considered, with
three typical scenarios defined in the literature: intra-hour,
intra-day, and day-ahead [3]. Regardless of the forecasting
scenario, a series of techniques from different areas have been
successfully employed to such a task, including statistics, time-
series analysis, machine learning, and deep learning [2].

Machine learning and deep learning based forecasting have
emerged as critical components in the realm of photovoltaic
power generation [5]. By leveraging methods from these fields,
photovoltaic power generation forecasts can be significantly
improved, allowing for better integration of solar energy into
the grid. Regarding deep learning, specifically, the remarkable
results attained in several image processing tasks by these
models offer novel prospects for incorporating satellite images
into the prediction of photovoltaic (PV) power generation [6].

Taking this scenario into account, this paper investigates the
combination of machine learning/deep learning models and
satellite images for the forecasting of PV power generation at
daily horizons (30 and 60 minutes ahead). Such investigation
is performed in a case study, considering a PV plant located
in the city of Florianópolis - Santa Catarina - Brazil. Satel-
lite images are obtained from the ABI Imager of GOES-16
satellite, a 16-band latest generation spectral radiometer [7].

The remainder of the paper is organized as follows. In
Section II we briefly review related work on the forecasting of
photovoltaic power generation, with focus on satellite image
based approaches. In Section III we introduce and discuss
relevant information regarding the databases employed in
our case study. In Section IV the deep learning approach
developed for the task and its hyperparameters are presented.
In Section V results are discussed. Finally, in Section VI,
conclusions and future work directions are taken into account.

II. RELATED WORK

As previously discussed, depending on the operational con-
ditions under consideration, a particular forecasting horizon
might be of greater interest. Even though there as some
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categorizations of forecasting horizons in the literature, there
is no clear consensus regarding their actual naming. Bearing
that in mind, the two distinct forecasting horizons we consider
in this work (30 and 60 minutes ahead) may be categorized
as short-term [2] or intra-hour [3], just to mention a few.

According to Sobri et al. [4], satellite imagery is one
of the most appropriate data resources for short-term PV
power forecasting. Considering this scenario, this brief review
presents works that employ satellite images, whether combined
or not with other data sources (e.g., meteorological stations)
for the short-term forecasting of PV power generation. Special
attention is given to works employing machine learning and
deep learning techniques. It is worth noting that due to space
constraints, our review is no exhaustive. For extensive surveys
on the subject, we refer the reader to [2]–[4], [8].

Si et al. [9] proposed the adoption of a Convolutional
Neural Network (CNN) to estimate the Global Horizontal
Irradiance (GHI) based on cloud behaviour obtained from
satellite photos in the visible spectrum. Images are obtained at
three distinct time instants, t, t−1, and t−2, with t indicating
the current time. Pre-processing is then performed in order
to normalize the data and correct the zenith angle variation.
Finally, the pre-processed images are provided as input to
a CNN that will perform feature extraction to relate them to the
actual problem. The output of the CNN is combined with data
from weather stations and fed as input to a Multilayer Percep-
tron (MLP), which is responsible for actually predicting the
GHI. The authors highlight the importance of pre-processing
the images and the effectiveness of the approach in correctly
identifying cloud motion based on wind speed predictions.

Marquez et al. [10], presents a method for the predic-
tion of PV power generation through satellite images of the
visible and infrared spectrum. Their work employs satellite
images of the visible spectrum to generate a cloud cover
index. This is achieved by applying a zenith angle correction
and a procedure to normalize the images considering ground
albedo. The infrared images are used to generate a vector field
that determines the direction and velocity vector of the clouds
using the Particle Image Velocimetry (PIV) algorithm. The
cloud velocity and cloud cover data are combined as input to
an Artificial Neural Network (ANN) for the prediction of GHI
at 30, 60, 90, and 120 minute horizons with 30min granularity.

Eissa et al. [11] introduces an approach using distinct
networks for different weather conditions aiming to combine
meteorological parameters and satellite images to determine
the DNI (Direct Normal Irradiance), DHI (Direct Horizontal
Irradiance), and GHI (Global Horizontal Irradiance). The
authors divide the problem into DNI and DHI estimation,
processing each of the variables separately. The two networks
apply the same strategy, using 10.8µm and 12µm satellite
spectral channels to generate a cloud mask that divides the
images into cloudless and cloudy. Depending on the results,
the algorithm selects which network to use and incorporates
other sources of information prior to its application, such as
additional channels and zenith angle, to mention a few. Four
models are actually trained: two for DNI (cloud and cloudless)

and two for DHI (cloud and cloudless). To obtain GHI esti-
mates, results from DNI and DHI are combined analytically,
leading to a rRMSE close to 12% for GHI estimates.

The work of Pelisson et al. [12] considered solely ground
data from a solarimetric station and PV Plant located at
Fotovoltaica - UFSC. Even though this particular study does
not rely on satellite imagery, it is reported here since the
very same ground data was employed in our work. The
authors compared several machine learning techniques and
explored different feature space configurations for next day
power forecasting, based on ground meteorological data.
Based on their results, the authors suggest that the best
results were obtained with Multilayer Perceptron (MLP) and
Support Vector Regression (SVR). Regarding feature space,
the best performance was obtained with the combination of
Global Horizon Irradiance (GHI), Direct Normal Irradiance
(DNI), Direct Horizontal Irradiance (DHI), Utra Violet (UV),
Relative Humidity (RH), Ambient Temperature (AT) and Wind
Speed (WS). Despite the strong correlation between GHI and
PV power output, the authors noted that by adding other
variables to the model a reduction of almost 30% in RMSE
was achieved. This led the authors to conclude that other
forecasting techniques, taking into account the use of satellite
images, for instance, can be used to achieve even better results.

III. DATABASES

This section presents briefly the data sources considered in
this study. First, we take into account ground data, which was
obtained from Fotovoltaica UFSC (UFSC Solar Energy Re-
search Laboratory)1. Besides a PV power generation facility,
the laboratory also has a solarimetric station, capable of col-
lecting data from different parameters, such as: Global Horizon
Irradiance (GHI), Direct Normal Irradiance (DNI), Direct Hor-
izontal Irradiance (DHI), Utra Violet (UV), Relative Humidity
(RH), Ambient Temperature (AT) and Wind Speed (WS). We
then consider and discuss the main data source for our work,
that is, data from the GOES-16 satellite. All data considered
in this work comprises the years of 2018 and 2019.

A. Ground Station Data

The ground station database was obtained from Fotovoltaica
UFSC (UFSC Solar Energy Research Laboratory), comprising
weather related data and power generation data by the photo-
voltaic plant. The data was obtained with a frequency of 1min
with a Campbell CR6 datalogger [12]. Despite the fact that
the solarimetric station collects several variables, for our work,
the only variable taken into account is the Global Horizontal
Irradiance (GHI), therefore, we refrain from discussing the
remaining ones. For more information, the reader may refer
to Pelisson et al. [12]. There are two reasons for considering
solely GHI and discarding all the remaining variables from
the solarimetric station: (i) we want to evaluate the use of
satellite images for power forecasting and (ii) from the three
available irradiance components (GHI, DNI, and DHI), GHI

1https://fotovoltaica.ufsc.br/
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is the one with the highest value of pearson correlation w.r.t.
PV power generation, as shown by Table I (correlation values
presented in the table are w.r.t the clean database, see below
for details on it). Indeed, GHI has a very strong correlation
with the generated power, as expected. Such an observation
holds true with data surveyed in the literature and allows
us to build a prediction model that has the GHI as output.
This gives an advantage to the model, which can be applied
to different generating units in the same park through a
relationship between the GHI and the generation potential.

TABLE I
CORRELATION BETWEEN IRRADIANCE AND POWER GENERATION.

Irradiation Component Correlation w.r.t. power generation

GHI 0.97
DNI 0.77
DHI 0.36

Before actually using the database, pre-processing work had
to be done. The 2018 and 2019 data were unified, removing
eventual duplicated readings. For convenience, the timestamps
from the data were converted to GMT-0, which is the same
time zone used for the satellite. After the removal of some
inconsistent data points (negative values and values above the
maximum observable threshold), the database was left with
871,709 time points comprising the years 2018 and 2019.

An analysis of the average distribution of GHI over the day
is shown in the graph in Figure 1. In order to delimit our
forecast ranges, we took data represented in this image into
account. It is possible to observe that the solarimetric station
(and consequently the PV Power station, given that they are
co-located) starts to receive solar radiation around 6am, re-
maining active until 5pm. Note that this Figure depicts average
behaviour, with significant changes occurring due to seasons
of the year. Considering the most significant measurements of
GHI from the database, we initially defined a time frame of
analysis between 9:00am and 5:30pm. This first interval will
be further narrowed after exploratory data analysis.

Fig. 1. Mean GHI distribution over 24 hours in the years 2018 and 2019.

Finally, considering the given prediction interval and the
fact that our models will output estimates for GHI, the final

database was reduced to a total of 218,549 readings (from an
initial value of 871,709) with 1min granularity.

B. Satellite Data
This work takes advantage of the improvements imple-

mented in the GOES (Geostationary Operational Environ-
mental Satellite) satellite series2 to build and evaluate deep
learning models for GHI forecasting. It is important to make
it clear that GHI data discussed in the previous section are
employed only as targets (desired values) to train and evaluate
our models, for which inputs are based solely on satellite
data. Once trained, the models provide forecasts, once more,
relying only on satellite data, described in this section.

The PV power station considered for the development of this
work is located in Florianópolis - Santa Catarina - Brazil. For
this particular location, the GOES-16 satellite is able to capture
the desired images. The satellite data consider in this work is
within the same interval as the ground station data (2018 and
2019). The processing of the data began with full disk images,
which cover the entire GOES-16 capture area. It is important
to note that for the time period under consideration in this
study, GOES-16 provides captures (images) every 30min.

Images from the GOES-16 satellite are provided by the
Advanced Baseline Imager (ABI). We considered images from
channel 2 of the ABI, which provide greater spatial resolution
and provides in its images data relevant to our application [7].
Each raw ABI image from channel 2 has approximately
500MB. To reduce the volume of downloaded data, only
data from 9:00am to 5:30pm GMT-3 was considered, as
previously discussed. For each image, a region of interest
of ±5◦ latitude and ±5◦ longitude was centered over the
point of interest (location of the power station), which has
coordinates −27.4310◦ latitude and −48.4414◦ longitude.

Even with the cropping, the resulting images are still
considerably large (2124x875 pixels), resulting in roughly 1.8
million pixel values. In the case of no further processing, this
would be the required input size of the deep learning model
for our study, demanding massive computational processing.

In order to reduce the size of the images and consequently
the computational processing necessary to train and evaluate
the models, we took into account cloud speeds. Based on
previous work from Chow et al. [13], in which clouds that
most affect forecasting were found to travel below 28km/h, we
conjectured that an upper limit of 40 km/h would be enough to
capture significant cloud movements. Considering the values
of maximum cloud speed (40km/h), pixel granularity (0.5km
in side per pixel), and the frequency of capture (30min), we es-
timated that images comprising 40×40 pixels (20km×20km)
would be adequate for our forecasting horizons (30/60 min).
The area corresponding to the final crop is shown in Fig.
2. The final images provided to the models have a total of
1600 points. Note that this picture is shown for illustrative
purposes only. Satellite imagery employed by the models in
this work account for reflectance information, as we detail in
the following.

2https://www.goes-r.gov/
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Fig. 2. Outer image provides a broad view of the location of interest. The
crop shown in the bottom-right corner corresponds to actual area used as input
to the deep learning models. Images shown here are obtained from Google
Maps. Models are built on the basis of GOES-16 images from channel 2.

Actual images, as provided to the models, are shown in
Fig. 3. Each line of the figure accounts for a different hour
of the day: early-day, mid-day, and end-day. For each given
time, we selected the images with the lowest and highest
GHI observed for the years of 2018 and 2019 (time period
of the database). Note that, for images in which sunlight is
present, low GHI ground measurements are an indicative of
high reflectance. This is actually expected and can be observed
in the subfigures (a) and (c), in which bright pixels indicate
a high reflectance (which can be caused, for instance by
clouds). A low GHI is not observed only in images with high
reflectance though. This can be noticed in subfigure (e), an
image from June 12, 2018, for which at 17h there is limited
sunlight, resulting in a dark image and low GHI. Finally, a
cloud free image is depicted in (d), which allows for a visual
comparison of the island contours with Fig. 2.

Having made such considerations regarding the pre-
processing steps, which are mostly related to image cropping,
and considering the initial time window between 9:00am
and 5:30pm, the satellite image database consists of 7,136
images for the year 2018 and 7,193 images for the year 2019.

C. Exploratory Analysis

With both databases ready for further analyses, we first
verified the linear correlation (Pearson correlation — ρ) be-
tween satellite data and ground GHI data, as measured by
the solarimetric station. All timestamps presented from now
consider the GMT-3 time zone. Given that satellite images
cover a large region and actual GHI ground measurements are
located in the center of the images, we obtained the reflectance
of each image by the average of the closest 4 points (pixels)
w.r.t. the solatrimetric station, which corresponds to an area
of 1km2 centered at it. Once this averaged reflectance was
obtained, it was then correlated with ground GHI data.

When correlating GHI with reflectance in the original time
window considered for analysis (9:00am to 5:30pm), a weak

(a) 8:00 am, GHI 9.75 W/m2 (b) 8:00 am, GHI 701 W/m2

(c) 12:30 pm, GHI 31.3 W/m2 (d) 12:30 pm, GHI 1199 W/m2

(e) 05:00 pm, GHI 0.41 W/m2 (f) 05:00 pm, GHI 415 W/m2

Fig. 3. Actual satellite images as provided to the models evaluated in this
work. Each image is a crop with 40×40 pixels in dimension, centered at the
PV Power Plant. Images were obtained from the GOES-16 satellite, channel 2,
at different time instants. Below each image we depict its timestamp and
correspondent GHI, measured at ground level at the solarimetric station.

correlation was observed (ρ = −0.34). Note that the negative
sign indicates that higher reflectances result in lower GHI
measurements, which is expected. Si et al. [9] emphasizes
the influence of the zenith (which accounts for the angle
os sunlight incidence) angle when estimating the GHI using
satellite images. To investigate its influence in our results,
we correlated the same data, within a different time window,
from 11:00am to 1:00pm, for which the zenith angle influence
should be diminished. Indeed, for this interval, the correlation
we observed was higher (ρ = −0.77). Given that we were
not aiming for zenith correction at this point of investigation
(future work), we made a compromise with the window of
predictions our model would deal, and shortened it to consider
measurements obtained between 9:00am and 03:00pm, for

XVI Brazilian Conference on Computational Intelligence (CBIC 2023), Salvador, October 8th to 11th

4



which a moderate correlation was observed (ρ = −0.66). The
correlation between GHI and satellite reflectance for each
point of the cropped region of interest for this time frame
is depicted in Fig. 4.

Fig. 4. Correlation between ground GHI measurements and reflectance, as
obtained from satellite data, w.r.t. the 9am to 3pm (GMT-3) time window.

With the time window for the study defined, we briefly
discuss how input data was organized before being fed to the
models. This is discussed in the next section, given that data
organization is heavily influenced by the model topology.

IV. DEEP LEARNING BASED APPROACH

Before defining models and input data organization, it is
worth recalling that we have two different forecast settings,
in which we consider 30min and 60min ahead predictions.
The Convolution Neural Networks (CNNs) investigated in this
paper follow closely the proposal by Si et al. [9], receiving as
input three satellite images from different timestamps, namely:
t, t − s, and t − 2s, where t accounts for the actual time
and s accounts for the time between consecutive satellite
image measurements, which is 30min. Therefore, each model
receives as inputs images from t, t − 30min, and t − 60min.
Examples of this arrangements are provided in Table II, for
30min and 60min forecasting horizons. Considering that each
image is 40 × 40 pixels in size, the actual input of the Deep
Learning approach is composed of 4800 values.

Given the input images, convolutional layers are then
employed for processing satellite images, with each layer
consisting of 2D convolution, normalization, and pooling, as
shown in Fig. 5. Convolution was based on ReLU activation
functions. As for pooling, 2D average pooling was applied,
which uses the same concept as MaxPooling but averaging the
kernel, with a 2x2 step. This topology was adapted from Si et
al. [9] for our case study. The number of convolutional layers,

Fig. 5. Topology of the Deep Learning approach employed in our case
study (based on the work from Si et al. [9]). Note that a model takes three
satellite images as input, in different time instants: t (actual time), t− s, and
t − 2s, with s equals the time difference between satellite readings, which
is 30min. The data goes through a CNN and a MLP, in order to obtain an
estimated GHI for t+ h, with h (horizon) equals to 30min or 60min.

the amount of convolutional filters and the kernel size are
objects of this study in this work, discussed in the following.

In order to train the models, in addition to the satellite
images, the expected GHI values at t + h (30min or 60min,
according to the model) were also considered, normalized
between 0 and 1. For each forecast horizon we tested different
model settings, aiming to verify how each hyperparameters
affects the actual forecasting. Different models were built
considering the number of convolutional layers, the number
of filters, the size of the kernel, the number of hidden layers
(for MLP), the dropout rate and the number of neurons per
layer. The possible values for each one of this hyperparameters
is given below:

• Convolutions: {1, 2, 3, 4}
• Filters: {16, 32}
• Kernel: {2, 3, 4, 5}
• Layers: {1, 2, 3, 4, 5}
• Dropout: {0.00, 0.15, 0.30, 0.45}
• Neurons: {64, 128, 256, 512, 1024}
Considering these hyperparameters and values, a total of

6,400 different models were trained and evaluated, with 3,200
models for each forecasting horizon (30min and 60min).

The database was split into 3 subsets, namely: train, vali-
dation, and test. The first one was employed to train each one
of the models. This subset is composed of 70% of the data
from 2018, with a balanced representation of each month, that
is, the training set has 70% of January, 70% of February, and
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TABLE II
ILLUSTRATIVE EXAMPLES OF HOW SATELLITE IMAGES WERE CONSIDERED AS INPUT FOR THE DL APPROACH.

Forecasting Horizon Current Time Model Inputs Model Output
Image t Image t+30 Image t+60

30

10/03/2018 12:00 am Image 12:00 am Image 11:30 am Image 11:00 am GHI 12:30 am
10/03/2018 12:30 am Image 12:30 am Image 12:00 am Image 11:30 am GHI 01:00 pm
10/03/2018 01:00 pm Image 01:00 pm Image 12:30 am Image 12:00 am GHI 01:30 pm
10/03/2018 01:30 pm Image 01:30 pm Image 01:00 pm Image 12:30 am GHI 02:00 pm

60

10/03/2018 12:00 am Image 12:00 am Image 11:30 am Image 11:00 am GHI 01:00 pm
10/03/2018 12:30 am Image 12:30 am Image 12:00 am Image 11:30 am GHI 01:30 pm
10/03/2018 01:00 pm Image 01:00 pm Image 12:30 am Image 12:00 am GHI 02:00 pm
10/03/2018 01:30 pm Image 01:30 pm Image 01:00 pm Image 12:30 am GHI 02:30 pm

so on. The second subset is composed of the remaining 30%
of the 2018 data, and is used for validation, that is, parameter
selection. Finally, the third subset comprises the data from
2019 (not employed before), used to test the selected models.

The network was trained to a limit of 1000 epochs, using
an early stopping function with 50 epochs of persistence, with
a batch size of 512. Models were built using Keras [14].

V. RESULTS

After performing training and validation for each one of
the models with 2018 data, these were then tested with 2019
data and evaluated using relative Root Mean Squared Error
(rRMSE) as metric [15].

Given the number of different models under evalua-
tion (6,400) we produce different plots in order to better
evaluate/understand the contribution of each one of their
hyperparameters to the observed values of rRMSE. These
plots are shown in Fig. 6. We produce a subplot — from
(a) to (f) — for each combination of hyperparameter and
forecasting horizon. Within each of these plots, a boxplot
accounts for each one of the individual hyperparameter val-
ues available/considered in our work. An evaluation of the
number of convolutional layers, shown (a), indicates that, for
both horizons, the adoption of 2 convolutional layers led to
results with lowest values of rRMSE and decreased variance.
Regarding the number of filters, according to (b), one can
observe that a number of 16 filters appears to be the the best
choice for the two forecasting horizons. Regarding kernel size,
shown in (c), values 3 and 4 have a very similar distribution,
with slightly better results.

As for the number of hidden layers, shown in (d), a
single hidden layer provides better results than the remaining
confifurations (up to 5 hidden layers were considered). Indeed,
it is clear from the boxplots that the error dispersion increases
together with the number of layers, which may indicate that
complex networks had difficulties to convergence. Regarding
the distribution of the number of neurons, presented in (e), the
results obtained for 256 and 512 neurons are very close for
the 30 minute horizon, whereas for the 60 minute horizon the
results for 512 neurons had a lower dispersion and a lower
rRMSE. Finally, considering the dropout rate presented in (f),
which contributes to model generalization, models achieved

the best result with 0.15. However, it is interesting to note that
increasing the dropout rate seems to produce more unstable
ANNs, which can be seen by an increasing error dispersion.

By evaluating each of the hyperparameters individually, it
is possible to find those that lead to better results, serving
as a reference for choosing a combination for the final ANN
model. We select for further inspection the top five models for
each one of the forecasting horizons (30min. and 60min.). The
results of these methods, alongside with their specific hyper-
parameters is shown in Table III. The best models achieved
good results with rRMSE of 15.6% and 17.2% for the 30-
minute and 60-minute forecasting horizons, respectively. A
careful observation of the best results shown in Table III,
allows one to conclude that, in general, fewer hidden layers led
to better models. Although in general both horizons performed
better with a small number of neurons per layer, the 30-minute
horizon, with one exception, has an even smaller number of
neurons per layer when compared to the 60-minute horizon.

TABLE III
CONFIGURATION OF THE TOP FIVE METHODS W.R.T. THEIR RRMSE (%)

VALUES CONSIDERING 30 AND 60 MINUTE FORECASTING HORIZONS.

H
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#
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M
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#

30

2 16 5 1 0.45 64 15.6 M01
2 32 4 1 0.45 1024 15.8 M02
2 32 5 1 0.30 64 15.8 M03
2 16 3 2 0.45 64 15.8 M04
2 16 3 2 0.30 64 15.8 M05

60

2 32 5 1 0.45 256 17.2 M06
2 32 3 2 0.15 256 17.2 M07
1 32 3 5 0.15 256 17.5 M08
1 16 5 1 0.30 64 17.5 M09
1 32 5 1 0.45 512 17.5 M10

We select for further inspection the best models evaluated
in each one of the forecasting horizons under consideration. A
comparison between the predicted (obtained from the model)
and expected (obtained from the solarimetric station) GHI
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Summary of the relative Root Mean Squared Error (rRMSE) for the 6,400 different model configurations evaluated in this work (3,200 for each one
of the forecasting horizons, that is, 30min and 60min). Each subplot — indexed from (a) to (f) — presents boxplots indicating model performance factored
by a specific hyperparameter and its possible values, in order to allow for a better inspection of their individual influences. In clockwise order, we depict: (a)
number of convolutions; (b) number of filters; (c) kernel size; (d) number of layers; (e) number of hidden units/neurons per hidden layer; and (f) dropout rate.

values for all instances of the database, is presented through
the scatter plot, as shown in Fig. 7. By analyzing the graph it
is possible to infer that, in general, the dispersion is symmetric
for the different GHI values, except for the small values,
where the predicted values are overestimated in relation to the
actual values. No reasons were found throughout this work to
justify this particular behavior, and it is therefore a subject of
investigation for future work.

30 min dispersion 60 min dispersion

Ground-Based Global Horizontal Irradiance W/m2

Fig. 7. Distribution of CNN’s GHI prediction vs. Ground-Based GHI for the
best result for the 30-minute and 60-minute prediction horizons.

VI. CONCLUSIONS

In this work we tackled the problem of photovoltaic power
generation forecasting. Due to the intermittent nature of this
energy resource, its forecasting is crucial not only for wide
adoption, but also for grid integration with other resources.

Model forecasts were based solely on GOES-16 satellite
images from channel 2, which provide important information
regarding reflectance. Aiming to obtain accurate short-term
forecasts for the next 30 and 60 minutes, we provided to the
models a series of three consecutive satellite images. This ap-
proach was designed to supply the models with sufficient data
to detect trends and subsequently produce reliable forecasts.
Given that forecasts aim at Global Horizontal Irradiance (GHI)
levels which, in turn, is highly correlated with PV Power
Output, they are independent of the actual plant itself.

Our results support that different models were capable of
providing good results for GHI estimation, with relative Root
Mean Squared Errors (rRMSE) in the order of 15%. From the
hyperparameters evaluated in this work, the ones that seem
to mostly affect model performance are: number of network
layers, dropout, and number of neurons per layer. Even though
the remaining hyperparameters cause some changes in the
observed model outcome, they do not seem critical enough to
justify in-depth exploration, at least in our evaluation scenario.

Despite the promising results, we believe there is potential
for further improvements and future work. First and foremost,
we have to consider that the models evaluated in this work
received as input only raw satellite images. We believe that
improvements could be obtained by considering and correcting
for the solar zenith angle. Another line of investigation that
we conjecture would provide improvements relies on fusing
temporal data, such current time, day of the year, month (or
season), with satellite images as input to the models. Finally,
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we believe that the fusion of satellite images with ground data
from solarimetric stations is also a promising line of research.
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