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Abstract—In this paper, we analyze the performance of two
bio-inspired algorithms applied in text-independent speaker
recognition through voice signal. The analyzed algorithms are
particle swarm optimization and grey wolf optimizer. The complete
methodology described in this paper was specifically developed
in the context of this work. First, a widely known model of
the speaker is determined based on discrete transfer functions.
Then a method of estimation of the input signal is determined.
The bio-inspired algorithms are custom-developed and applied
to parameterize the transfer functions based on the models. The
proposed method is composed by three major parts, first the
fitness used in the bio-inspired algorithms is created based on
the cross-correlation. Second, a method to create a database
with speakers’ identities is proposed, and third, a method to
compare the characteristics of the speaker is proposed, to identify
or distinguish two different speakers. Finally, experiments were
made considering 4 speakers with 2 speech each, a representation
of the identity of each speaker was created through both
algorithms, totalizing 16 entries on the database. Results show
that all comparison results were accurate. The algorithms identify
the speaker even when two different speeches were compared,
and, as expected, distinguish when two different speakers were
compared.

Index Terms—Speaker Identification, Grey Wolf Optimizer,
Particle Swarm Optimization, Bio-Inspired Algorithms

I. INTRODUCTION

The information obtained through human voice signal pro-
cessing may be useful in many applications. With the aid of
the current technology, people have access to a popular device
which, among other functions, is a high-performance voice
processor: the smartphone. In the smartphone are present many
voice signal processing techniques, such as noise-canceling
filtering, language recognition [1], speech recognition, speaker
recognition [2]. Voice processing techniques have another
applications, such as speaker diarisation [3] and emotion
identification through the voice signal [4].

Due to the influence of speech in speaker identification
[5], different approaches are proposed in the literature. The
identification can be done considering the speech [6], [7],
independently of the speech [8], or independently of the
speech and the language [9].

There are many techniques, in the literature, for text in-
dependent speaker recognition, such as: linear discriminant
analysis [10]; artificial neural networks and hidden Markov
chains [11]; data mining [12]; Karhunen-Love transform [13];

VQ distortion [14], mel-cepstral coefficients [15]; ant colony
optimization [16]; Particle Swarm Optimization (PSO) [17].

Between the techniques listed above, we note that in [16],
[17], bio-inspired optimization algorithms were used. How-
ever, these algorithms were applied directly to the voice signal,
without the aid of a model of signals and systems theory. The
human voice is a stochastic signal, and therefore its identi-
fication does not have an analytical solution. One possible
application of optimization algorithms is to find parameters of
a deterministic model of a speaker, based on his voice signal.

System identification may rely on some information of the
system, e.g., the synchronous data of the input and output
of the system in a period of time. In the case of human
vocal system identification, the input signal is generated by the
glottis and vocal cords, which, to the best of our knowledge,
it is not possible to physically measure.

In this work, it is proposed a method of speaker iden-
tification independently of the speech and language, or in
other words, text independent. The method use optimization
algorithms to parameterize transfer functions of well-known
models from the literature of voice processing [18]. When
using a model, the efficiency of the optimization algorithms
may be enhanced. Further, we propose the use of the Grey
Wolf Optimizer (GWO) algorithm [19], which, to the best of
our knowledge, has not yet been applied to speaker identifica-
tion. Yet, the performance of GWO is compared to the PSO
algorithm [20].

The methodology proposed in this work is based on discrete
transfer function models for the glottis, vocal tract, and radia-
tion [18]. The parameters to the transfer function are obtained
through an optimization algorithm (GWO or PSO) with a
custom fitness function for the speaker identification. Also,
a structure for the database with the speakers’ identification
is proposed. And finally, a method of evaluation for the
identification (or distinguishing) between speakers is proposed.

This work is organized as follows. In Section II, the
methodology used for the speaker identification is presented.
Then, we present the vocal tract modeling techniques and
the techniques used in the implementation of the custom
optimization algorithms. In Section III, the results of the work
are presented, considering experiments with 4 professional
speakers. A discussion is made in Section IV. And finally, in



Section V we conclude on the performance of the algorithms.

II. METHODOLOGY

In this section, we present the proposed methodology for
the speaker identification. Basically, we use optimization al-
gorithms to find the parameters of a discrete transfer function
model of the human vocal system, and then, we develop a
method of identification over these parameters.

A. Model

The block diagram of the complete model is shown in
Figure 1.
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Fig. 1. Basic model of the human vocal system in block diagram [18].

In this model, the vocal tract and vocal cords are considered,
which are the parts of the system where the vocalized sounds
are generated. Stochastic wave sounds are not considered
in this model, e.g., the sound of ‘s’. The reason for this
consideration in the model is because the speaker identity is
mainly defined by vocalized sounds. The model is composed
of three parts: glottis model, vocal tract model and radiation
model (lips model).

1) Glottis Model: The glottis is the source of the sound in
the human vocal tract, whereby the pitch is controlled [21].
There are different approaches to model and parameterize the
glottis model using the signal from the speaker’s voice [22]–
[24]. Because of the characteristics of the human glottis, it
has a finite impulse response (FIR), and the resulting transfer
function of the vocal system would have more zeros than
poles, which is difficult to deal in the Z domain. Therefore,
the glottis model is implemented in the time domain as an
impulse response. A common model for the glottis is presented
in Equation 1:

g(n) =


1
2

[
1− cos(πnN1

)
]
, 0 ≤ n < N1;

cos(π(n−N1)
2N2

), N1 ≤ n ≤ N1 +N2;

0, otherwise.

(1)

The parameters N1 and N2 are proportional to the opening
and closing time of the glottis, respectively. They are important
characteristics of the human vocal system. It is possible to
observe a typical impulse response of a glottis model in
Figure 2.

2) Vocal Tract Model: The vocal tract model is based on the
lossless tube model, where the tube is composed of a sequence
of modules that represents each vocal tract part, e.g., trachea,
larynx, and pharynx. The transfer function of the vocal tract
model is given by:

V (z) = ΠM
k=1Vk(z), (2)
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Fig. 2. Impulse response from glottis model.

with:

Vk(z) =
1− 2|zk| cos(2πFkT ) + |zk|2

1− 2|zk| cos(2πFkT )z−1 + |zk|2z−2
, (3)

where M is the number of modules; |zk| is the absolute value
from the poles of Vk(z); Fk is the resonance frequency of
Vk(z); and, T is the sampling time. Each module Vk(z) is
associated to two complex conjugate poles resulting in an
underdamped system. For each part of the vocal tract, the
quantity is increased by M modules Vk(z) in the transfer
function, where each module represents a different resonance
frequency.

3) Radiation Model: The lips characterize the last stage
of the vocal system. Their function is the radiation of the
sound wave, forming a wave front. They radiate the wave of
the sound, forming a wavefront that directs the sound in all
directions.

The radiation model is defined by a transfer function with
only one zero:

R(z) = Ro(1− z−1), (4)

where Ro is the radiation gain.

B. Input Signal Estimation

The input signal is composed of two variables: pitch and
amplitude. There are no transducers for this signal, then, it
cannot be measured. Therefore, it must be estimated from the
voice signal [18], [25].

Since the objective is to identify the speaker and not
the speech, a low pass filter is applied to the voice signal,
removing the frequencies not related to the speaker identity,
e.g., the sound of ‘s’. The resulting signal is composed only
of frequencies from the vocalized sounds, which allows the
identification of the speaker [25], [26].

After the filtering, the power spectral density (PSD) is
calculated through the correlogram [27]. The PSD is calculated
for each window, in time, of 23ms with 11ms of overlap. Then,
the pitch is determined as the frequency which has the peak in
each window, and the amplitude is determined as the square
root of the peak in each window. In Figure 3, it is presented
the pitch signal from a speech (dashed line).



4 4.5 5 5.5 6

·104

0

1

2

Samples

A
m

pl
itu

de
Impulse Train

Pitch (·102 Hz)

Fig. 3. Pitch estimation (dashed), and resulting impulse train (continuous).

Next, the pitch signal is converted to an impulse train with
constant amplitude, where the time between each impulse
is the period of the pitch. That way, the higher the pitch,
the smaller the time between two impulses. A train impulse
obtained from the pitch is presented in Figure 3.

From the PSD computed with a window of 23ms, the
amplitude is determined as the square root of the peak in each
window [25]. The estimated amplitude should be the envelope
of the voice signal, demonstrated in Figure 4.
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Fig. 4. Estimated amplitude (red) and original voice signal (black).

The obtained impulse train and the estimation of the ampli-
tude are combined to establish an impulse train enveloped by
the amplitude value, as illustrated in Figure 5.

Finally, the impulse train δTp enveloped with the amplitude
a(n) is convoluted with the transfer function from the glottis
g(n) in order to obtain the input signal x(n):

x(n) =
(
a(n) · δTp

(n)
)
∗ g(n). (5)

A graphical example of the input signal is presented in
Figure 6.

C. Bio-inspired Algorithms

The algorithms and their implementation details are pre-
sented in this section.
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Fig. 5. Estimated impulse train enveloped by the estimated amplitude.
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Fig. 6. Example of estimated input signal for the vocal tract system.

1) Grey Wolf Optimizer (GWO): The Grey Wolf Optimizer
is a meta-heuristic algorithm inspired by the wolf pack so-
cial structure [19]. The wolves hierarchy is composed of 4
levels, alpha, beta, delta, and omega, where the alpha wolf is
considered the most capable of making decisions.

In the mathematically model of the social hierarchy, the
fittest solution is the alpha, the second and third best solutions
are the beta and delta, respectively. And the rest of the
solutions are designated as omegas.

After initialization with random values, the algorithm con-
sists in every iteration determine the fittest three solutions,
and then update the next position of each particle based on
its distance to alpha, beta, and delta. Accordingly, the next
position ~X(n+ 1) from each wolf is updated as follow:

~X(n+ 1) =
~X1 + ~X2 + ~X3

3
, (6)

where ~X1 is the next position with regard to alpha wolf,
determined by:

~X1 = ~Xα(n)− ~A1 · ~Dα, (7)

with ~Xα(n) is the current alpha position, and ~Dα computed
accordingly to:

~Dα = |~C1 · ~Xα(n)− ~X(n)|, (8)



~A1 and ~C1 are coefficient vectors defined as:

~A1 = 2~a · ~r1 − ~a, (9)

~C1 = 2~r2, (10)

where the elements of ~a decrease linearly from 2 to 0 over
the iterations; and, ~r1 and ~r2 are vectors with random values
between 0 to 1.

Therefore the next position based on beta and delta, ~X2

and ~X3 respectively, are calculated with the same presented
procedure.

The linear decrease of ~a tends the wolves to diverge from
the fittest solutions in the first half of the iterations, referred to
as the Hunting phase, and in the second half to converge, the
Attacking phase. The random values in ~r1 and ~r2 contribute
to avoiding local solutions.

2) Particle Swarm Optimization (PSO): Particle Swarm
Optimization is an algorithm inspired by the social behavior
of bird flocking.

After initialization of all particles position with random
values, the position and velocity from each particle is updated
in every iteration regarding its best solution and the global
best solution, as described by Equations (11) and (12):

~V (n+ 1) = w · ~V (n) + c1r1(~Pb − ~X(n))+

+c2r2(~Pg − ~X(n)),
(11)

~X(n+ 1) = ~X(n) + ~V (n+ 1), (12)

where ~V is the particle inertial velocity; w is an inertial
coefficient; ~X is the particle position; Pb is the best position
from the owns particle; Pg is the global best position; r1 and
r2 are random values between 0 and 1; and, c1 and c2 are
learning factors.

3) Fitness Function: to identify the vocal tract system, it
is not possible to use conventional methods to determine the
fitness [28]. The output signal from the human vocal tract
system is a wave signal composed of different harmonics, what
increases the complexity of the error computation between two
signals. Hence, a fit method is created.

To evaluate the correctness of the calculated parameters, it
is used the cross-correlation (?) between the original signal
and the signal generated by the estimated parameters from
the optimization algorithm. If both signals are similar, the
peek from cross-correlation will be high. That way, the peak
value of the autocorrelation from the original sound is used
as the reference parameter, and it is compared to the peak
value from the cross-correlation between the original signal
and the signal from the bio-inspired algorithm. The lower the
difference between the peaks, the more the signals are similar.
The presented procedure is described in Equation (13).

fit% = 100 ·
(

1− max(yr ? yr)−max(yr ? y)

max(yr ? yr)

)
, (13)

where yr is the reference signal from a database, and y is the
signal under evaluation.

D. Speaker Identity

The speaker identity is associated to the maximum value
from the autocorrelation of the transfer function defined by
the coefficients [ar1 a

r
2 . . . arn], that is:

idr =
[
ar1 ar2 . . . arn

]

ar1
ar2
...
arn

 , (14)

and it is stored in a database for comparison, where ari
represents the reference coefficients from the database.

The verification test for the speaker identification is made
through the cross-correlation with zero lag of the database
coefficients and the verification coefficients:

idtest =
[
ar1 ar2 . . . arn

]

a1
a2
...
an

 , (15)

where ai denotes the coefficients computed for the speaker
under identification.

The error is calculated by:

error% = 100 · | idr − idtest |
idr

, (16)

where error is the difference between the voice of the speaker
used as a reference and the speaker under identification. That
way, the smaller the error, the more similar are the voices from
the speakers.

E. Speaker Identification

After determining the error between the identity from
the speaker under identification and the speakers from the
database, it is necessary to define an identification criterion. In
this case, it is defined as an error threshold, that is, if the error
is lower than the threshold, both speakers are considered the
same. The threshold value can be determined experimentally
by statistical analysis.

The error that is lower than the threshold is denominated as
identification error. Otherwise, it is defined as rejection error,
in which case the speeches have been spoken by two different
speakers.

III. RESULTS

To compare the algorithms presented in Section II, it is
evaluated two speeches of four professional native english
speakers, two men and two women of 30 years old, from a
radio commercials database [29]. The speeches are recorded
without noisy in a professional studio.

Each of the eight speeches is evaluated by both algorithms,
resulting in 16 references for the database, as described by
Equation (14). The obtained parameters from each speech are
correlated with each other by Equation (15). That way, the
relative errors obtained with Equation (16) among all the tested
speeches are presented in Table I.



TABLE I
RELATIVE ERROR (%) AMONG ALL EVALUATED SAMPLES.

[] B1G B1P B2G B2P G1G G1P G2G G2P C1G C1P C2G C2P K1G K1P K2G K2P
B1G [] 0.072 0.018 0.038 2.638 2.550 2.609 2.501 1.518 1.426 1.434 1.347 0.834 0.692 0.783 0.653
B1P 0.072 [] 0.090 0.110 2.703 2.616 2.675 2.567 1.443 1.350 1.359 1.271 0.760 0.618 0.709 0.579
B2G 0.018 0.091 [] 0.020 2.621 2.534 2.593 2.484 1.538 1.445 1.454 1.366 0.853 0.711 0.802 0.671
B2P 0.038 0.111 0.020 [] 2.603 2.516 2.575 2.466 1.559 1.466 1.475 1.387 0.874 0.731 0.823 0.692
G1G 2.903 2.982 2.882 2.860 [] 0.097 0.033 0.152 4.571 4.470 4.479 4.382 3.820 3.662 3.763 3.620
G1P 2.796 2.875 2.776 2.753 0.096 [] 0.064 0.055 4.459 4.358 4.367 4.270 3.710 3.553 3.654 3.511
G2G 2.865 2.944 2.845 2.822 0.033 0.064 [] 0.119 4.531 4.430 4.438 4.341 3.780 3.623 3.724 3.581
G2P 2.735 2.814 2.715 2.692 0.151 0.055 0.119 [] 4.394 4.293 4.302 4.205 3.647 3.490 3.591 3.448
C1G 1.443 1.374 1.460 1.479 3.947 3.864 3.920 3.818 [] 0.088 0.080 0.163 0.651 0.785 0.699 0.822
C1P 1.359 1.290 1.376 1.395 3.870 3.787 3.844 3.740 0.088 [] 0.008 0.075 0.564 0.699 0.612 0.736
C2G 1.366 1.297 1.384 1.403 3.878 3.795 3.851 3.748 0.080 0.008 [] 0.083 0.572 0.707 0.620 0.744
C2P 1.287 1.218 1.305 1.324 3.807 3.723 3.780 3.676 0.164 0.075 0.083 [] 0.491 0.626 0.539 0.663
K1G 0.810 0.740 0.828 0.847 3.373 3.288 3.345 3.240 0.665 0.575 0.584 0.499 [] 0.138 0.049 0.176
K1P 0.676 0.606 0.694 0.713 3.252 3.167 3.225 3.119 0.807 0.717 0.725 0.640 0.138 [] 0.089 0.038
K2G 0.762 0.692 0.780 0.799 3.330 3.245 3.302 3.197 0.716 0.626 0.634 0.549 0.049 0.088 [] 0.127
K2P 0.638 0.568 0.656 0.676 3.217 3.132 3.190 3.084 0.847 0.756 0.764 0.679 0.177 0.039 0.127 []

The rule for the denomination presented in Table I is
described as follows. The first character denotes the first
character from the speaker’s name, where the speakers are
Bill, Garth, Charlotte e Kelly. The second character detail if it
is the first or the second speech. The last character is related
to the algorithm used: "1" for GWO and "2" for PSO.

The developed codes are available on GitHub1.
For GWO, it is necessary to set the number of iterations

and elements, selected as 30 and 2000, respectively. From
Equation (11), it is necessary to tune extra parameters for PSO,
namely: an initial value for w, w, c1 and c2, resulting in six
parameters. In Table II are presented the parameters used for
PSO.

TABLE II
PARAMETERS SELECTED FOR PSO.

wini w c1 c2
0.06 0.04 0.06 0.028

A. Estimation Parameters

Based on the models presented, the Vocal Tract Model is
considered to be a fourth-order system (M = 2), then V (z) =
V1(z) · V2(z).

Therefore, the parameters to be estimated are:
• Glottis Model: N1 and N2;
• Vocal Tract Model: z1, z2, F1, and F2;
• Radiation Model: Ro.
From Equations (14) and (15), four parameters (a1 to a4)

are necessary to be determined for each speech from each
speaker.

B. GWO and PSO Comparison

To summarize the results and compare the algorithms, the
average and the standard deviation from the identification error
and the rejection error are computed.

1https://github.com/Schulze18/Who-is-this

Ideally, the identification error is considered 0%. The iden-
tification error is computed between two samples from the
database related to different speeches from the same speaker
and by the same algorithm.

The rejection error does not have an ideal value, because
it is related to the differences from each speaker’s voice.
Although, the higher the rejection error, the more different
are the voices. The rejection error is determined between
two samples obtained by the same algorithm from different
speeches and different speakers.

The average and standard deviation for the identification
and rejection errors are presented in Table III.

TABLE III
AVERAGE ERROR AND STANDARD DEVIATION FROM IDENTIFICATION AND

REJECTION FOR EACH ALGORITHM.

GWO PSO

Identification Average Error 0.045 % 0.070 %
Standard Deviation 0.027 % 0.031 %

Rejection Average Error 2.16 % 2.17 %
Standard Deviation 1.29 % 1.22 %

IV. DISCUSSION

It is necessary to tune four extra parameters for PSO in
comparison with GWO. Hence, as the parameters were tuned
empirically, the results from GWO are more consistent due
to the smaller number of parameters, resulting in a small
sensitivity to the tuning procedure.

The increase of the transfer function order results in a
more reliable result. However, due to the increase of the
computational cost, it was not possible to increase the order
from the fourth-order defined previously in Subsection III-A.
That way, the transfer functions used are of fourth-order with
two pairs of complex conjugate poles.

The application of the GWO presented more efficient re-
sults, with average error and standard deviation smaller than
the PSO. Also, the rejection efficiency, when two different
speakers are compared, demonstrated similar results for both

https://github.com/Schulze18/Who-is-this


algorithms. The obtained values for the average error and
standard deviation are presented in Table III.

Based on the analysis of all the errors in Table I, it is
important to remark that no false positives or false negatives
occurred in both identification and rejection. This is verified by
analyzing the average error presented in Table III, the rejection
is 29 bigger than the identification average for PSO and 47 for
GWO, which also demonstrates the higher efficiency of GWO
when compared to PSO.

Despite the limited number of speakers and speeches eval-
uated, the results for both algorithms are consistent. We have
not considered more speakers due to the high computational
cost: 30 minutes per run on average.

V. CONCLUSION

Both algorithms, GWO and PSO, demonstrated to be reli-
able for the speaker identification, where no false positive nor
false negative occurred.

Also, it is possible to conclude that the use of the GWO
is more efficient for the speaker identification by transfer
functions model. The main reasons are two: the first and more
important is the performance, where the average identification
error is smaller than the PSO, and the rejection error are
similar for both algorithms. The second is that the tuning
process of the GWO is simpler, reducing possible errors from
the user in the setup phase.
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