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Abstract—Proteins are base molecules present in live or-
ganisms. The study of their structures and functions is of
considerable importance for many application fields, particularly
for the pharmaceutical area. However, predict the structure of a
protein is considered a complex problem. As optimizing methods
for this problem have high execution time, a parallel algorithm is
proposed. However, just employing parallelization is not enough
to guarantee the efficient use of the available computational
resources. In this work, the proposed Protein Structure Prediction
(PSP) optimizer was executed in a system with Non-Uniform
Memory Access (NUMA) architecture. To demonstrate the effects
of this architecture on the execution of an algorithm with simple
parallel model, experiments were carried. Results shows that the
improper execution of a parallel algorithm in this architecture
may lead to performance loss.

I. INTRODUCTION

It is well-known that proteins spatial structure determines
many of their essential biological functions [1]. Among pos-
sible applications involving protein structure prediction, it is
possible to highlight drugs synthesis for specific uses and an
in-depth analysis of diseases and their possible treatments.

The main structure generation methods are in laboratories
and are costly and slow [1]. An alternative to the classi-
cal methods is computational prediction, which allows the
simulations of protein structures in computers. Many studies
and algorithms were developed through the years to make
feasible the prediction of protein structures of any scale [2].
However, even with all the efforts made, the Protein Structure
Prediction (PSP) problem is still viewed as a considerably
complex problem without a practical and scalable solution.

The PSP problem is approached in this work with ab
initio optimization using a multi-objective model. The ab
initio PSP problem is usually optimized using a well-defined
potential energy function as optimization objective. However,
these functions are composed of several terms, and it is
known that some of these terms may be conflicting objectives
[3]. These conflicts happen because optimizing one objective
does not implicate optimizing the others. As such, grouping
these conflicting terms in a single objective will harm the
optimization process.

Another possibility for a multi-objective model is to add
different types of information that are not related as separated
objectives. Considering the PSP context, these objectives could
be high-level level information about the protein. In this work,
the multi-objective model is composed of three objectives:
energy function, secondary structure information, and contact
map information.

Because of the costly energy functions used to evaluate
the structures, computational parallelism can be employed
in the algorithm. However, just employing parallelization is
not enough to guarantee the efficient use of the available
computational resources. There are different architectures of
computers, and each of them may have some important
characteristics that must be considered when developing and
using parallel algorithms [4]. In the multi-core processor
architecture, a single processor has multiple processing units,
which can be used in parallel [5]. Multiples computers can
be connected to work as single computer through cluster
computing, allowing infrastructure heterogeneity and scalable
growth. Another possible type of parallel architecture is the
general-purpopse computing on GPUs [6].

Some works in the literature have explored the multi-
objective PSP problem with a parallel approach [7] [8] [9].
These works employ parallels models such as the master-slave
model [7] and the island model [8]. None of them explores a
specific computer architecture for parallel computing.

In this work, the proposed PSP optimizer is executed
in a system with Non-Uniform Memory Access (NUMA)
architecture. The objective is to demonstrate how the NUMA
architecture modeling may influence the algorithm efficiency.
To demonstrate these effects, experiments are proposed and
executed to analyze the processing time and speedup of the
parallel PSP predictor.

The remainder of this paper is organized as follows. Section
II provides main concepts about what will be used in this
work, finishing with an exposition of related works. The
methodology is explained in Section III, which describes the
algorithm used. Section IV describes the experiments and
Section V provides the results and analysis of the experiments.
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Section VI concludes this work.

II. BACKGROUND

A. Parallel Computing

In general, computer programs are developed with a sequen-
tial flow of instructions. This linear flow of execution uses only
a single computational processor, and is not able to fully use
the resources of modern parallel computer architectures [10].
To be able to better utilize these resources, techniques and
tools of parallel computing can be used.

One of the most common types of parallelism is CPU
parallelism. Considering traditional operational systems, such
as systems of the UNIX family, employing CPU parallelism
usually means using processes and threads [5]. Although
they display some similarities regarding parallelism, they have
some important distinctions.

Threads are logical units that represent some flow of ex-
ecution [5]. A thread is composed of a set of instructions,
a call stack, and some private data. Threads usually can
communicate with each other and share access to the same
memory.

Processes are threads with a private address and a larger
associated state [5]. Because of this characteristic, processes
exhibit a greater computational cost than common threads.
Also, the communication between processes is different from
the communication between threads as processes do not share
access to the same memory space.

By using the concept of threads and processes, some
sequential programs can be divided into units that can be
executed in parallel. The performance of a parallel algorithm
will depend on the fraction of the algorithm that can be divided
into parallel units and the number of available processors
[10]. The allocation of threads to available processors can
be configured through affinity. Thread affinity allows the
placement of threads in specific cores [11].

Regarding processors, it is important to consider the con-
cepts of physical and virtual cores. Some processors may use
some type of virtualization technology (such as Intel™ Hyper-
Threading), where a single physical core may be divided into
multiple logical cores [11]. Although these cores can be seen
as independent units, using multiples virtual cores of a single
physical core does not have the same performance of using
multiple physical cores [11].

Another important point to consider is multiprocessor archi-
tectures. These architectures can be defined by their memory
access time, which can be classified as Uniform Memory Ac-
cess (UMA), where the time to access some memory address is
the same for all processors, and Non-Uniform Memory Access
(NUMA) when the time to access some memory address will
differ between the processors. Examples of these architectures
are shown in Figures 1 and 2.

The main difference between these architectures is the
division of memory to each processor. For single applications,
the UMA architecture is interesting as it allows the use
of multiple processors in a single memory space [12]. The
NUMA architecture reduces the problem of having multiple

Fig. 1: Example of UMA architecture

Fig. 2: Example of NUMA architecture

processors trying the use the same memory, which can be
useful for scenarios with spread data, such as servers [13].

This classification is relevant, as the cost of memory access
may impact the overall computational performance of the
algorithm [11]. This becomes evident in algorithms with con-
siderable amounts of inter-thread communication. Considering
this, the modeling of algorithms with CPU parallelism has to
consider not only threads and processes but also the processors
themselves.

B. Protein Structure Prediction

Proteins are chains of amino acids, which are biological
molecules identified by their side chains. It is possible to
describe proteins by enumerating all their atoms and bonds.
With all their atoms and bonds, such complete representations
are usually computationally expensive to manipulate, and



simplified representations (e.g., using only torsion angles) are
preferred.

Besides the structure representation, it is also necessary
to define a function to evaluate a structure’s quality. Energy
functions integrate several physical and chemical interactions
between the molecules that form the protein and environ-
ment molecules [1]. Although energy functions can model
interactions that are interesting for realism, the computa-
tional complexity to evaluate such functions renders their
use impracticable. As such, simplified functions composed of
experimental data are used to evaluate structures and to guide
optimizations.

C. Biased Random-Key Genetic Algorithm

The Biased Random-Key Genetic Algorithm (BRKGA) [14]
is an optimization method of the evolutionary algorithms
class. Evolutionary algorithms use biological evolution as a
metaphor to describe generic optimization frameworks, also
known as meta-heuristics. These frameworks utilize the con-
cept of population, where each individual of the population
is a candidate solution. These individuals are evolved through
selection mechanisms, guided by their fitness and the combi-
nation of different biological operators, such as reproduction
and mutation.

One main characteristic of this algorithm is the clear sepa-
ration between the problem-dependent and independent parts.
With this, it is possible to develop problem-specific methods
by changing only the method’s problem-dependent part. In the
BRKGA, this separation occurs in the solution coding, where a
decoding function is used to transform a problem-independent
codification into a problem solution.

To approach the problem at hand, a multi-objective BRKGA
was developed, named MO-BRKGA. The proposed algorithm
uses the base structure of the original BRKGA. The main
modifications were to allow the algorithm to optimize multi-
objective problems. To achieve multi-objective optimization,
modifications were made to the problem-independent parts.
The elitist selection operator from NSGA-II [15] was used to
generate the elite part of the population.

An archive (set of solutions) is maintained and updated
at each generation. This archive has the same size as the
population, and it is updated using the non-dominated sorting
with crowding. At the end of the algorithm, the archive is
returned and contains the best Pareto set found, although it
may also contain dominated solutions as the best Pareto set
may not occupy the entire archive. Maintaining dominated
solutions is interesting as some problems may benefit from
having sub-optimal solutions. In the case of the PSP, as the
information used as the objectives is not exact, the optimal
structure may not belong to the non-dominated set.

III. METHOD

In this work, a multi-objective model for the PSP problem is
optimized. The optimization algorithm employed is a variant
of the BRKGA with support to multi-objective problems. This
algorithm, denominated MO-BRKGA, was also developed

considering parallelism. This parallelism is promoted in the
fitness evaluation, which is described below.

Evolutionary algorithms are inherently parallel, with mul-
tiple solutions being optimized concurrently through implicit
parallelism [16]. As such, it is straightforward to parallelize
these algorithms, with the most trivial parallelism being the fit-
ness evaluation. The fitness evaluation of a candidate solution
is independent of the others, which implies that individuals
can be evaluated in parallel.

This fitness parallelism was implemented in the proposed
MO-BRKGA. The algorithm was implemented in the language
C++ and was parallelized using the OpenMP 1 4.5 library. This
library simplifies the development of parallel code, with the
fitness evaluation in the MO-BRKGA being implemented as:
#pragma omp parallel for
for (int index = 0; index < population_.size(); ++index) {

population_[index].evaluateFitness();
}

In this piece of code, the fitness evaluation of the entire pop-
ulation (for loop) was parallelized by just using the OpenMP
pragma directive. Despite the simplicity, this directive ef-
fectively divides and distributes the loop among available
processors. For a problem with costly fitness evaluation, such
as the PSP, this parallelization is important. It is not uncommon
for a single execution of a PSP optimizer to take hours to
finish.

The proposed algorithm implements CPU parallelism. Al-
though the performance scales with the number of processors,
caution must be taken regarding the memory access archi-
tecture, as discussed on Section II-A. The improper use of
these architectures may result in performance loss, even if all
processors are fully utilized by the application.

To demonstrate the impact of the memory access architec-
ture in the performance of algorithms with CPU parallelism,
experiments were performed. A system with NUMA architec-
ture was employed for these experiments. The objective is to
show the evidence that improper use of this architecture may
result in performance loss.

Three scenarios were considered for experiments:
1) Serial execution
2) Trivial parallel execution
3) Controlled parallel execution
The serial execution considers the serial version of the

proposed algorithm. The trivial parallel version employs par-
allelism disregarding the memory access architecture. Finally,
the controlled version considers the architecture by controlling
the use of the processors.

The trivial parallel version does not uses any kind of
configuration other than the C++ directive specified above.
As such, the system is free to map the created threads to
any available processors. The controlled version, however,
specifies how these threads should be allocated.

To control the distribution of threads into processors, two
mechanisms were utilized. The first mechanism was to use
specific OpenMP control options. These options are:

1https://www.openmp.org/



• OMP_PROC_BIND = close: this option changes the
thread affinity of the application. The idea is to keep
threads from the same process close, which effectively
means using the same processor unit.

• OMP_PLACES = cores: by using this option, the ap-
plication indicates that physical cores should be used for
each thread. This options is important as usually threads
can run in multiple virtual cores of the same physical
core simultaneously.

The second mechanism used was the numactl2 tool. This
program allows to control how a specific application will use
the current NUMA architecture. With this, it is possible to run
a process in a single NUMA node, with the application using
only the processors of this node.

IV. EXPERIMENTS SETUP

The experiments were performed in Ubuntu 18.04 system,
with Intel Xeon E7-8860 processors and 1TB RAM. This
system has a NUMA architecture with 4 nodes, each composed
of a single processor with 10 physical cores and 10 virtual
cores (1 virtual for each physical).

To test the scenarios specified in Section III, four proteins
were selected to be optimized by the proposed MO-BRKGA
method. These proteins are displayed in Table I. Also, for each
protein the algorithm was executed with 1, 2, 4, 8, 10, 20, 40,
and 80 threads. The algorithm was executed 20 times for each
case, using 1,000,000 fitness evaluations each run.

TABLE I: Proteins utilized

Protein Size
1ZDD 34
1GB1 56
1AIL 73
1HHP 99

For each run of the algorithm the execution time was
measured. The average time and mean deviation of each
scenario was calculated for all proteins. These results were
analyzed in Section V.

V. RESULTS AND ANALYSIS

In this section the results of each scenario will be presented
and analyzed. The average time and speedup were measured
for each protein.

A. Serial execution

The average time and standard deviation in seconds for the
serial execution of the algorithm are shown in Table II. It is
possible to see that the execution time is directly proportional
to the protein size. This relation appears to be close to a linear
relationship, with approximately 25 minutes of execution time
per 100 amino acids.

2https://linux.die.net/man/8/numactl

Fig. 3: Plot of the average time for the trivial parallel
execution

Fig. 4: Plot combining the average time of all proteins for
the trivial parallel execution



Fig. 5: Plot of the average speedup for the trivial parallel
execution

Fig. 6: Plot combining the average speedup of all proteins
for the trivial parallel execution

Fig. 7: Plot of the average time for the controlled parallel
execution

Fig. 8: Plot combining the average time of all proteins for
the controlled parallel execution



Fig. 9: Plot of the average speedup for the controlled parallel
execution

Fig. 10: Plot combining the average speedup of all proteins
for the controlled parallel execution

TABLE II: Average execution time in seconds for the serial
algorithm

Protein Time
1ZDD 414.54 ± 1.28
1GB1 713.43 ± 3.89
1AIL 1053.48 ± 15.57
1HHP 1449.87 ± 17.64

B. Trivial parallel execution

In this experiment, the parallel version of the algorithm was
run without explicit control of the available processors. The
average execution time for each protein is displayed in Figure
3, Figure 4, and in Table III. Figures 5 and 6 show the average
speedup for each protein.

TABLE III: Average time in seconds for the trivial parallel
execution

1ZDD 1GB1 1AIL 1HHP
1 414.5 ± 1.2 713.4 ± 3.8 1053.4 ± 15.5 1449.8 ± 17.6
2 229.3 ± 1.2 407.6 ± 4.9 590.2 ± 9.2 804.6 ± 14.9
4 157.6 ± 1.7 267.9 ± 3.4 397.1 ± 8.3 531.1 ± 9.6
6 151.3 ± 2.3 244.1 ± 3.6 354.2 ± 7.0 467.4 ± 11.7
8 154.8 ± 1.5 252.2 ± 6.3 353.8 ± 9.0 457.6 ± 12.0
10 163.0 ± 1.7 264.1 ± 8.1 373.6 ± 6.4 468.9 ± 14.8
20 174.0 ± 2.9 280.0 ± 9.9 415.6 ± 10.3 514.2 ± 11.2
40 187.9 ± 2.0 297.1 ± 2.4 445.8 ± 13.7 545.2 ± 15.3
80 234.5 ± 7.5 385.2 ± 3.0 543.6 ± 15.4 690.6 ± 21.5

It is possible to see from the plot in Figure 6 the linear
relationship between the protein size and execution time. All
the graphs show a similar behavior regarding the number of
employed threads. The graphs indicate that the best accelera-
tion was found between 6 and 8 threads.

Regarding the speedup, the graphs demonstrate that the
maximum acceleration was approximately a factor of 3. Even
though each processor has 10 physical cores, the algorithm
was not able to use efficiently these resources.

C. Controlled parallel execution

In this experiment, the parallel algorithm was executed
using the control options presented in Section IV. The average
execution time for each protein is displayed in Figure 7, Figure
8, and in Table IV. Figures 9 and 10 show the average speedup
for each protein.

TABLE IV: Average time in seconds for the controlled
parallel execution

1ZDD 1GB1 1AIL 1HHP
1 414.5 ± 1.2 713.4 ± 3.8 1053.4 ± 15.5 1449.8 ± 17.6
2 232.0 ± 1.0 391.0 ± 2.9 571.2 ± 9.7 778.1 ± 11.5
4 138.1 ± 0.5 227.0 ± 1.5 327.3 ± 3.3 436.8 ± 11.2
6 112.3 ± 0.7 179.9 ± 1.1 254.7 ± 3.8 338.7 ± 5.4
8 100.3 ± 0.4 158.6 ± 1.1 223.8 ± 2.7 294.6 ± 5.4
10 93.7 ± 0.4 201.8 ± 2.0 198.5 ± 1.4 264.9 ± 6.8
20 137.3 ± 0.9 142.9 ± 1.2 289.4 ± 3.4 359.4 ± 6.9
40 241.4 ± 70.4 436.1 ± 60.3 596.8 ± 101.1 812.0 ± 100.6
80 210.6 ± 44.7 366.1 ± 86.9 577.9 ± 135.7 634.9 ± 133.8



Observing the graphs, it is clear that the algorithm was
able to better use the available infrastructure. The maximum
acceleration was found using 10 threads, which is the number
of physical cores of a single processor. By using the OpenMP
options, the algorithm was able to map threads to physical
cores of the same processor, minimizing the communication
cost between threads. With this, the performance of the same
parallel algorithm increased almost two-fold.

With this setup, the algorithm was able to run 5 times
faster than the serial counterpart. Although the maximum
performance occurred with 10 threads, greater numbers of
threads reduced this performance considerably. This makes
sense, as the maximum number of physical cores in a single
processor in this experiment is 10. If more than 10 threads
are necessary the algorithm will either use virtual cores or
use cores from other processors, increasing the overhead and
resulting in performance loss.

Moreover, running the algorithm in more than one processor
will always result in this performance loss. As such, one
way to effectively use this architecture is to run multiples
executions of the algorithm in parallel. As each process of
the algorithm is independent, it is possible to map them to
different processors.

Considering the context of this work, this mapping was
done using the numactl program presented in Section IV.
Using this program, it is possible to control the thread affinity,
mapping four processes to four processors. As each process
and processor is independent, it is possible to reach a linear
increase of speedup. Considering that the best speedup found
was approximately 5 by using 10 threads, by applying this dis-
tribution of processes to each processor, it should be possible
to reach a speedup of approximately 20. With this, the final
parallel methodology is able to execute the proposed algorithm
approximately 20 times faster than the correspondent serial
algorithm.

VI. CONCLUSION AND FUTURE WORK

This work had the objective to demonstrate the impact
and importance of efficient parallelization of algorithms. The
algorithm used is a predictor for the PSP problem. As PSP op-
timizers are known to be slow, parallel computing is important
to decrease high execution times.

In this work, the CPU parallelization model was employed.
In this model, concepts such as threads, processes and memory
access architectures are important.

Experiments were conducted considering the serial versions
of the proposed algorithm, and an trivial and controlled exe-
cution of the parallel algorithm. These experiments were per-
formed on a system with NUMA architecture. Results showed
that not taking in consideration the available infrastructure may
result in performance loss. The controlled parallel execution
is considerably more efficient than the trivial counterpart, as it
was able to better utilize the available computational resources.

For future works, other types of architecture could be
explored. In this work, a master-slave parallel model was
employed in the algorithm. There are, however, others models

that could better utilize a NUMA architecture, such as the
island model.
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