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Abstract—This 3-page long paper summarizes our PhD thesis
with the aim of participating in the CBIC23 Contest of Theses
and Dissertations (CTD). Our thesis introduces a novel video-
object segmentation (VOS) method, called SHLS, that uses su-
perpixels to build a high-compressed latent space. The proposed
method is completely self-supervised, initially trained on a dataset
of various orders of magnitude less than existing self-supervised
VOS methods; using pseudo-labels in the offline training stage
avoids the burden of annotations. The ultra-compact latent space
allows for creating more efficient memory clusters, ultimately
speeding up the segmentation process across the video. With
efficient-oriented memory usage, SHLS achieved superior per-
formance on single-object segmentation and comparable results
with other state-of-the-art methods on multi-object segmentation
on the DAVIS dataset.
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I. INTRODUCTION

VOS aims at classifying the pixels along a frame sequence
into foreground and background regions. The simplest case
is single-object segmentation, where no differentiation among
distinct foreground objects is required. The task becomes
more challenging in the multi-object scenario, where each
object in the foreground must be assigned a different label.
The common approach to solve this problem is based on
supervision. However, providing pixel-wise annotations for
thousands of frames is complex, time-consuming, and costly.
More recently, self-supervised approaches have been proposed
as an alternative to allow VOS training based on completely
unlabeled data. Self-supervised methods can learn inter-frame
correspondences from supervisory signals extracted directly
from raw videos, dispensing any level of human supervision.
In principle, eliminating manual annotations is advantageous
as the methods can learn from more diverse data sources.
Nevertheless, many self-supervised methods have traded off
the dependency on annotated frames by requiring unprece-
dented volumes of training videos (Fig. 1). For instance, [2],
[9], [16], [33], [35], [38] are trained with enormous datasets,
e.g., Kinetics [3], VLOG [8], and TrackingNet [21], each one
comprised of hundreds of hours of videos.

A. Originality

We introduce here a different approach by pursuing to
learn VOS not only from unlabeled images but using as

Fig. 1. The high-compressed latent space (bottom plot) generated from the
superfeatures and a dataset containing at least 102 orders of magnitude less
training images than other approaches evaluated over DAVIS-2017 (top plot).

little training data as possible, as illustrated in Fig. 1. The
proposed method, called superfeatures in a high-compressed
latent space (SHLS), combines superpixels and deep convolu-
tional features to produce ultra-compact representations in the
superpixel domain. These representations, referred to here as
superfeatures, are learned via a metric learning approach, in
which our model clusters superfeatures when they come from
parts of the same object. This process gives rise to a high-
compressed latent space where correlated superfeatures com-
pound clusters. At the inference, such clusters can be properly
retrieved, identified, and used to classify the superpixels by
means of a k-nearest neighbors (k-NN) algorithm. Relying on
superpixels for self-supervised VOS benefits from three main
aspects: (i) the lack of annotations to guide self-supervised
methods in learning the object shapes makes these methods
more error-prone, especially regarding the object contours;
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Fig. 2. Overview of SHLS at the training stage. Offline phase: Given some input still images, the pseudo-sequence generation module yields a sequence of
frames and masks; following, a superpixel method extracts superpixels from the frames. Online phase: Feature maps in different scales are extracted by a
CNN backbone and shared into two main branches. The uppermost branch encompasses the superpixel embedding module, which generates the superfeatures
based on a contrastive NT-Xent loss. The lowermost branch accomplishes the segmentation refinement, in which the pixel-wise multi-object prediction is
learned through a cross-entropy loss. This prediction is supported by the memory clustering module, which transfers information between branches by means
of attention maps. At each iteration, both losses are summed and back-propagated in an end-to-end training process.

(ii) the high data compression provided by the superfeatures
allows us to construct a memory mechanism that can effi-
ciently retrieve information from virtually all past frames in
a video sequence. Indeed, memory mechanisms are a crucial
component for several modern VOS methods [12], [20], [24],
[29], [37]; and (iii) differently from most models biased to
learn features related to foreground objects only, the proposed
method treats all superpixels with equal relevance, whether
they come from foreground or background objects. All these
aspects help SHLS to achieve more robust representations in
which the background dynamics is also embedded.

To learn VOS exclusively on unlabeled data, we combine
saliency detection with a set of data augmentation strategies
to synthesize pseudo-sequences containing frames and masks
with multi-objects. The proposed training process is based
solely on the RGB images of MSRA10K [5], a relatively
small dataset comprised of 10k still images. With the ground
truth provided by the generated pseudo-masks, we are able
to drive our superfeature embedding model toward learning a
multi-class contrastive objective. The resulting superfeatures
are ultra-compact vectors with dimension 1 × S (in practice,
we use S = 32), each representing the whole bunch of
pixels contained in the corresponding superpixel area. Since
a typical segmentation of a 480p resolution frame can be
accomplished with less than a thousand superpixels, we end
up with ∼ 1k × 32 vectors to represent each frame content –
certainly a very manageable volume in computational terms.
Such compactness allows us to efficiently maintain a memory

clustering mechanism, where the superfeatures produced along
the video processing are assigned to clusters according to the
object classes present in the scene, including the background
class.

Differently from methods based on retrieving information
from large feature maps [14], [20], [24], [29], [37], or frames
[12] accumulated in a memory bank, our superfeature mech-
anism does not require any special maintenance protocol to
prevent overhead, and efficient similarity search [10] can
access the memory. Following this approach, SHLS can learn
how to carry out with VOS from a relatively small number
of static images, showing competitive performance compared
to state-of-the-art self-supervised methods trained with much
larger datasets.

B. Impacts of the work

The dissemination of digital technologies, mainly boosted
by mobile devices, has led to an exponential availability of
video data. Consequently, the demand for tools to support au-
tomatic video analysis and understanding is also increasing. In
this context, VOS is a crucial task, potentially benefiting areas
ranging from video processing activities [31] to applications
including visual tracking [25], video-based question answering
[27], human pose estimation [34], surveillance [22] and so on.

C. Contributions

Our contributions include a superpixel method called It-
erative Over-segmentation via Edge Clustering (ISEC) [19],
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Method Year Training datasets DAVIS-2016 DAVIS-2017
Images Videos (hrs) J F J&F J F J&F

VidColor [33] 2018 - K (833) 38.9 30.8 34.9 34.6 32.7 33.7
CorrFlow [13] 2019 - O (14.0) 48.9 39.1 44.0 47.7 51.3 49.5
CycleTime [35] 2019 - V (344) 55.8 51.1 53.5 41.9 39.4 40.7
UVC [16] 2019 - K (833) - - - 57.7 61.3 59.5
RPM-Net [11] 2020 - D17+Y (5.75) - - - 41.0 42.2 41.6
MAST [12] 2020 - Y (5.67) - - - 63.3 67.6 65.5
MUG [18] 2020 - O (14.0) 63.1 61.8 62.5 52.6 56.1 54.3
CRW [9] 2020 - K (833) - - - 64.8 70.2 67.6
DUL [2] 2021 - T (140) - - - 67.1 71.7 69.4
TWIAA [38] 2021 - V+K (1,177) - - - 58.2 56.7 57.5
STT [15] 2022 I Y (5.67) - - - 71.1 77.1 74.1
MAMP [20] 2022 - Y (5.67) - - - 68.3 71.2 69.7
SHLS (ours) 2023 M - 76.6 70.4 73.5 68.3 68.7 68.5

TABLE I
COMPARISON OF OUR SHLS METHOD WITH VARIOUS SELF-SUPERVISED METHODS USING STANDARD VOS METRICS, INCLUDING REGION JACCARD

SIMILARITY (J ) AND BOUNDARY F-MEASURE (F ), AS WELL AS THE MEAN OF BOTH (J&F ). THE TESTS WERE PERFORMED ON THE VALIDATION SETS
OF DAVIS-2016 [26] AND DAVIS-2017 [28] FOR THE SINGLE AND MULTI-OBJECT VOS TASKS, RESPECTIVELY. TRAINING DATASETS: I: IMAGENET

[6]; D16: DAVIS-2016 [26]; E: ECSSD [30]; M: MSRA10K [5]; P: PASCAL-VOC [7]; D17: DAVIS-2017 [28]; Y: YOUTUBE-VOS [36]; C: COCO
[17]; K: KINETICS [3]; O: OXUVA [32]; V: VLOG [8]; T: TRACKINGNET [21].

whose main characteristic is the ability to generate an adaptive
number of superpixels based on the image content. This aspect
is especially useful for video segmentation since the number
of generated superpixels can respond to changes in the video
content along the sequence.

In addition to ISEC, the main contribution of this work is
summarized in SHLS. The proposed VOS method comprises
several innovative characteristics, including a model based on
compressed features using superpixels and metric learning, a
memory mechanism based on clustering, and a new strategy
to provide pseudo-labels for synthetic videos generated auto-
matically. As far as we know, there is no related work with
the same characteristics as SHLS

II. METHOD

Our SHLS framework is turned to the one-shot VOS modal-
ity. During inference, it receives the ground truth mask of
the first frame and propagates it to the subsequent frames.
To emulate this scenario in training, an initial offline stage
is firstly accomplished, where the necessary training inputs
are generated based on a bunch of still images randomly
selected from the dataset [5]. Fig. 2 shows an overview of
our framework. Offline-generated training inputs consist of
a pseudo-sequence containing the frames and object masks
and each frame’s superpixel segmentation [1], [19]. Once
generated, these inputs are processed sequentially at the online
stage. The initial step is feature extraction, where convolu-
tional feature maps of different scales are produced and shared
into two main branches. The uppermost branch is dedicated
to the superfeature generation. In this branch, the superpixel
embedding network receives the features and superpixels of
the current frame and generates the superfeatures according to
a contrastive NT-Xent objective [4].

Along the frames, the generated superfeatures are stored
by memory clustering. This module provides short- and long-
term memory mechanisms to retrieve historical information to
support the current frame segmentation. The memory cluster-
ing yields a set of object-focused attention maps, which are
passed to the segmentation refinement branch (lowermost, in
Fig. 2). Segmentation refinement is run at the pixel-level, for
each foreground object individually. For this, the object region
of interest (ROI) is selected from the attention maps and passed
to the feature modulator and feature decoder modules. Both
are network-based modules, where the former modulates the
features of the current frame. This is accomplished according
to the object ROI selected in the attention maps and the
features, attention maps and mask prediction of the previous
frame. The modulated features and the ROI-selected attention
maps are then passed to the feature decoder module. There,
they are fed into the decoder network along with previous
information from the first and the last iterations. The feature
decoder predicts individual masks for each object in the frame.
Ultimately, these masks are joined via soft-aggregation [23]
to generate the final multi-object prediction. A cross-entropy
function computes the error between this prediction and the
corresponding pseudo-mask. At each iteration, the NT-Xent
and cross-entropy losses are summed and back-propagated in
an end-to-end training process.

III. CONCLUSION

Our fully self-supervised training methodology enables
training with only 10k still images. Our experiments on the
DAVIS dataset (Table I) demonstrate that SHLS outperforms
self-supervised methods by a large margin on the single-
object DAVIS test and remains competitive on the multi-object
test, despite being trained with significantly fewer data than
competitors.
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