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Abstract—This paper presents a study about some aspects of
the influence of population diversity on the performance of the
Differential Evolution (DE) technique. In order to accomplish
this, three different variants of this technique, Standard DE,
JADE, and SaDE, are tested through five unconstrained bench-
mark functions, and the performance results are analyzed and
discussed by associating variations in the population diversity
with changes in the evolution of the best solution over the
generations. The objective of this work is to investigate the
pattern of diversity behavior throughout the optimization process
through graphs results and, then, evaluate how sensitive is the
technique performance when associated with the population
diversity behavior. Regarding the results, JADE has achieved
the best performance for almost all the benchmark functions
tested. Furthermore, the graphs indicate the performance of the
variants is highly influenced by how the algorithms control the
diversity throughout the optimization process and that a high
average diversity is not always a guarantee of better performance.
This work can assist the implementation of new operators and
strategies, which will permit the Differential Evolution technique
to have a better performance.

Index Terms—differential evolution, population diversity, ex-
ploration, exploitation

I. INTRODUCTION

In the last decades, many algorithms have been proposed to
find the optimal value of objective functions with real search
space [1]–[3]. Among them, stand out the techniques that
perform a global search and generate their initial solutions
[4]–[6], which are able to find better results when compared
to traditional optimization techniques [2], [7], [8]. Among
these global optimization techniques, the Differential Evolu-
tion (DE) has attracted the interest of researchers in the last
decades due to its simplicity and robustness in the search
for the global maximum. Such a technique consists of an
evolutionary algorithm, which was proposed by R. Storn and
K. Price [9]. DE has become one of the most used nature-
inspired Algorithms in problems of global optimization of real
variables [10]. The myriad of applications of this technique
in real-world problems successfully demonstrates its excellent
performance [11].

The main difference between DE and other well-known
nature-inspired algorithms lies in the fact that each vector can
mutate with differences in scale between distinct members,
tending to adapt to the scales of objective function [12]. In
addition to the mutation, the DE has the operators of selection,
crossing, and control parameters (mutation factor and crossing
probability) that must have adequate values to the problem in
order to obtain a better performance [11].

Regarding the works in the literature that attempts to
increase the diversity in DE, we can mention the use of sub-
populations proposed by Zaharie [13] to achieve the trade-off
between exploration and exploitation in the Differential Evo-
lution (DE) technique. Moreover, J. Zhang and A. Sanderson
proposed the Adaptive Differential Evolution with Optional
External Archive [14], named by JADE. This algorithm imple-
ments a new mutation strategy named “DE/current-to-pbest”,
which is a generalization of the classic ”DE / current-to-best”
strategy. Another feature of JADE is the use of an external file
operation, which consists of a history of information used to
direct the progress of the algorithm in order to diversify the
population throughout the execution. In addition, JADE also
updates the control parameters adaptively. Furthermore, A.
Qin and P. Suganthan proposed the Self-adapted Differential
Evolution (SaDE) [15], which implements a set of candidate
strategies to generate the trial vector. In this variant, both the
trial vector generation strategies and their associated control
parameter values are gradually adapted using information from
previous experiments obtained from previous generations in
which promising solutions were found.

The SaDE and JADE algorithms reuse promising infor-
mation from previous generations, either by reinserting old
solutions directly into the population (JADE) or by gradually
adapting control parameters according to previous experiences
(SaDE) [14], [15]. These techniques reuse information from
previous generations and this feature improves diversity by
facilitating the search for high-quality solutions, which makes
them have an excellent performance when compared to other
DE variants [16]–[18].



However, what is the expected behavior of the population
diversity in DE over the generations in order to maintain a
good relationship between exploration and exploitation? With
the view to analyzing such behavior in DE variants, this work
investigates the influence of the variation of diversity over
the generations on the DE’s performance and, then, evaluates
how sensitive is this technique performance when associated
with the population diversity behavior. To accomplish this
study, the standard DE, in addition to the JADE and SaDE
variants, are applied to the optimization of five benchmark
functions: Ackley, Rastrigin, Griewank, Schaffer e Schwefel.
The results concerning the evolution and diversity graphs are
analyzed and their patterns are associated with each other
to find strong relationships and verify what are the diversity
behavior characteristics that improve the DE performance.

II. DIVERSITY

The definition of population diversity in nature-inspired
algorithms refers to how individuals in the population are
distributed on the search space [19]. Different ways of mea-
suring population diversity have been proposed. Two of them
frequently used in GAs are the population diversity based on
Hamming distances [20], [21] and the Euclidean distance,
which is common for distance estimation with real-coded
genes [11]. The latter was used by B. Ginley et. al. [22] and
R. Ursem [23], which proposed an algorithm called Diversity-
Guided Evolutionary Algorithm (DGEA) that measures the
diversity using a mechanism to detect the exploration and
exploitation phases. In order to accomplish such a mechanism,
the measurement technique must be robust concerning popu-
lation size, the dimensionality of the problem, and the limit
of each variable [23]. Because of these three characteristics,
the Euclidean distance to the midpoint used by Ursem in
the DGEA was chosen to measure the diversity, then for
comparison purposes, this type of diversity was used in all
DE variants implemented in this article. The equation (1) is a
brief description of such a measure of diversity:

diversity(P ) =
1

|L| · |P |
·
|P |∑
i=1

√√√√ N∑
j=1

(
Si,j − Sj

)2
(1)

where |L| is the length of the diagonal in the search space
S ⊆ ℜN , P is the population, |P | is the population size, N is
the dimension of the problem, Si,j is the jth value of the ith
individual, and Sj is the jth value of the average point S.

It is known that population diversity plays an important role
in the performance of nature-inspired algorithms [11]. Many
researchers believe that the efficiency of a nature-inspired
algorithm is influenced by the appropriate ratio between
exploitation and exploration [24]. One can understand the
exploration process as the process of visiting new regions of
the search and exploitation space as the process of visiting
regions of the search space that are part of the neighborhood
of the points visited previously. On the basis of these concepts,

it is noted that there is a close connection between maintain-
ing an adequate balance of exploration/exploitation and the
behavior of diversity over generations. Adding to this the fact
that measuring and controlling exploitation and exploration
is still a major challenge [24], it is necessary to evaluate
these effects from the behavior of diversity. For this reason, it
is important to understand how sensitive the performance of
global optimization algorithms is when they undergo variations
in population diversity.

III. BENCHMARK FUNCTIONS USED IN THE SIMULATIONS

The three DE variants, Standard DE, JADE and SaDE, were
tested using five unconstrained benchmark functions, which
are: Ackley, Rastrigin, Griewank, Schaffer e Schwefel. All
these functions have been adapted to be maximization prob-
lems and present different characteristics and spatial shapes. In
table I are shown the benchmark functions, with their respec-
tive maximum values (Max), dimensionality (Dim), search
space range (Range) and other characteristics (Charac), in-
cluding information about multimodality and linearity.

TABLE I
LIST OF BENCHMARK FUNCTIONS

Name Dim Max Range Charac

Ackley 10 22.314 [−32, 32]

Continuous
Differentiable
Non-separable
Non-convex
Multimodal

Rastrigin 10 403.53 [−5.12, 5.12]

Continuous
Differentiable

Separable
Convex

Multimodal

Griewank 10 900 [−600, 600]

Continuous
Differentiable
Non-separable
Non-convex
Multimodal

Schaffer 10 1 [−30, 30]

Continuous
Differentiable
Non-separable
Non-convex
Unimodal

Schwefel 10 8380 [−500, 500]

Continuous
Differentiable

Separable
Non-convex
Multimodal

For each test function, the averaged results of 50 indepen-
dent runs with the same initial population were recorded. The
diversity and evolution curves represent, therefore, the average
values of such 50 runs.

The main objective of the experiment is to associate varia-
tions in the behavior of diversity with the performance of DE
variants. It is expected in future works that this association
allows the designer to configure the algorithm, introducing
mechanisms of diversity control to improve the performance
of the DE. The descriptive statistics of the results are shown in
table II, which contains (for each experiment performed and
considering all generations) the following values: maximum



reached value (named by Max in table II ), average diversity
(named by AveDiv in table II) and standard deviation of
diversity (named by StdDiv in table II).

IV. ANALYSIS AND RESULTS

As mentioned in the introduction, this section is dedicated
to the presentation and discussion of the graphs related to
the simulation results of the Differential Evolution variants
applied to the optimization of five benchmark functions. In
order to investigate the influence of population diversity on
the performance of such a technique, the behavior of each
evolution graph is associated with the variations in the respec-
tive diversity graph throughout the generations. Furthermore,
the results in the table II are used as additional quantitative
information to aggregate in the analysis. Finally, it is worth
mentioning that, for all the simulations, the stopping criterion
is the number of generations; however, a different number of
total generations is used for each benchmark function, because
the algorithms reach the stabilization in distinct moments
depending on the function to be optimized.

Figures from 1 to 5 show the evolution and diversity curves
of the techniques JADE, SaDE, and standard DE. In figure
1.(a) we have the graph of the evolution of the techniques
(DE variants) for the Ackley function. In figure 1.(a) we
can see that the standard DE algorithm has a better initial
performance but later is exceeded by the JADE technique
and then by the SaDE technique. The standard DE after its
abrupt initial growth suffers a stagnation that begins around
the 1000th generation. Relating this performance behavior to
the diversity graph in figure 1.(b), we see that the diversity
of the standard DE drops abruptly to very small values. This
lack of smoothness in diversity behavior shows that a better
balance is needed between exploitation and exploration within
the algorithm. Through the zoom in the image, which is within
figure 1.(a), we see that the SaDE overcomes the other two
techniques and then suffers a stagnation around the 7000
generation and is finally overtaken by JADE.

The graph of diversity in figure 1.(b) shows that SaDE
shows a slight increase in its diversity at the beginning, which
means that its exploration process was more intense and
prolonged than that of standard DE, thus justifying why SaDE
starts the optimization process with less performance than
the other techniques when we look at the evolution graph in
figure 1.(a). However, throughout the process, we can see that
SaDE presents a better balance during the transition between
exploration and exploitation when compared to standard DE.

Still analyzing figure 1.(a) and figure 1.(b) we see that
the JADE algorithm presents a more efficient exploration
phase, which is characterized by the increase of diversity
and good evolution performance. This technique has also an
excellent exploitation phase, which improves its ability to
refine the solution. This algorithm performed better than the
SaDE algorithm and obtained the best result among the three
techniques. It is important to highlight a particular charac-
teristic in JADE diversity behavior for the Ackley function.
Among all functions, this was the only one in which JADE
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Fig. 1. Evolution of the best solution (a) and population diversity (b). Both
graphs refer to Ackley function and compare the techniques JADE, SaDE and
Standard DE.

maintained its diversity with high values until the end of the
optimization, without presenting any drop at any point in the
evolutionary process. We believe that this is closely related to
the characteristics of the Ackley function.

The tests performed with the Rastrigin, Griewank, and
Schwefel functions, which are shown in figures 2, 3 and
4, respectively, present interesting patterns and allow us to
extract some interesting conclusions. For these three functions,
the JADE technique obtained the best performance when we
analyzed the evolution graphs (figure 2.(a), figure 3.(a), figure
4.(a)), so that the performance of this technique surpasses
the others two in the last generations of the process similar
to what happened in the Ackley function. This is related
to the graphs of diversities (figure 2.(b), figure 3.(b), figure
4.(b)) it can be seen that the JADE diversity does not fall
abruptly at any moment, but shows a slight decrease along with
the generations. On the other hand, in these same graphs of
diversity one observes at a given moment a sudden drop of the
diversity of the techniques SaDE and standard DE. In line with
this prominent decline in diversity, there is also a noticeable



TABLE II
DESCRIPTIVE STATISTICS OF THE RESULTS

Ackley
Standard DE JADE SaDE

Max AveDiv StdDiv Max AveDiv StdDiv Max AveDiv StdDiv
2.231E+1 1.454E-2 6.370E-2 2.231E+1 4.126E-1 1.064E-2 2.231E+1 1.247E-1 1.484E-1

Rastrigin
Standard DE JADE SaDE

Max AveDiv StdDiv Max AveDiv StdDiv Max AveDiv StdDiv
4.035E+2 6.307E-3 2.56E-2 4.035E+2 3.364E-2 2.841E-2 4.035E+2 8.329E-3 2.790E-2

Griewank
Standard DE JADE SaDE

Max AveDiv StdDiv Max AveDiv StdDiv Max AveDiv StdDiv
9.013E+2 1.317E-3 1.242E-2 9.011E+2 3.143E-3 1.172E-2 9.014E+2 1.097E-3 1.178E-2

Schwefel
Standard DE JADE SaDE

Max AveDiv StdDiv Max AveDiv StdDiv Max AveDiv StdDiv
8.328E+3 1.172E-2 5.788E-2 8.368E+3 2.927E-1 3.014E-2 8.361E+3 2.049E-2 7.71E-2

Schaffer
Standard DE JADE SaDE

Max AveDiv StdDiv Max AveDiv StdDiv Max AveDiv StdDiv
9.975E-1 1.862E-2 2.231E-2 9.797E-1 2.553E-2 2.149E-2 9.975E-1 1.351E-2 2.054E-2
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Fig. 2. Evolution of the best solution (a) and population diversity (b). Both
graphs refer to Rastrigin function and compare the techniques JADE, SaDE
and Standard DE.
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Fig. 3. Evolution of the best solution (a) and population diversity (b). Both
graphs refer to Griewank function and compare the techniques JADE, SaDE
and Standard DE.
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Fig. 4. Evolution of the best solution (a) and population diversity (b). Both
graphs refer to Schwefel function and compare the techniques JADE, SaDE
and Standard DE.

stagnation in the SaDE and standard DE evolution graphs for
the three functions in question, suggesting that abrupt changes
in diversity tend to prejudices the exploitation of algorithms.

The graph of figure 5 shows that, unlike what happened in
the other functions, JADE had the worst performance when
compared to the other two algorithms. A possible explanation
for this may also be found in the JADE diversities behaviors,
which initiate a stagnation around the 800th generation, mak-
ing the technique remain with almost constant diversity in the
remaining generations. The results suggest that this stagna-
tion of diversity impaired the exploitation of the algorithm,
although the diversity remained high when compared to the
other two techniques. This also shows that keeping diversity
constant and at high levels throughout the process does not
guarantee better performance of the technique. In relation to
the other two variations of the DE, it can be seen from figure
5.(b) that, unlike JADE, the SaDE and standard DE diversity
decrease moderately throughout the final generations. This
characteristic possibly contributed to the fact that these two
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Fig. 5. Evolution of the best solution (a) and population diversity (b). Both
graphs refer to Schaffer function and compare the techniques JADE, SaDE
and Standard DE.

techniques performed better than JADE, since it favored more
robust exploitation, increasing the power of refinement of these
algorithms, similar to what happened to JADE in the functions
Rastrigin, Griewank, and Schwefel. In analyzing the graphs of
evolution (figure 2.(a), figure 3.(a) and figure 4.(a)) it is noted
that the JADE technique has been able to overcome the other
techniques in the last generations, similar to what happened
in the Ackley function.

From the graphs of figures 2.(b), figure 3.(b) and figure
4.(b), it is noted that the diversity of JADE does not fall
abruptly, but shows a slight decrease over the generations.
On the other hand, in these same graphs of diversity, it is
observed that the techniques SaDE and standard DE show
a sudden drop in diversity. This sharp drop in diversity is
associated with visible stagnation in the SaDE and standard
DE evolution charts for the Rastrigin, Griewank, and Schwefel
functions, suggesting that abrupt changes in diversity tend to
undermine the exploitation of algorithms.



V. CONCLUSION

In this work, the importance of diversity behavior in the
performance of Differential Evolution algorithms was inves-
tigated. Three DE variants were used: standard DE, SaDE,
and JADE. The tests showed that regardless of the strategies
adopted by the techniques to find the global optimum, their
performance is strongly influenced by the way they control
diversity throughout the optimization process. The results
showed that the best performance was achieved by JADE,
except for the Schaffer function, where JADE was the worst.
Also, for some results, JADE did not present the best perfor-
mance during the beginning of the optimization, although this
variant outperformed the other two in the later generations.
This pattern suggests that it is not enough to the technique
to find the best solution, but accomplish that as quickly as
possible.

As verified in the tests, a high average diversity is not
always a guarantee of better performance. It is important
that the technique also has mechanisms capable of promot-
ing variations at appropriate levels to accomplish a suitable
balance between the exploration and exploitation phases. In
this context, the diversity graphs are a useful tool since they
permit the developers to associate the performances of the
variants with the population diversity behavior. This associa-
tion benefits the development of novel mechanisms to not only
increase the diversity, however, are also able to decide at what
moment and to what level such a variation should occur. The
implementation of new operators and mechanisms based on
the behavior of diversity curves to improve the performance
of the DE in the search for the global optimum will be the
focus of future works.
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