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Abstract—Faults in power distribution systems are among
the factors that most affect the quality and continuity of the
electric power supply, leading to higher operational costs and
user dissatisfaction. Given this problem, this research applies
deep learning techniques to develop an application capable of
detecting utility poles in images, their angles, and the presence
of fuse cutouts and their status (open or closed). The result is
a system that can be used, among other applications, to detect
or prevent faults in power distribution systems and as an asset
inventory tool. We hypothesized that it is possible to use methods
that perform well in the Dataset for Object Detection in Aerial
images (DOTA) to accomplish this result, so, through the review
of state of the art in object detection, we choose the SCRDet
network to implement. Since there was no publicly available
dataset with images of poles and fuse cutouts, we built it from
scratch. Through the training and test, it was possible to evaluate
the results and make adjustments, reaching a satisfactory result
that has proven the viability of such application.

Index Terms—Power distribution. Inspection. Object detection.
Utility pole.

I. INTRODUCTION

Electrical energy is essential for the maintenance of human
activities and the development of society. Furthermore, elec-
tricity, produced and delivered through generation, transmis-
sion, and distribution systems, is one of the largest consumer
markets [1].

The distribution systems are responsible for about 90%
of consumer reliability problems [1], directly impacting the
cost of electricity and customer satisfaction. For that reason,
companies must find effective ways to reduce their costs
without affecting the quality of the service provided and
find new ways to guarantee the continuity of the energy
supply to their consumers. In order to offer a reliable service,
energy companies turned to the predictive analysis of their
systems, observing points likely to cause failure and evaluating
strategies to avoid them [2].

Several factors can impact the quality and continuity of
electricity distribution. They can originate from equipment
failures from manufacturing defects, damages caused during
delivery, incorrect installation, aging, and operating conditions.

They can also be caused by animals or vegetation, severe
weather conditions, and even human error [1].

In order to ensure the integrity of the power distribution
equipment, it is necessary to carry out a visual inspection,
which is laborious given the magnitude that this type of system
usually has. In addition, another challenge for companies is to
keep their inventory of assets updated since there is a con-
siderable number of equipment from different manufacturers
installed.

Therefore, this work aims to investigate and begin the devel-
opment of a tool that allows evaluating the current condition
of installed electrical equipment through their detection in
images. This stage’s result is a tight crop around the detected
object, which can be used as an input with less noise for an
anomaly detection pipeline. As a result, the inspection process
can be accelerated, increasing its level of assertiveness and
reliability.

In recent years, the artificial intelligence field is one of the
areas of science that has shown significant development, espe-
cially its subfield of deep learning, which concerns the devel-
opment and implementation of algorithms for Artificial Neural
Networks (ANNs). Deep learning models have achieved state-
of-the-art precision and have been widely applied in several
areas. It has also become a popular approach for the task of
extracting knowledge from digital images.

Therefore, this project investigates and uses the most re-
cent advances in artificial intelligence, such as Convolutional
Neural Networks (CNNs), to develop an application that
contributes to the quality and reliability of the electrical energy
distribution system.

Two elements were chosen for the initial study: utility poles
and fuse cutouts. In the case of utility poles, there is interest
in detecting their angles since this may indicate their risk
of falling off. In the case of cutout fuses, the aim is to
detect their two states, open and closed. These elements were
chosen because fuse cutouts and poles have a broad difference
in scale, in addition to appearing in different contexts (fuse
cutouts usually appear in groups and close to each other). Open
and closed fuse cutouts have little visual difference between



them; that is also the case with many other types of equipment
found in distribution systems. Thus, these three cases were
chosen as they allow an analysis of distinct scenarios, which
reflect the complexity of various configurations and situations
in which power distribution equipment can appear.

The remainder of this paper is organized as follows: Section
II describes the methodology utilized. Section III shows the
results of the literature review. Section IV explains the aspects
of the ANN chosen to implement the proposed solution.
Section V describes the construction of a dataset containing
images of poles and fuse cutouts. It also shows the results
obtained with the implementation of the ANN chosen. Section
VI discusses the results, brings the conclusions, and presents
further works.

II. METHODS

This research carried out a literature review and analysis of
what has been done on utility poles and fuse cutouts detec-
tion. It was also performed research on artificial intelligence,
focusing on the applications of object detection in images, by
examining surveys and articles on journals and conferences
with significant impact published in recent years.

The metric utilized to compare different ANN architectures
and evaluate the results obtained in this research was the
mean Average Precision (mAP). It allows measuring the
classification and localization accuracy of an object detection.

A database was created with images of utility poles and
fuse cutouts. Afterward, the data were manipulated to comply
with the labeling format used by the network chosen.

Data augmentation techniques were implemented to address
the dataset imbalance, and adaptations were made to the
chosen algorithm to better model the desired classes.

III. RELATED WORKS

Although it is possible to find examples in the literature,
there is not a wide range of publications addressing the detec-
tion of utility poles in images, let alone ones that approach,
specifically, the detection of their angles and components.

One of the first works about the theme that makes use
of Computer Vision was [3], which, when dealing with the
inspection of overhead power lines using video, also ends
up encompassing the detection of utility poles. Later, Jones,
Whitworth, and Duller [4] dedicate themselves to improve this
application. The authors present an inspection algorithm that,
in a rudimentary way, can locate the position of the utility
poles using the digital image processing technique known as
pattern matching. This technique, however, at the time had a
high computational cost, low accuracy and wasn’t suitable for
different models of utility poles.

Golightly and Jones [5], Golightly and Jones [6] and Jones
et al. [7] when approaching the problem of automating the in-
spection of overhead power lines, propose a detection method
for poles based on contour detection, which resulted in an
improvement in the task. However, unsatisfactory results were
obtained due to the variation in lighting and patterns in the
background of the images.

Cheng and Song [8] propose an approach for the detection
of poles in images that is based on the graph-cut technique
for image segmentation. In this technique, the image is seen
as a weighted graph in which the image’s pixels represent
the nodes. To reduce the computational cost, at first, the
image undergoes filtering in which straight lines are detected,
a region in which the pole can be found is defined and
subsequently, the construction of the weighted graph takes
place. At the time, this technique showed an improvement in
the results that had been obtained until then.

We can also extrapolate and observe other applications that
are related to the problem, such as the detection of poles in
aerial images in [9], which uses the detection of the shadow of
the poles and techniques such as pattern matching and feature
extraction.

Another related problem is the detection of power trans-
mission towers in images [10],[11]. Both works cited make
use of the Hough Transform, the former will later employ an
infinite impulse response (IIR) filter and the latter applies a
data clustering process.

Steiger, Lucas, and Maret [12] however, separate its applica-
tion into training and testing phases. In training, the extraction
of features through the Line Segment Detector, the clustering
of data and the obtainment of spatial distributions are per-
formed. In detection, the extraction of image characteristics,
the correspondence with the model and a voting process are
carried out comparing the values obtained with those of the
training model, and thus locating the object of interest.

Still dealing with the detection of electrical energy trans-
mission towers in images, Sampedro et al. [13] and Martinez
et al. [14] use an approach that makes use of the Histogram of
Oriented Gradients (HOG), for feature extraction, and makes
use of the ANN of the type multilayer perceptron.

In addition, there is also an interest in the literature in
carrying out the automatic detection of utility poles in urban
environments, as we see in [15] that use data pre-processing,
feature extraction, support vector machine (SVM) and cluster-
ing to obtain the results.

Going back to pole detection, Sharma et al. [16] propose
a methodology with a shape-based template that can return
results even when the pole is tilted. However, this approach
is restricted to only one type of pole – which resembles the
template.

The detection of poles is also seen within the theme of
autonomous vehicles, as in [17], which uses stereo-vision
technique to perform the task.

Already using deep learning techniques Nordeng et al. [18]
use the CNN Faster-RCNN, in addition to data augmentation
techniques, to perform the detection of dead end body com-
ponents in power transmission towers.

Making use of images from the Google Street View platform
and the one-stage detector RetinaNet, Zhang et al. [19] are
able to identify and locate poles with cross-arm on images
with good results.

Another application that also makes use of a one-stage
network detector is found in the work of Chen and Miao



[20]. The authors use the You Only Look Once (YOLO)
network to perform the detection and counting of towers in
transmission lines through images obtained with an unmanned
aerial vehicle. Like the previous application, this type of
network proves to be advantageous for its ability to perform
the detection task quickly.

IV. SCRDET

The SCRDet (previously called R2CNN++) is a multi-class
object detector of general-purpose that performs well in the
task of detecting objects in aerial image databases, such as the
Large-Scale Data Set for Object Detection in Aerial Images
(DOTA) [21] and the NWPU VHR-10 [22] datasets. For this
reason, it is designed to handle images that present objects of
various dimensions, in cluttered and dense arrangements, with
arbitrary orientations, and with background noise.

A. Architecture of SCRDet

In Figure 1 we see the composition of the SCRDet architec-
ture, which can be divided into the three main stages presented
below.

The first stage of the network is the SF-Net, which consists
of using the ResNet layers (C1, C2, C3) together with other
layers to reduce the set of characteristics that are relevant to
the problem.

Next is the multi-dimensional attention network (MDA-
Net), a layer that aims to reduce noise and improve the
separation between the information of interest and information
that can reduce detection quality.

Lastly is the rotation step. In this block, the network will
perform the regression of the bounding boxes and classify
the found objects. This process takes place in two stages.
In the first stage, a Region Proposal Network (RPN) roughly
generates the propositions for the second stage. Next, in the
second stage, the parameters (x, y, w, h, θ) are used, where θ
is in the range [−π/2, 0), to denote the rectangle arbitrarily
rotated, x and y are the box’s center coordinates, and w and
h are the box’s width, height, respectively. In Figure 2 we
observe the attributes of the selection box, which will be
used by the network throughout the learning process so that
it can perform the regression on objects that present arbitrary
rotations. In blue, we have the bounding box proposed for the
object; horizontally, in green, we have the rotated selection
box from the data annotation; and finally, in red, the selection
box inferred by the network.

These parameters compose the cost function used by the
network, presented in the Equation 1. Where N is the number
of proposed boxes, tn represents the object label, pn is the
probability distribution calculated by the Softmax function, t′n
is a binary value (1 for foreground and 0 for background),
v′∗j is the offset predicted vector, v∗j is the vector of with
the true values from the data annotation, uij and u′∗j are
the pixels of the true and predicted masks, respectively, and
the Intersection over Union (IoU) is the overlap between
the true and predicted bounding box. λ1, λ2 and λ3 are

hyperparameters for controlling the trade-off. Lcls is the cross-
entropy of the Softmax function, Lreg regression loss is the
smooth loss L1, defined in [23], and Latt is the cost of
the attention function of the cross-entropy of the Softmax
concerning the pixel.

L =
λ1
N

N∑
n=1

t′n
∑

j∈{x,y,w,h,θ}

Lreg(v
′
nj , vnj)∣∣Lreg(v′nj , vnj)∣∣ |−log(IoU)|+

λ2
h× w

h∑
i

w∑
j

Latt(u
′
ij , uij) +

λ3
N

N∑
n=1

Lcls(pn, tn)

(1)

Throughout its architecture, the SCRDet uses techniques
such as RPN, other small convolutional networks to improve
the stages, fully connected layers, and activation functions
such as sigmoidal and ReLu in addition to the softmax
function.

B. Comparative
To understand how the SCRDet network performs against

other methods for rotated object detection, we took into
account their mean Average Precision (mAP) achieved on
DOTA dataset. This score, which goes from 0 to 1 (being 1 the
best possible result), considers the trade-off between precision,
recall, and IoU metrics.

In Table I, we have a comparison of the mAP (for an
IoU ≥ 0.5) of several two-stage type object detectors, where
RRPN is the Rotation Region Proposal Networks, RRPN is
the Rotational Region CNN, and ICN is the Image Cascade
Network ICN. The best result is achieved by SCRDet with
and mAP@0.5 of 72.61.

Table I
TWO-STAGE DETECTORS - MAP@0.5

R2CNN RRPN ICN RoI-Trans SCRDet
60.67 61.01 68.20 69.56 72.61

Next, in Table II, we have a comparison of the mAP (for an
IoU ≥ 0.5) of several one-stage type object detectors. The best
result is achieved by R3Det+ResNet152 with and mAP@0.5
of 72.81.

Table II
ONE-STAGE DETECTORS - MAP@0.5

SSD YOLOv2 R3Det+ResNet101 R3Det+ResNet152
17.84 25.49 71.69 72.81

Since the SCRDet and R3Det+ResNet152 present close
results in these comparisons, it was decided to use the SCRDet
[24] network, given that two-stage object detectors frequently
show more robustness in tasks of object detection [25].

V. DEVELOPMENT AND RESULTS

This section presents the results obtained using the SCRDet
network with our dataset. We used the following code [26],
available on GitHub, as reference.



Figure 1. SCRDet network architecture.

Figure 2. Representation of the selection boxes used by the SCRDet network.

A. Development Environment Settings

The equipment used to execute the code was a microcom-
puter with an Intel Core i7-9700k processor, 32GB of random-
access memory (RAM), and a GeForce RTX 2080 Ti graphics
card.

We used the Python programming language, OpenCV for
image processing, and TensorFlow to implement the neural
networks. Also, we used the Compute Unified Device Ar-
chitecture (CUDA) 8.0 parallel processing Application Pro-
gramming Interface (API) running on Linux Ubuntu 18.04
distribution.

B. Dataset

It was not possible to verify the existence of a public
dataset containing images of the objects of interest. Therefore,
it was necessary to create a new database from scratch.
For this purpose, 2252 images were acquired through the
internet and from field records made by us. The aim was to
represent the broadest possible range of scenarios, including
variations in climate, vegetation, and urbanization. The images
that compose the database are in different orientations and
resolutions. Figure 3 shows image clipping samples from the
database created.

The images were shuffled and divided into training and test,
with partitions of 80% and 20%, respectively. Table III shows
how objects of each class appear in the data partitions.

The database presented a class imbalance, with the utility
pole being the most frequent and the fuse cutout in its
open state the least frequent. In order to balance the dataset,

Figure 3. Example of images from the utility poles and fuse cutouts database.

Table III
COMPOSITION OF TRAINING AND TESTS SETS

Class Quantity Training Test
Pole 2210 1754 456

Fuse cutout close 1953 1579 374
Fuse cutout open 799 627 172

Total 4962 3960 1002

images of the pole class were excluded, and data augmentation
techniques were applied to the open fuse cutouts set. Those
operations were zoom, brightness, Gaussian noise, shift, hor-
izontal flip, and random rotation between 0 to 10 degrees.

C. Execution

The training was executed with a single image batch,
given the hardware limitations, and an initial learning rate
of 3× 10−4, which decreased to 3× 10−5 in the 150,000th
iteration and 3× 10−6 in the 250,000th iteration. This strategy
aims to move faster towards the minimum of the cost function
in the initial moments and, subsequently, to promote a finer
adjustment of this value.

After training up to the 450,000th iteration, the network was
evaluated using the test set. The metric chosen to evaluate the
model’s performance was the mAP (mean Average Precision)
with an IoU of 0.5. The results can be seen in the Figure 4,
next, which shows the curve of precision on the y-axis, by the
recall on the x-axis.

By smoothing and measuring the area under the graph for
each class, we obtained the results presented in Table IV. The
resulting mAP score is 0.7338 @0.5.



Figure 4. mAP @ 0,5: in blue, class pole; in orange, class closed cutout fuse;
and in green, class open cutout fuse.

Table IV
RESULTS

Class Average Precision
Pole 0.8122

Fuse cutout closed 0.6076

Fuse cutout opened 0.7818

mAP @ 0.5 0.7338

The inference performed on the test partition, which sample
results can be seen in Figure 5, took an average of 200 ms for
each image.

Figure 5. Sample of inference results.

VI. CONCLUSION

Although little specific content has been developed on
power distribution equipment detection, the literature review
could show an evolution from classical machine learning meth-
ods towards deep learning approaches. It also gave insight into
how CNNs could be used to address the problem presented in
this paper.

Next, we decided to use a network developed for detecting
rotated objects in aerial images. Given their characteristics,

they can detect objects in cluttered and dense arrangements
with a lot of background noise. Similarly, fuse cutouts usually
appear in this type of configuration.

A public domain database with images of power distribution
equipment was not found. Therefore, we built a dataset con-
taining poles and fuse cutouts from scratch. This step proved
to be challenging given the amount of labor involved in the
image acquisition and data labeling processes.

We used deep learning to detect utility poles in images
instead of digital image processing techniques, such as in
[8] and [16]. In the last years, this approach became popular
for object detection given its robustness and more flexibility
compared to traditional image processing methods. Zhang
et al. [19], also use deep learning, which suits well their
purpose of mapping utility poles, but our approach offers
a better object crop for a detection pipeline. As there is
no reference dataset, the results could not be quantitatively
compared with the work of those authors. However, the mAP
scores and the visual results obtained showed that using deep
learning is a viable approach to the problem defined in the
first section of this paper.

The resulting oriented bounding boxes end up being tighter
around the objects than the usual horizontal ones. That way,
a better crop of the objects can be done with less noise
and more meaningful information. Later, this information can
feed object detection pipelines constructed to differentiate
equipment from different manufacturers, detect anomalies such
as rusting, rotting, and more.

Future works include the continuous expansion of the
dataset, including the addition of other classes, such as trans-
formers, switches, cross-arms, and insulators, which expand
the scope of application possibilities of the system developed
in this paper. The dataset first needs to undergo anonymization
to be published since there are images in which car plates and
people’s faces appear.

Another future work is the development of a pipeline that
takes the results of the presented implementation to further de-
tect anomalies in power distribution equipment. This pipeline
then can be embedded in an image capture system, including
a georeferencing system and gimbal (to ensure images are
always taken leveled) and later be implemented in vehicles.
That way, energy companies can use it to inspect their assets
and improve the reliability of their systems.
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