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Abstract—Classification of electroencephalography (EEG) sig-
nals is a complex task. EEG is a non-stationary time process
with low signal to noise ratio. Among many methods used for
EEG classification, those based on Deep Learning (DL) have been
relatively successful in providing high classification accuracies.
In the present study we aimed at classify resting state EEGs
measured from workers of a mining complex. Just after the EEG
has been collected, the workers undergone training in a 4D virtual
reality simulator that emulates the iron ore excavation from
which parameters related to their performance were analyzed
by the technical staff who classified the workers into four groups
based on their productivity. Two convolutional neural networks
(ConvNets) were then used to classify the workers EEG bases
on the same productivity label provided by the technical staff.
The neural data was used in three configurations in order
to evaluate the amount of data required for a high accuracy
classification. Isolated, the channel T5 achieved 83% of accuracy,
the subtraction of channels P3 and Pz achieved 99% and using
all channels simultaneously was 99.40% assertive. This study
provides results that add to the recent literature showing that
even simple DL architectures are able to handle complex time
series such as the EEG. In addition, it pin points an application
in industry with vast possibilities of expansion.
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I. INTRODUCTION

The electroencephalography (EEG) is an electrophysiolog-
ical monitoring method that is used to record the electrical
activity of the brain via scalp electrodes. It is widely used for
application in the diagnosis of neurological and mental health
disorders, monitoring of mental states, and in brain-computer
interface systems [1]–[3]. It is a less complex alternative to
both resonance and tomography recordings. It is also much
cheaper and provide high time resolution. Typically, when
using EEG in basic or applied cognitive research, one might
want to identify a pattern of cortical activity while subjects
perform some task of interest. These studies aim to identify
some condition or mental state while the subjects engage in
a specific routine under a controlled environment. In contrast,
the resting state EEG is the EEG elicited in the absence of task
routines or stimulation. In general, in this scenario, the subject
lies quietly with closed or opened eyes. The analysis of this
state is supposed to provide the default configuration of the
brain which may offer a better signal-to-noise ratio than the
task-based experiments and allows for the study of different
cortical systems [4].

In the present study a task free EEG recording was per-
formed before and after a scenario the simulated a operational
routine commonly performed in a mining industry. The EEG
elicited at these conditions is commonly referred to as resting
state EEG and despite not being evoked by stimuli which the
parameters are known, it can provide valuable information
about how the default functional brain network behaves in
normal [5], [6] as well as altered brain function caused
by diseases [7]. It can also predict attentional levels and
mental fatigue [8]–[10], characterize disorders of conscious-
ness [11] and even clearly indicate a signature of hemispatial



neglect [12].
Despite the success of EEG at probing cortical activity, due

to its inherent low signal-to-noise ratio, poor spatial resolution
plus its non-linear and non-stationary nature, most of the
EEG studies show that frequently a long run of pre- and
post-processing steps have to be taken before stating any
conclusion. Because of that there has been always a quest for
methods that might account for these natural EEG complexi-
ties. The current AI revolution based on neural networks has
provided efficient algorithms based on deep learning that are
capable of extracting informative features from complex and
multidimensional data with minimum or none pre-processing
steps. This original bypassing of steps in data processing has
already been explored using EEG as input data to various
neural networks architectures and training paradigms and with
promising results [13], [14]. In the present study we aimed
at classify the EEG from workers of a mining complex just
before they are undergo training at a 4D VR simulator. The
EEG was the used as input to a ConvNet for classification in
a supervised learning pipeline. The labels were three levels
of productivity and were provided by the technical staff after
analyzing the workers performance in the VR simulator. That
is, the evaluation of the behavioral data was used as the ground
truth for the workers productivity performance.

The raw EEG was separated in three sets comprising three
input databases for the CNN. The aim was to identify the
classes according to the productive profiles. In the following
sections we detail the experiment and the model used to cluster
the behavioral data (Sections II-A and II-C). The EEG pre-
processing, datasets definition as well as details of the CNN
used, are discussed in sessions II-D to II-F. The results and
the discussion are the next two following sessions, III and IV.

All procedures performed in the present study were in
according with the Helsinki Protocol and were approved by
the Research Ethic Committee of the Universidade Federal do
Pará, Brazil (Protocol #3601269).

II. MATERIALS AND METHODS

A. Protocol of simulated iron ore excavation

During this study, 25 healthy male subjects aging from
26 to 53 years old performed the protocol of simulation
of excavation pictured in the Figure 1. The subjects are
experienced workers in mining industry and the excavation
simulator is one of the gadgets used to train and improve their
skills.

The used simulated environment is the EF144 conversion kit
for Caterpillar 7495 rope shovels from Immersive Technolo-
gies. It simulates the real conditions in an actual rope shovel
cab, for this, the kit includes a complete replica cab of the
Caterpillar 7495 Rope Shovel excavator, with fully functional
controls and instrumentation sourced directly from Caterpillar,
and three large displays to mimic a panoramic field-of-view
to the operator.

The protocol takes 91 minutes plus the time required to the
system calibration which varies according to several factors.
It begins with the collection of EEG during three minutes

of resting state with eyes opened, i.e., a period in which
are discouraged voluntary movements, while stay comfortably
seated in front of a white screen in a silent room with
controlled luminosity.

Following, the subject proceed 15 minutes of adaptation
to the simulated scenario. Through the sessions the virtual
scenario was kept the same, thus the mining bench height,
the ore granularity and the initial position were equal to all
subjects. The EEG data of this period was ignored.

After the adaptation, an uninterrupted session of 60 minutes
occurs, with EEG being captured. The subjects were instructed
to avoid verbalization, and act naturally, aiming the highest
production rate and lowest errors rate.

At the end of the 60 minutes, a new three minutes session
of resting EEG was recorded.

B. Technical data from ore excavation

The simulation environment allows the monitoring of every
movement during the cycles. The entire session consisted of
many excavation cycles which are a sequence of tasks the
subject must repeat. First, they have to use the bucket to
excavate the ore, then perform a loaded spin to the location
of the mobile crusher, and finally do an empty spin back to
the location of the ore.

Each of these movements are monitored by technical indi-
cators that describes how the individual operates the simulator
and where the various operational measures are taken from.
Of all indicators, 12 can be listed as being the most important
to indicate the subject’s performance. The productivity of a
single cycle is the measure of the cycle time (excavation time,
loaded-spin time, and empty-spin time) measured in seconds
along with the unloaded bulk measured in tons. Moreover, the
subject’s final productivity for the session is the average of all
the single-cycle productivity.

C. Operational classes definition

As stated before, the main goal of the work described in
this paper is to classify the workers performance using their
recorded resting EEG data. In order to do that, the behavioral
or the operational label of each subject is necessary.

The objective of the operational classifier is to produce
a data partitioning so that it is possible to discriminate the
average productivity in classes. The K-means algorithm was
employed for this purpose. However, since the number of
operators is limited, a non-parametric cluster validity index
called Mutual Equidistant-scattering Criterion (MEC) is used
to better determine the number of clusters [15].

The MEC index is a hyperparameter-free technique based on
the mutual equidistant dispersion between data within clusters,
for fine-tuning the number of clusters (K). It returns the parti-
tioning configuration with smallest inter-cluster separation and
largest intra-cluster homogeneity. In our data, the algorithm
suggested a K = 4. Thus, we ran the K-means algorithm to
partition the samples into four groups, named “A”, “B”, “C”
and “D”, in decreasing order of average productivity. In the



Fig. 1: Protocol of EEG collection during the activity of simulated ore excavation.
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Fig. 2: Distribution of subjects across clusters defined by the
K-means algorithm.

Figure 2 is illustrated the partitioning of data, including the
position of centroids determined by the clustering method.

Centroids are the location of the center of each cluster which
aggregates the samples with similarities. From the centroids
presented here, new future data can be attributed and, thus,
expand the application of this proposal.

In the Table I are presented the classes and their ranges de-
fined by the K-means and the proportion of the distribution of
subjects through the classes. AP denotes a measure of average
productivity calculated from a single simulation session.

TABLE I: Grouping details.

Class Range of average Proportion
productivity of subjects

A AP ≥ 9919.05 0.29
B 9430.35 ≤ AP < 9919.05 0.29
C 8988.41 ≤ AP < 9430.35 0.17
D AP < 8988.41 0.25

D. EEG data

The EEG data were collected using the BrainMaster 24D
headset. The headset had 21 electrodes positioned according
to the 10-20 system [16]. EEG was recorded at at a sampling
rate of 300Hz.

All the data were acquired using channel Pz as reference. A
re-referencing was implemented for the linked ears channels,
A1 and A2. This referencing was preferred due to excess noise
in some recordings.

After re-referencing, the data were double filtered. First, by
a Butterworth filter from 1 to 100Hz, bounding the spectrum to
the frequency range of interest. Then, a reject band filter was
applied at frequencies 50Hz and 60Hz to filter out the power
line noise interference. The recordings were then segmented
in trials of one second, each with 300 data points. As there
was no behavioral markers to time stamp the recordings we
deliberately choose the trials time-window to correspond to
the lower bound of band-pass filter. The pre-processing was
performed using the Matlab toolbox FieldTrip [17].

E. EEG datasets

The EEG data allows a large variety of arrangements for
data processing. During this study three assumptions were
tested regarding the number of channels (electrodes) necessary
to form the samples used in classification: 1. using the 19 avail-
able channels, 2. using each of the 19 channels individually,
and 3. using the subtraction of pairs of channels.

The resting state sessions, nominally containing three min-
utes (or 180 seconds), actually lasted a few seconds beyond it.
Thus, for simplicity, it was adopted for all subjects, the first
200 seconds to represent one session of resting state. This
means that the amount of samples in every tested dataset was
equal to 5000. For training, validation and testing purposes,
the samples were split in proportion of 70%, 20% and 10%,
respectively.

The datasets are composed as follows:

1) All available data (AD): samples were a 19x300 matrix,
where 19 is the number of available channels, 300 is the
number of data points in one second.

2) Individually channels (ICN ): with N meaning a given
channel. There were then 19 datasets for this configu-
ration, each one of size 1x300x1, corresponding to one
second sampled.

3) Channel subtraction (CSO): The O represents every
342 possible subtraction between two channels. The
samples dimension was as in ICN .



F. Applied Convolutional Neural Network Models

From the technical data perspective is possible to split the
workers in different groups of productivity from a clustering
method such as the K-means. This study aims to find if, from
the cognitive data perspective taken from the resting state, it
is possible to identify in which group of productivity a worker
fits in.

It is important to note that this assumption has a strict
relation between the resting state data and the session of
excavation immediately taken. Therefore, even if there is more
than one session for a single worker, it will be treated as
independent sessions. It is also acceptable that they are in
different productive groups.

From several models of machine learning, stand out the
convolution neural networks (CNN). It is an algorithm able to
learn from an input signal, assigning importance to features in
order to distinguish objects according to categories previously
defined. It is able to successfully capture spatial and temporal
dependencies by using convolutional filters. These networks do
not request the feature extraction step which is an important
characteristic of these models, among others [18], [19].

The CNN architecture is a sequence of layers with convo-
lutional filters, normalization, regularization and pooling com-
ponents followed by fully-connected layers. The arrangement
of the layers is empirically defined as well as the parameters
involved in the model training.

In the Figure 3 are presented the models proposed to
classify the EEG data. The main difference between them
is the input layer. Three types of datasets were composed
and two architectures were tested. The one one-dimensional
network (1D-CNN - Fig. 3a) is proposed to handle the datasets
including the single channels and those datasets with channel
subtractions, ICN and CSO, respectively. The two-dimensional
model (2D-CNN - Fig. 3b) is used to deal with the dataset in
which all channels are used in the same sample (AD).

Both architectures are quite simple and not very deep. They
contain between four and five convolutional layers followed
by normalization and regularization. Dropout layers range
from 10% to 20%. The 2D-CNN has smaller filter sizes in
its convolutional layers than those in the 1D-CNN, which
gradually decrease from 1x50 to 1x10. This architecture has
one additional fully-connected layer of 128 neurons. Both
models ends with a fully-connected layer of four neurons
(corresponding to the number of classes), and the softmax
function to map the non-normalized output to a probability
distribution over the four predicted output classes.

III. RESULTS

The classification of biomedical signals has a large field of
applications, from diagnostic to mental states characterization.
This work proposes the identification of stimulus free scalp
electrical signals measured just before the session of mining
digging as productivity indicators.

Several tests to determine the best classifier model to
distinguish the groups according the k-means grouping were

(a) 1D-CNN (b) 2D-CNN

Fig. 3: Diagrams of the convolutional neural network used for
EEG classification.

proceeded. The tests that achieved better performances are dis-
cussed in this document, and presented in Table II. According
this table, the best classification performance was obtained
with the AD dataset, which contains all data (19 channels),
followed by the CSP3−Pz dataset, which contains the subtrac-
tion between channels P3 and Pz. The dataset ICT5, which
contains data obtained from channel T5, showed a smaller
accuracy measure, of 83% correctly classified instances. Those
results are discussed in detail in the following paragraphs.

The mini-batch size of all tests was equal to 256, the maxi-
mum number of epochs was 100 and learning rate of 1e−3. At
every 13 iterations the validation was applied, and the absence
of significant variation in the model’s performance after 15
validations interrupted the training, avoiding overtraining. The
optimization algorithm was the well know stochastic gradient
descent with momentum (SGDM) [20].

The promising results indicate the feasibility of identifying
an operator’s productive state given his pre-activity mental
state, even at rest. In Tables III and V are presented the test’s



TABLE II: Test accuracy of the different models for EEG
classification.

Dataset Test accuracy (%)
AD 99.40
ICT5 83.00

CSP3−Pz 99.00

TABLE III: Confusion matrix of test of AD model.

Group A B C D
A 100 0 0 0
B 1 76 1 1
C 0 0 149 0
D 0 0 0 172

confusion matrices of the described models.
From the 500 samples, three were wrongly assigned by the

most accurate model, AD, in Table III, while the double of
samples was misclassified by the CSP3−Pz model(Table V).

In general, the class ’B’ was the most difficult to be
distinguished from the others. Using the model ICT5, Table V,
20 samples of this class were miss classified, in particular to
the class ’C’. In fact, the gap between the amount of ore dug
from the most productive group (’A’) and the least produced
(’D’) is approximately 2, 000 tons per hour, which in practical
terms is a subtle difference; all subjects are at a satisfactory
productive level.

IV. DISCUSSION

Resting brain activity has been correlated with personal
traits, such as neurological disorder, and with event-based
applications [21]. In this work, we studied the potential use
of EEG resting activity taken immediately before the task
of mining ore simulation. The classification task aimed to
differ samples of EEG allocated into four groups according
the productivity efficiency of 25 volunteers, clustered by the
k-means algorithm.

The accuracy measures achieved during the tests were
higher than the theoretical chance level, 25%. It is well
know that this value consider an infinite number of samples
and it is very common the achievement of this threshold by

TABLE IV: Confusion matrix of test of ICT5.

Group A B C D
A 81 5 7 25
B 2 49 11 7
C 1 9 133 6
D 1 4 7 152

TABLE V: Confusion matrix of model tested with CSP3−Pz

samples.

Group A B C D
A 122 0 1 0
B 0 81 0 1
C 0 0 127 0
D 1 0 2 165

chance. Consulting a look-up table available for Combrison
and Jerbi [22], can be verified that most of the tests reliably
exceed the chance level. In Tables VI and VII the ranges
of accuracy of each channel subtraction and isolated channel
tested during this work are shown, respectively.

From the pairs in Table VI, 59 provided accuracy rates
higher than 70%. 33.9% of the channels in these pairs came
from the frontal and frontopolar region of brain (21.18% and
12.72%, respectively). At least one parietal channel composed
20.33% of the subtraction pairs, while 17.79% of the channels
came from the temporal or central regions, each. In compari-
son to the pairs with accuracy lower than 70% the distribution
of channels follows approximately the same behavior, but with
a higher proportion of parietal channels in the most accurate
group.

The subtraction of channels is a strategy commonly used to
reduce noise or artifacts [23], [24]. Similarly, when subtracting
two channels, the common noise between the channels is
reduced, improving the overall quality of the signal.

The higher performance achieved by the subtraction of two
parietal electrodes is interesting when considering the context
of the activity. It is known that the parietal region is mainly
responsible for forming of motor intention and interpreting
the somatosensory signals, such as movement coordination and
visual perception [25], [26]. Thus, there is the assumption that
the briefing made before the beginning of the experiment can
induce a mental arrangement in the volunteers, who are already
used to the virtual environment of the activity.

In the Table VII is shown that channels located at the left
side of brain are the majority of those with 70% or higher
accuracy. The frontal or frontopolar channels were, in general,
less accurate than the others. Temporal lobe is classically
related to perception and recognition of auditory stimuli,
speech and also semantic memory [27]. Semantic memory
refers to a portion of long-term memory of things or objectives
that are common knowledge, such as the experiment.

The subjects involved in this experiment are experienced
employees both in real as in simulated environments. How-
ever, several factors can influence the operation in simulated
experiments, such as, the reticence about the technology of
virtual reality. It is not uncommon experience some physical
discomforts (dizziness or nausea, for example) in this type
of environment due the difficult of the brain to interpret the
projections [28].

By analyzing the statistical test of Wilcoxon of groups
we can observe two significant differences between groups
medians, A with relation to B and C, and D to B and C. The
Wilcoxon test is a nonparametric test for equality of population
locations (medians). The p-value observes the null hypothesis,
when two populations enclose identical distribution functions,
or the alternative hypothesis, when two distributions differ
regarding the medians. In the Table VIII is shown that the
group A does not differ significantly from the group D. Also,
the group B and C are the closest group among groups.

The similarity p-value pointed by the Wilcoxon test does
not consider the temporal relation of the EEG data, also this



TABLE VI: Ranges of accuracy of the 342 pairs of channels subtraction of CSO dataset.

Range of
accuracy (%) Pairs

]30-40] P3-T4, F3-F7, C3-P4, F3-O2, F3-T4, Cz-T6, F3-T6, C3-Fz, T3-F7, F3-F4, F4-T5, C3-T4, P3-C3, C3-Cz, T3-T4,
P3-Cz, Fz-P4, F4-T4, P4-F7, P4-T3

]40-50]

F3-O2, Fp2-Pz, F4-Cz, P4-T5, F7-Pz, T3-T4, F8-Pz, Fp1-Pz, F3-F4, F7-F8, F3-T5, F4-P4, P4-T5, C4-T3, P4-T4, Cz-F7,
O2-T6, F7-Pz, F3-Pz, P3-F4, P3-F7, F3-F8, C4-P4, Cz-O2, Fp1-T4, C3-F7, F3-P4, Fz-F7, C4-F7, Cz-T3, F4-Cz, O1-O2,
Fz-T4, F8-Pz, Cz-T5, Cz-O1, O2-T4, F7-T4, P3-T3, C3-F3, C3-O1, Fp1-Pz, C3-F4, C3-O2, C3-T6, F4-T3, F4-T6, P4-O2,
T5-T6, Fz-O2, F4-O2, O1-T4, P3-F3, P3-O2, C4-T6, T3-O2, P4-F8, Fp2-Pz, O2-F7, F8-T6, C3-T3, F3-Cz, Fp2-T6, T5-O1,
T5-O2, Fz-T3, P4-Cz, P4-T6, Fp1-F7, P3-Fz, F3-T3, F3-O1, T5-T4, F7-F8, C3-C4, F3-C4, Fz-C4, F4-C4, C4-T4, Fp1-F8,
Fp2-O1, Fp2-F7, Fp2-F8, F3-Fp1, Cz-T4, F4-F7, C4-O2, T3-T6, P3-P4, C3-Fp2, C3-F8, Cz-F8, O1-F8, F8-T4, T6-T4, Fz-O,
T5-F8, F4-O1, O2-F8

]50-60]

Fp1-F8, Fp1-Fp2, Cz-T5, C3-C4, Fp2-F8, F3-T6, T5-O1, Cz-O1, P4-F7, T3-F8, O2-F7, C4-O2, F3-T3, F3-T5, P4-Cz, Fz-P4,
Fp2-O2, F3-F8, F4-T4, P4-F8, Cz-T6, Fp2-F7, O2-F8, C3-F8, C3-F7, C4-T5, F8-T6, P3-T4, P4-T6, F3-F7, F3-Pz, Fz-Cz,
F4-F7, Fp1-T6, C3-F4, P4-Fp1, P4-Fp2, F4-T3, C4-Cz, Fz-T6, C4-T5, Fz-F4, C4-O1, Fp1-Fp2, T3-F8, O1-F7, C4-F8, Fz-Cz,
Fz-T5, C4-Cz, O1-T6, P3-T6, F4-F8, P3-F8, P4-O1, T3-T5, T5-F7, C3-Fp1, F3-Fp2, Fp1-O1, Fp2-O2, F4-Fp2, Fp2-T5,P4-Fp2,
C4-Fp1, P3-C4, C3-T5, Fp1-T5, P3-O1, Fp2-T3, T3-O1, F4-Fp1, Fp1-T3

]60-70]

P3-P4, O2-T6, Fz-O1, C4-T4, P4-T3, Cz-T4, C3-T4, Fp1-T4, C4-F7, T5-T4, Cz-T3, O1-O2, F4-F8, P3-O2, F3-P4, T5-F8,
P3-C3, C4-T3, F7-T6, Fp1-F7, C3-T6, P3-F4, F3-O1, P3-C4, F4-T5, T5-O2, P3-T6, Cz-F8, Fz-O2, Fp1-O1, T5-F7, F3-Fp2,
T4-Pz, C3-O2, P3-Cz, P4-T4, Fp2-O1, F4-P4, Fz-C4, P3-Fz, F3-Fz, Fp1-T5, F3-T4, F4-C4, Cz-O2, Cz-F7, T3-O2, F7-T4,
F4-O1, F8-T4, Fz-T6, P3-Fp1, C3-Fp1, O1-F8, C4-T6, F3-Fp1, F4-T6, P4-O1, T3-T5, T3-F7, Fp2-T5, T3-T6, O1-T4, P3-T5,
Fp1-O2, T3-Pz, Cz-Fp2, Cz-Fp1, F7-T6, P3-Fp1, P4-Fp1, Fz-Fp1 F3-Fz, Fp2-T4, C3-Pz, Fp1-T6, O1-Pz, C4-Fp2, T6-Pz, T5-Pz

]70-80]

Fp1-T3, Fp2-T6, C3-Fp2, F4-Pz, T5-T6, O1-T6, P3-T3, Fp1-O2, C3-T5, Fz-T3, T3-Pz, C4-Fp1, C3-Fz, T6-T4, C3-T3, F3-Cz,
P4-Pz, P3-F8, C4-O1, Cz-Fp2, Fz-T5, P3-F3, P3-F7, Fz-F7, C3-Cz, Fp2-T3, Fp2-T4, O2-T4, P4-O2, Cz-Fp1, F4-Fp1, C4-F8,
Fz-T4, O1-F7, P3-T5, T3-O1, C3-F3, C4-Fp2, O1-Pz, Fz-F8, T6-Pz, F4-O2, C3-P4, Fz-F4, F4-Fp2, Fz-Fp2, T4-Pz, Fz-F8,
F4-Pz, P3-Fp2, P3-Pz, C4-Pz

]80-90] P3-Fp2, Fz-Pz, P3-O1, C4-Pz, F3-C4, C3-O1, T5-Pz, C4-P4, C3-Pz, Fz-Fp2, O2-Pz, Cz-Pz, P4-Pz, Fz-Pz, Cz-Pz
>90 Fz-Fp1, P3-Pz, O2-Pz

TABLE VII: Ranges of accuracy of the ICO dataset.

Range of
accuracy (%) Channels

[40-50] Pz, Fp2, F7
]50-60] F8, Fp1, F3, Fz, P4
]60-70] C3, T4, O2, T3, T6, F4
]70-80] P3, C4, O1, Cz
]80-90] T5

TABLE VIII: Wilcoxon rank sum test for equal medians.

Groups p-value
A, B < 0.01
A, C < 0.01
A, D 0.5862
B, C 0.6498
B, D < 0.01
C, D < 0.01

test assumes a normal distribution of the signals and may not
reflect the complexity of the signal presented.

Entropy-based measures are commonly employed to char-
acterize time series, such as the EEG, since they can quantify
the complexity of them [29]. In particular, the method of
permutation entropy (PE), proposed by Bandt and Pompe [30],
measures the irregularity of non-stationary time series. Their
proposal considers the relations between the values of a time
series rather than the values themselves in a simple, fast and
robust way.

PE values ranges from zero to one, where the largest
value means that all permutations have an equal probability,
indicating that the time series is highly irregular; the opposite
is true, indicating the presence of regular patterns over the
signal. In the Figure 4a and in the Figure 4d are presented the
PE of the average EEG values of each group. Since this study

uses an EEG recording not too long, the order is preferable
not large, thus we calculate the PE with order n = 3, window
of size 30 and one sample windows shift, culminating in 168
values of permutations.

By analyzing the differences between the permutation en-
tropy of channels between groups we found that 17 of 19
channels present some similarity. P4 and F8 are the two
significantly different in all tests made, and the two temporal
right-positioned electrode, T6 ad T4, failed the test in five and
four tests, respectively.

The channel T5, the one with the highest accuracy among
the IcO datasets, presented similarity between groups B and C.
All the three comparisons with group A identified significant
similarities in the channels T6 and T4; two of the tests
identified the correspondence in channels O2, P3 and F4. The
six channels with accuracy between 60% and 70% failed in
17 of 36 tests of similarity.

V. CONCLUSION

In the present study we have shown a very high accuracy for
the classification of task free EEG signals using convolutional
neural networks. The accuracy was obtained with a classical
ConvNet architecture which demonstrate the feasibility of DL
architectures based on filters convolution for the classification
of time series as complex as the EEG. Obtaining this result
was remarkable when two things are taken into account: i. The
EEG used was a task free scalp recording. That is, it was not
recorded during training in the VR simulator. ii. The produc-
tivity label used to train the ConvNet in a supervised learning
pipeline was not adapted in any level to specifically extract
meaningful physiological information. That is, the EEG was
recorded before and after a routine training of workers in the
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Fig. 4: Permutation entropy of resting EEG of each productivity group.

VR environment not aimed at evaluate cognition. Despite the
good accuracy has been specific towards some EEG channels,
the answer to why exactly it was good is absent and it is part of
the well known lack of interpretability typically encountered
in DL results. To address this lack of interpretability we are
already focusing in two approaches that we hope it will be
soon available to the scrutiny of the scientific community.
One is to use nonlinear frequency domain analysis with good
tracking of the parameters range (ex: power and phase) that
most contribute to the best accuracy. Another course of action
is the application of data driven dynamical systems methods
that can also produce parameters that are might lead to a range
of values indicative of good classification accuracies.
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