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Abstract—Gravitational waves were predicted by Albert Ein-
stein more than a century ago, but only in 2015, the Laser
Interferometer Gravitational-Wave Observatory (LIGO) was able
to detect them. The gravitational wave phenomenon can be
compared to spreading water from a lake after a stone has
been thrown into it. Here, gravitational wave generation comes
from an astronomical binary system formed by black holes or
neutron stars. However, unlike the water, the amplitude of those
gravitational waves is on a scale smaller than a proton’s size.
Despite this, we can describe it with simple equations in a
phenomenological way. We can model those waves on a regular
computer using post Newtonian physics. Here we were able to
generate gravitational waves from computational simulations and
make its data analyze. When a gravitational wave is detected in
the real-world problem, there is a great interest in establishing
the physical features of the astronomical bodies involved in the
process. In this way, we propose applying a simple neural network
to receive the gravitational wave data and infer information about
the astronomical bodies’ mass. The experimental results show
that a simple neural network can extract mass information from
the gravitational wave data. The recognition process proposed is
much more straightforward than the complex computation based
on numerical relativity for gravitational wave data analysis.

Index Terms—Neural Networks, gravitational waves.

I. INTRODUCTION

Gravitational waves are space-time vibrations predictable
from Einstein’s relativity theory. With tremendous implications
about the understanding of the universe structure, the gravi-
tational waves were first detected in 2015 by LIGO (Laser
Interferometer Gravitational-Wave Observatory) [1]. Gravita-
tional waves have been a subject that arouses the interest of the
scientific community. It brings the possibility of listening to
the universe in a completely different way, previously limited
to the forms of electromagnetic waves.

LIGO Scientific Collaboration, within its large collaborative
network, was responsible for the development of an extraor-
dinary physical experiment able to measure displacements
less than the proton’s sizes, something about 10−21 meter
[1]. Before, gravitational waves had been indirectly detected
through the Hulse-Taylor Pulsar [2], which led them to receive
the 1993 Nobel Prize for Physics [3]. One hundred years after
the prediction of gravitational waves by Einstein’s General
Theory of Relativity, published in 1915 [4], LIGO succeeds
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in proving its direct detection, and in 2017 this contribution
was gratified with a Nobel Prize in Physics [5]. Since that
LIGO has detected 50 gravitational waves [6], [7].

Although LIGO has made available its data and even a
library in Python [8], making a characterization of these waves
through their signal is still an arduous task that requires much
computational power. Therefore, several academic works try
to invest in the use of machine learning, either to detect if the
signal is a gravitational wave or to characterize a wave signal
[9], [10].

We propose with this article show that with a simple
computer, it is possible to generate simulations of gravitational
waves and process those simulations to extract information
from them using Machine Learning (ML), more specifically
Artificial Neural Networks (ANN). Here, we are considering
that gravitational wave generation comes from an astronomical
binary system. This astronomical binary system is formed by
two very massive bodies, like black holes. In this way, the
gravitational waves bring information about the binary system,
such as information about the black holes’ masses. We want to
determine if using a simple ANN to process the gravitational
wave signal could infer the mass of the objects generating this
wave.

The article is drawn as follows. In the next section, we
describe a simple gravitational wave phenomenological model.
In Section III we present a brief explanation of the Artificial
Neural Networks approach that we used here. After that, in
Section IV we evidence the process we used to create the
database and make the data analysis. Finally, in Section V are
presented the relevant remarks of the work.

II. GRAVITATIONAL WAVES

According to Einstein’s General Theory of Relativity, space
and time ceased to be two rigid and separate entities. They
came to be called space-time, a continuum of four dimensions.
The presence of matter and energy can alter it, so objects of
great mass in the Universe, such as planets, stars, and black
holes, are able to bend it [11].

General Relativity also predicted the existence of Gravi-
tational Waves, which is a phenomenon produced by every
accelerated and not spherical object. Therefore the magnitude
of these waves is minimum, on a scale of 10−21m [11],



[12]. To have a fair comparison the size of a proton is
0.8768 × 10−15m. Those waves also become weaker as far
as they are from the source.

The event of Gravitational Waves can be compared to the
propagation of waves in a lake after a stone has struck it.
However, gravitational waves do not need a medium to propa-
gate. Another fact is that different from electromagnetic waves,
which are vibrations of electromagnetic fields, gravitational
waves are space-time vibrations propagating with the speed
of light [13].

Compared with electromagnetic waves, gravitational waves
are extremely weak [13]. Thus, this type of phenomenon can
only be observed in environments with large amounts of mass
and energy [11]. Nowadays, we do not have enough resources
to reproduce gravitational waves experimentally, making us
look at the sky, searching for astronomic events capable
of producing them. Those events are a collision of black
holes, collision of neutron stars, supernova explosion, and
gravitational waves from the Big Bang. This last one would
give us information about the Universe before the formation of
the atoms. Knowing these waves can come from this type of
phenomenon, we are able to understand them better and hear
what electromagnet events could not tell us until now [11],
[13].

A. Gravitational waves of a binary system

As send before, phenomena like neutron stars and black
holes collision are cosmological events able to produce grav-
itational waves within a significant magnitude (amplitude
bigger than 10−21 meters). Such events were the only source
that the LIGO was able to detect [1].

A binary system is composed of two objects. They can be
a combination of black holes and neutron stars. Those objects
meet in the cosmos and stay orbiting a common barycenter1,
among time they become closer and closer until they collapse
together and become only one object [14]. It is important
to say that these two objects orbit around each other for an
undetermined amount of time. We only have data to evidence
when they are close enough and on a very high velocity2, to
the point of producing gravitational waves with a significant
scale.

This phenomenon can be described in three phases (Figure
1). The first one is the spiral phase, when both objects are
orbiting each other at a very high speed, with fractions of the
speed light [1]. This phase can be described phenomenolog-
ically by Equation 1. Where it seeks to define gravitational
waveform of simple and circular binary system [14].

h(t) = A(t)cosΦ(t) (1)

1Center of mass.
2The GW150914 detection achieved a velocity higher than 0.3 speed of the

light [1]

Fig. 1. Phases of a binary system. Blue continuous line - gravitational wave
signal from the spiral phase Equation 1. Red dashed line - ring down stage
Equation 8

Where h(t) indicates the waveform, A(t) is the amplitude
and Φ(t) is the wave phase. A(t) and Φ(t) can be described
as:

A(t) =
2(GM)5/3

c4r

(
π

Pgw(t)

)2/3

(2)

Considering the Equation 1, it is possible to see that the
fluctuation of the space-time metric depends only on time.
Therefore Φ(t) can be written as the Equation 3.

Φ(t) = Φ0 + 2π

∫ t

0

dt′

Pgw(t′)
(3)

G is Newton’s gravitational constant; c is the speed of light;
r is the initial observation distance, in light-year; Φ0 is the
initial phase and Pgw is the period in the instant t. The value
of M is called ”mass chirp”, given this name, because it can
be determined from the evolution of the signal received at the
time chirp of the system’s evolution 3

M≡ (M1M2)3/5/(M1 +M2)1/5 (4)

The period Pgw is easily related to the orbital period Porb:

Porb(t) = 2Pgw(t) (5)
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Observing the equations above, it is noticed that some input
variables are determinants of the waveform. These are the

3Exact moment of approximation between the two objects and gradual
increase of the frequency of the received signal.



initial orbital period (P0), mass chirp (M), the observation
distance (r) and the initial phase of the wave (Φ0).

The second phase is the moment of collapse, when ob-
jects unite and become one. The last one is the ring down
phase, gravitational waves begin to fatigue until they return
to low amplitude. At this part the waves can be represented
phenomenologically as a damped harmonic oscillator [15], see
bellow:

h(t) = Be
−t
τ sin(ωt+ δ0) +D (8)

where B and D are constants, δ0 is an initial phase, and τ
is the damping constant. It can be seen as the red dashed line
in Figure 1.

III. NEURAL NETWORKS

Mathematically an Artificial Neural Network is a universal
function approximator [16]. They work as a parallel composed
of simple units that calculate a specific mathematical function.
These units are distributed in one or more layers so that they
produce a large number of connections [17].

Starting from the idea of biological neural network, in
1943 McCulloch and Pitts created a mathematical model of a
Perceptron, which attempts to copy the structure of a neuron
[18]. A perceptron can receive several entries (x1, ..., xm)
which the relevance of those entries are made by weights
(w1, ..., wm). In mathematical form, one can describe a neuron
in a function of its index k (Equation 9).

uk =

m∑
j=1

wkjxj (9)

The Equation 9 also includes bias (bk) which has the
purpose of increasing or decreasing the value of the download
function. That is, the value of the function is negative or
positive.

yk = ϕ(uk + bk) (10)

On Equation 10 uk is the linear combination of the input
values (x). Already ϕ is an activation function and yk is output
from the function.

There is a variety of activation functions, the Equations 11,
12 and 13 features the rectified linear unit (ReLU) function,
Hyperbolic Tangent function and Sigmoid function [19].

f(x) = x+ = max(0, x) (11)

f(x) = tanh(x) (12)

f(x) =
1

1 + e−x
(13)

One type of ANN is a Multilayer Perceptron (MLP), it
uses a set of perceptron and direct feed4. Its basic structure is

4The input layer values are projected only in their direct sense to the layer
of exit, and never the other way around [20].

Fig. 2. Architecture of a Multilayer Perceptron Artificial Neural Network.

called in three points: each neuron has a function of activation
nonlinear and differentiable; there are one or more layers
(see Figure 2) intermediate or hidden for both input and
output layers; and has a high number of connections where
their amplitudes are calculated by the weight of each of the
connections [20].

The input and output layers work similarly to a perceptron,
which has their connections pointed at more than one neuron.
The intermediate layers work with a network of perceptrons,
having exits of a neuron in any layer with the entrance of
the neurons of the following layer. Finally, the output layer
delivers the result of the network [18].

To adjust the weights of the network connections, we
use the backpropagation technique. This method uses as a
parameter the network prediction error propagating this error
retroactively, so it receives this name [18]. The function
used to make this adjustment is called Optimizer. Among
the existing ones, the Stochastic Gradient Descent (SGD) has
evidenced itself as an efficient optimizer used in many machine
learning problems. Furthermore, there’s the Adam optimizer,
which only requires first-order gradients and consumes less
computing power [21].

IV. METHODOLOGY

In this section, we present the steps of the experiments
developed in this research. The machine used in the devel-
opment of the experiments was a MacBook Pro, with a Mac
OS Catalina operating system, 500Gb SSD, and RAM 16Gb.
We used Python 3.6 and the PyTorch library to the ML
experiments [22].

A. Building the database

Within the aim to obtain the mass values from the wave
signal generated by the gravitational wave phenomenal, we
generated our database using the method described on II-A.
The next step for constructing the base was to determine
the mass of the objects to be simulated. Therefore, only the
masses were variable during the simulation, keeping all other
input values quoted previously constant. Thus, the data set
dependent only on these two input mass values (M1 and M2).
Therefore, a collection of variants was created with a range



between 20M�5 and 40M� and a 0.1M� step. These values
were chosen because they attend most of LIGO detection range
of mass [6], [7].

It was also necessary to ensure that all waves were from
different masses so that there was no duplication of waves in
the database. The Algorithm 1 shows the exact implementation
to check the no duplication of the chirp mass.

ALGORITHM 1. Generate chirp mass

sm = 1 .989 e30 #Sun mass

f o r m1 in range ( 2 0 , 4 0 , 0 . 1 ) :
f o r m2 in range (m1 , 4 0 , 0 . 1 ) :

c h i r p m a s s = c a l c u l a t e c h i r p m a s s
(m1*sm , m2*sm )

i f c h i r p m a s s not in c h i r p m a s s l i s t :
c h i r p m a s s l i s t . append ( c h i r p m a s s )

Thus, it was possible to obtain 80, 200 masses relations,
and we ensured that there was no repetition, which leads to
the same quantitative on waves. As said in II-A the waves
generated here are finished at the exact moment of the objects
merge.

The pre-set values for the other variables were 0.1 for the
initial period (P0), 0 for the initial phase (Φ0) and 410, 000kcp
for luminous distance (r), approaching from the distance of
GW140915 [1]. The Algorithm 2 displays the Python code
used to generate the waves.

ALGORITHM 2. Wave generator

def w a v e g e n e r a t o r ( ch i rp mass ,
l u m i n o s i t y = 1 . 0 ) :

c = 3 . 0 e8 # l i g h t speed
G = 6 .674 e−11 # Newton ’ s g r a v i t a t i o n a l c o n s t a n t
k = ( 9 6 / 5 ) * ( 2 * math . p i ) * * ( 8 / 3 ) *

(G* c h i r p m a s s / c * * 3 ) * * ( 5 / 3 )
r = l u m i n o s i t y
x = 2 . 0 * (G* c h i r p m a s s )**

( 5 / 3 ) / ( r * c **4)
P0 = 0 . 5 # i n i t i a l o r b i t a l p e r i o d
f i = 0 . 0 # i n i t i a l wave ’ s phase
d t = 0 .001 # t i m e frame i n t e r v a l
t = 0 . 0
h = 0 . 0
s t r a i n = [ ]

whi le t < (3* P0 * * ( 8 / 3 ) / ( 8 * k ) ) :
s t r a i n . append ( h / 1 e23 )
pgw = 0 . 5 * ( P0 ˆ ( 8 / 3 ) − ( 8 / 3 ) * k* t ) ˆ ( 3 / 8 )
amp = x *( math . p i / pgw ) ˆ ( 2 / 3 )
p h i = f i − ( 4 . 0 / 5 . 0 ) * math . p i *

( 3 . 0 * P0 ˆ ( 8 / 3 ) −8 . 0 * k* t ) /
( k * ( P0 ˆ ( 3 / 8 ) − ( 8 / 3 ) * k* t ) ˆ ( 3 / 8 ) )

h = h + amp * math . cos ( p h i )
t = t + d t

re turn s t r a i n

After all waves have been generated, it was possible to see
that the greater the mass was more points the wave had (Figure
3). Since the time step is fixed, the wave lasts longer when
the mass has increased, which made the waves have more

5M� represents the solar mass, 1.989× 1033g.

Fig. 3. Different sizes waveform. The smaller and blue was generated with
20M� and 22M� objects. The bigger and black was generated with 40M�
and 35M� objects.

Fig. 4. Waves’s Histogram. On the top on black is the histogram of the wave
generated with 20M� and 22M� objects. On the bottom on blue is the
histogram of the wave generated with 40M� and 35M� objects.

amplitude points. To manage this situation, the wave’s his-
tograms (Figure 4) were used as the network input. That way,
all waves are maintained with an equivalent characterization,
and the network can be trained because all the input data have
the same size of 300 points.

B. Search for the best Neural Network

For analyze the generated data we use Neural Networks,
described in III, first we tried to find the best combination of
the network architecture (disposed in Table I) and its learning
rate, where we used: 1e10−1, 1e10−2 and 1e10−3. We applied
the Grid Search technique, where a set of hyperparameters is
disposed and combined, then we try every possible combi-
nation to find the one that leads to the best performance of
the algorithm. All the networks used have 300 nodes as input



TABLE I
NEURAL NETWORKS ARCHITECTURE CONFIGURATION

Number of hidden layer 2, 3, 5, 10
Number of node on the hidden layer 50, 100, 150
Activation function ReLU, Sigmoid, Tahn

TABLE II
THE TOP 10 NEURAL NETWORK PERFORMANCE WITH 1000 EPOCHS

Hidden Hidden Activation Learning Test σ of
Layer Layer Units Function Rate Score Difference

3 150 ReLU 1e10−2 4.437 4.438
2 150 ReLU 1e10−2 4.438 4.438
3 100 ReLU 1e10−2 4.438 4.438
2 100 ReLU 1e10−2 4.441 4.441
5 100 ReLU 1e10−2 4.443 4.443
2 50 ReLU 1e10−2 4.443 4.443
3 50 ReLU 1e10−2 4.443 4.448
5 100 ReLU 1e10−3 4.449 4.449
2 50 ReLU 1e10−3 5.458 5.458
3 150 ReLU 1e10−3 5.515 5.515

Fig. 5. Loss Graph of the 9th neural network on the ranking, in a logarithmic
view. The network has 2 hidden layers with 50 nodes each, used ReLU as
activation function and 1e10−3 as the learning rate.

layer and 2 nodes as output layer to bring us the approximated
mass of M1 and M2.

To train the networks, we also applied stationary config-
urations for all the networks searched. We used the Adam
optimizer with the default values provided by the PyTorch
library, and the mean squared error as loss function [22].

Proceeding with the experiment, we applied a fixed seed of
value 2. We separated the database in a training set with 70%,
validation and test each one with 15% of the data. We first ran
the Grid Search with 1000 epochs for each combination and
selected the best 10 networks according to the test set score
(Table II).

After this phase of the experiments, we could notice that
some loss graphs were still decaying (Figure 5). We stored the
networks with their exact states and weight values. We proceed
to more 4000 epochs only applied on the top 10 networks.
They were having a total of 5000 epochs of training for each
network.

With the new experiment, we also considered the training

TABLE III
THE TOP 10 NEURAL NETWORK PERFORMANCE WITH 5000 EPOCHS

Hidden Hidden Activation Learning Test σ of
Layer Layer Units Function Rate Score Difference

3 100 ReLU 1e10−2 4.439 4.440
5 100 ReLU 1e10−2 4.441 4.441
5 150 ReLU 1e10−3 4.443 4.443
2 50 ReLU 1e10−3 4.446 4.445
5 100 ReLU 1e10−3 4.455 4.455
3 50 ReLU 1e10−2 4.456 4.451
2 50 ReLU 1e10−2 4.457 4.451
2 150 ReLU 1e10−2 4.463 4.463
3 150 ReLU 1e10−2 4.465 4.455
2 100 ReLU 1e10−2 4.499 4.452

Fig. 6. Histogram of the difference between target and prediction. On the
top, we can see the one trained with 1000 epochs, both neural network
configurations differ on the number of hidden layers quantitative, the blue
one has 150 nodes, the grey lines represent M1, and blue are M2. On the
bottom we have a 100 nodes on the hidden layers, the grey lines are the
representation of M1, and red are M2. Both distributions are very similar, in
visualization and in metric values.

score to classify the best performance, which made the table
change (Table III). We also noticed that all the scores are
under 5 now. The distribution of the real and predicted values
can be seen on Figure 6, where can visualize a flatness of the
masses values through prediction process. Therefore, we had
extra work to build this Table III, the networks that were on
the top of their performance did not have an improvement.

V. CONCLUSIONS

Many efforts has been done for many research groups to
understand the information about the universe. Laboratories
like LIGO developed a huge experimental setup to be able
to measure essential space-time vibrations, the gravitational
waves. The LIGO computational data analyze required to
extract physical information about the astronomical bodies
involved in the gravitational wave observations is a very
hard task. Many techniques based on numerical Relativity
procedures are commonly employed to analyze of those LIGO



data, where a large computational infra-structure is necessary
[23]–[25].

The article proposed the use of a non-complexity neural
network to characterize gravitational waves signals. We mod-
eled our database and processed the signal. After analyzing
the proposed methodology, we were able to have the results
within neural networks and variance of 4.43, which leads us
to a margin of error of 2.10. Our initial mass range is 20 since
we vary between 20 and 40 solar masses. This brings us to
about 10.5% error on the values of the predicted masses.

Therefore, even with reduced computational power, it was
possible to model and analyze gravitational waves and reach
a reasonable margin of error. At this article we modeled the
data, furthermore the results achieved here can be expanded
with real data from LIGO, which could bring a second phase
of the project.
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