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Abstract—Within the context of clean energy generation, solar
radiation forecast is applied for photovoltaic plants to increase
maintainability and reliability. Statistical models of time series
like ARIMA and machine learning techniques help to improve
the results. Hybrid Statistical + ML are found in all sorts of
time series forecasting applications. This work presents a new
way to automate the SARIMAX modeling, nesting PSO and
ACO optimization algorithms, differently from R’s AutoARIMA,
its searches optimal seasonality parameter and combination of
the exogenous variables available. This work presents 2 distinct
hybrid models that have MLPs as their main elements, optimizing
the architecture with Genetic Algorithm. A methodology was used
to obtain the results, which were compared to LSTM, CLSTM,
MMFF and NARNN-ARMAX topologies found in recent works.
The obtained results for the presented models is promising for use
in automatic radiation forecasting systems since it outperformed
the compared models on at least two metrics.

Index Terms—Solar radiation, time series, machine learning,
optimization

I. INTRODUCTION

In the last decade, the growth of photovoltaic (PV) genera-
tion has been expressive. According to the IEA (Internetional
Energy Agency), global production increased from 32TWh in
2010 to more than 720TWh in 2020 [1]. In Brazil, generation
still has tax incentives [2], and a great potential [3] still
underutilized. Photovoltaic generation will correspond to only
3,9% of Brazilian national production by 2025 [4]. However,
there are estimations predicting that this type of generation will
be responsible for more than 36 % of the energy generated in
this country by 2050 [5].

Estimation of photovoltaic generation potential is a topic
that remains popular [6]–[9]. Some works carried out took
into account the technology used by the photovoltaic cell
and satellite models that aim to define the physical input

parameters, such as radiation, temperature and wind speed
[10]–[12].

Machine learning applied to PV generation forecasting has
focused on the temporal prediction of electrical generation
[9], [13]. This type of prediction is very useful regarding
to the complete electrical system of a region or country, for
balancing supply and demand, increasing the programmability
for smart grids [14]. In general, for plant managers, less
deviation between the scheduled and the produced power
means avoiding penalties [9].

The photovoltaic energy forecast can be classified according
to the forecast horizon [9]. Forecast horizon and applications
can be summarized as follow:

• Very short-term (Minutes) - control and management
of photovoltaic systems, micro-networks and electricity
market.

• Short-term (72h) - control of the power system opera-
tions, economic dispatch and commitment of the unit.

• Medium-term (1 week) - maintenance.
• Long-Term (years) - Power plants planning.

The process of automating machine learning models can
be called AutoML [15], in which pipelines are generated,
being a series of transformations in the end-to-end data, that
is, inputting raw observed data and setting the target for
the pipeline, the AutoML is responsible for searching the
best model, and the pipeline output is the prediction of the
trained model [15]–[17]. AutoMLs in photovoltaic radiation
prediction systems can help to increase adaptability. These
systems are also capable of making the forecasting process
more available for non specialists, since low-level design
adjustments and modifications are no longer be necessary, as a



robust and automated system with a higher level of complexity
would adapt to variations [18], [19].

In recent years, it has been common to implement sta-
tistical time series models combined with machine learning
for general time series forecasting, combining ARIMA with
RNA [20], SVR (Suport Vector Regression) [21], LSTM (Long
Short-Therm Memory) [22], also several regression models
together in a dynamic residual forecasting (DReF) selection
[23]. To obtain better performance, optimization and intelligent
algorithms are applied to Hybrid models [21], [23].

NARNN-ARMAX [24] is applied as a two stage day-ahead
forecast, where the NARNN (Nonlinear Auto Regressive
Neural Network) model is applied as a exogenous variable
to the ARMAX model. MMFF ( Multi-Model-Forecasting-
Framework) is applied for Hourly-Similarity with solar data,
blending SVR, GBR (Gradient Boosting Regressor), ANN
(Artificial Neural Network) and RFR (Random Forest Regres-
sor) [25]. LSTM neural networks, not combined with ARIMA
models, is also found to be used for short-term solar radiation
forecasting [26], as well as LSTM plus CNN (Convolutional
Neural Network) [27], called CLSTM.

This work focuses on the use of machine learning to predict
short-term solar radiation time series (hour) using hybrid
models, and uses optimization algorithms for the creation of
an AutoML pipeline. Meta-heuristics optimization algorithms
in the hybrid model optimization process are also found in
literature. Applications using the models that are covered in
this work: Genetic Algorithm (GA) [28]–[30], Particle Swarm
Optimization (PSO) [31] and Ant Colony Optimization (ACO)
[32].

The use of meta-heuristic algorithms for the implementation
of automated machine learning (AutoML) systems can be
seen as the optimization of hyper-parameters and architectural
optimization [19]. The proposed pipeline consists of SARI-
MAX parameters and exogenous variable optimization using
bilevel (nested) [33] optimization of the PSO (Particle Swarm
Optimization) on the super level and ACO (Ant Colony Opt-
mization) on the lower level hybridized with architectural and
parametric optimization of MLPs (Multi Layer Perceptron)
through a genetic algorithm (GA).

The sections of this work are organized as follows. Materials
and methods II the database used II-A, AutoARIMA and
SARIMAX PSO-ACO Search algorithm in subsection II-B,
hybrid models are also presented for residue correction in the
section II-C, finally the results are presented in the section III
and the conclusions IV.

II. MATERIALS AND METHODS

A. Data

The Brazilian national meteorological institute (INMET)
provides data from several stations around the country through
its Meteorological Database (BDMEP) [34]. The data is ac-
quired from measurement stations, with automatic and con-
ventional ones, the latter are being discontinued [35]. INMET
data can be used to obtain spatial interpolation and temporal
prediction models [30].

The data obtained contains information with hourly fre-
quency, as the objective is short-term forecasting, the series
obtained has a maximum 30 days of data, to train and evaluate
the models. The chosen cities are: Maceió-AL, Florianópolis-
SC and Bom Jesus da Lapa-BA.

Among the present data, there are hourly time series of the
following variables, where the available exogenous variables
are highlighted in bold.

1) Global Radiation (W/m2)
2) Total Precipitation (mm)
3) Air temperature (°C)
4) Relative humidity, maximum and minimum (%)
5) Wind speed (m/s)
6) Gust speed (m/s)

The Global Radiation is the target variable to be predicted.
The importance of each variable is explained by the correlation
between wind speed and solar radiation [36], [37]. Relative
humidity and air temperature are also found to be correlated
with solar radiation using INMET data [38]. Precipitation
and gust speed used as a representation for cloudiness of
possible storm can impact solar radiation intensity [39]. The
use of exogenous variables in SARIMAX model is optimally
chosen in the first part of the pipeline using PSO-ACO nested
algorithms, this methodology is described in the next section
II-B.

Data obtained from external sources is not always perfect,
one of the common problems is the presence of empty data
or inadequate format. In the case of the data processed by
INMET, it was necessary to adapt the format and complement
the missing data. The data were scaled after dividing the series
of each variable by the maximum value found for it. At the
end of the forecast, it is possible to return to the original scale.
The missing data is complemented by the forward fill method,
in which last valid value observed is used to replace empty
values for each variable.

B. AutoArima versus SARIMAX PSO-ACO Search

The Box-Jenkins methodology can be used to determine
the parameters for an ARIMA model, for this purpose the
auto-correlation function and partial auto-correlation function
are used to identify the degree of self-dependence of the time
series, to identify if it is not stationary and also to see if there is
a implicit seasonality. In cases of non-stationarity, a numerical
differentiation is made [40]–[42]. Using statistical stationarity
tests such as KPSS (Kwiatkowski-Phillips-Schmidt-Shin) [43]
and ADF (Augmented Dickey-Fuller) [44] it is possible to
automate the number of differentiation to get a stationary
time series. For series with seasonal profile, a possible test
is the Canova-Hansen [45]. Adding the information provided
by ACF, PACF and the AIC metric, it is then possible to create
algorithms for automatic modeling of time series.

To automatically obtain a SARIMAX model that represents
the time series, an algorithm is needed. One of the most
popular algorithms, implemented and popular in both R and
python programming languages [46], that automates obtaining



Fig. 1. Flowchart for defining the SARIMAX model that is used in hybridization. Original series, SARIMAX and Residue are used for training the hybrid
model.

an ARIMA model is known for the work of Hyndman-
Khandakar entitled AutoARIMA [42], [47] uses a stepwise
search methodology to find the parameters (p, d, q) e (P, D, Q,
S) for a SARIMA model. In this case the seasonality, indicated
by parameter S is provided by the user [46], [47]. It is also
possible to add exogenous variables to the AutoArima, thus
leading to a SARIMAX model.

The AutoArima does not contemplate some possibilities
that could lead to better models. For SARIMAX models fitted
with AutoArima the seasonal parameter is a parameter to
chosen by the user, so an improvement is to carry out tests
with different possibilities for seasonal frequencies. Another
advance is to make an automated choice of the best exogenous
variables among those inserted as input.

To implement the proposed improvements, one can initially
think of using a grid search algorithm, from all the possi-
bilities of iterating the parameters (p, d, q, P,D,Q, S,X), X
represents the exogenous variables, therefore, all parameters
can be described as positive integer variables. In this scenario,
meta-heuristics ACO and PSO can be applied to solve for the
SARIMAX parameters and exogenous more relevant variables.
Both algorithms have agents that interact with the environment
or update their solutions with each other. In this project, the
algorithms are stacked and this is described below.

The PSO was formulated for use with continuous variables,
however naively, it is possible to discretize the positions of
the particles to solve a discrete problem, PSO discretization
may involve the velocity of the particles [48], but in this work,
velocity was kept as a continue variable. In the case of PSO,
this algorithm was in charge of optimizing the parameters
(P,D,Q, S,X), having its search space determined by the
possible values that this set can receive [49]. The PSO solves
for a fitness function that is an instance of the ACO algorithm.

The ACO receives the solution, as the (P,D,Q, S,X),
found by the PSO and using the AICc (corrected Akaike
Information Criteria) [50] metric between each candidate
solution and the original series, the ACO algorithm searches
for the (p, d, q) parameters. For example, if the solution found
by PSO at one iteration is (1,1,1,1,3), the ACO uses it and

search for solution of (p, d, q), one possible solution for this
iteration is (1,0,1), so the resulting SARIMAX parameters are
(p = 1, d = 0, q = 1)(P = 1, D = 1, Q = 1, S = 1, X = 3)
where X = 3 represents a set of possible exogenous variables.
The X value is converted to base two and mapped to columns
of the exogenous dataset, if X = 3 in base two as X = b11
then columns zero and one are used as exogenous variables.

The Figure 1 shows the pipeline, with the optimization
flowchart of the SARIMAX model and how it will be used
later for what will be described in the next section II-C.

C. Hybrid Models for Residue Correction
In this section is discussed the hybrid models applied to

the residue correction, given by the error between the original
time series and the SARIMAX linear model, whose parameters
and exogenous variables were defined as explained in the
previous section, as being the first stage. The correction is
based on the flowchart of Figure 2, as can be seen, there are
four chromosomes that are used in the search for a genetic
algorithm. Variables of the type Lags are the quantities of
samples from the past used to predict the future. The role of
the chromosomes is explained below:

• C1: Lags for the Residue Regressing - with the residue
data, these samples are used in the Residue Model, which
will rather be a MLP model or an ensemble of MLPs, this
parameter is further described at sessions II-C1 and II-C2,
respectively. C1 is the amount of data from the past of
the residue series that are used for forecasting.

• C2: Lags SARIMAX - With the SARIMAX Model, it is
possible to generate lagged samples estimation from the
solar radiation time series.

• C3: Lags from the Residue Model - with a trained
and optimized ML Model it is possible to generate the
time series corresponding to the Modeled Residue and
to generate lagged samples. Notice that to generate all
forecasts samples from the Residue Model, this very same
model must be fed back.

• C4: Forecasts from Residue Model - Analogous to chro-
mosome C3, but with samples ahead in time, generated
by one of the models of section II-C1 or II-C2.



Fig. 2. Schematic flowchart of the proposed residue correction models. The chromosomes are C1-C4. Two regression models are generated, the first for the
residue series, while the second to combine the modeled residue with the SARIMAX forecast. The dashed models can both be either an GA optimized MLP
or a GA optimized ensemble of MLPs.

• C5: Percentage of MLPs that will be part of the Ensemble.
Only used in case of the model of Section II-C2.

Chromosomes C1-C4 are initialized as integers from a uni-
form distribution of lower limit 1 and upper 20. A probability
of mutation and crossover of 80%. To apply the final trained
model one may just use the C1 to C4 final values to adjust
the shape of the input data to the trained models.

Algorithm 1: Crossover for presented hybrid algo-
rithms

Input: Population, Crossover Prob.
Output: New population
begin

Keep best individual in population;
Sort the population based on the fitness;
foreach individual, I do

p = random(0,1);
if p > Crossover Prob. then

C = set of random cromossomes;
population[I][C] = population[I/2][C]

end
end

end

The crossover operator works according to the Algorithm
1. Individuals are placed in order from best to worst, based
on a MAE (Mean Absolute Error) metric of test data portion,
so the best individual is always taken to the next population.
Then, for each of the remaining individuals, a set of the
four chromosomes that is received from an individual in
a better position, which is given by the individual’s rank
symmetrically. For example, if there is 10 individuals, the
second worst will receive information from the second best.
The chromosome mutation occurs from the variation of the
addition of an integer obtained by a uniform distribution

between -2 and 2.
The second stage of the process is given by the Residue

Model and the third, by the Combination Model. In both of
these steps, two MLP hyper-parameterization algorithms can
be chosen, based on a genetic algorithm, described in the next
subsections II-C1 e II-C2.

1) AG-MLP: To optimize MLP, regarding the architecture
and parameters, a genetic algorithm is used. Chromosomes
are used to characterize the parameters and architecture of an
MLP.The chromosomes used are shown in Figure 3.

Fig. 3. Chromosomes of the MLP Genetic Algorithm.

The chromosomes, have the following characteristics:
• MLP-C1: Solver - This is the optimization algorithm used

to obtain the weights in neurons. Can be chosen from
LBFGS, ADAM and SGD.

• MLP-C2 to MLP-C4: Number of neurons in the hidden
layers 1, 2 e 3.

• MLP-C5: Activation Function - Possibility among the
Identity, Logistics, Hyperbolic Tangent and Relu func-
tions.

• MLP-C6: Learning Rate - This is how the MLP η Learn-
ing Rate is updated. It can be chosen from a Constant,
Invscaling and Adaptive.

To obtain an optimized solution, witch is an instance of
a trained MLP the GA algorithm firstly generates a initial
population of MLPs, with random parameters and architecture,
then this population is evaluated and ranked. The evaluation



is done by training each MLP and using a MAE metric
on the test data. To update the population, a crossover is
performed between better and worse MLPs. Because the
training process of the MLPs can lead different results, the best
MLP instance (parameters, architecture and weights) is always
kept to the next generation. After the crossover, the numerical
chromosomes are mutated. The resultant new population is
re-evaluated and the cycle continues until number of epochs
defined is reached. Finally the all time best MLP is returned
as the optimal solution.

About MLP-C1 Solver, LBFGS is an acronym for Limited-
Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm which
tends to lead to faster training of MLPs than the SGD
algorithm, acronym for Stochastic Gradient Descendent [51].
In the case of using the SGD, the moment is set to 0.9. ADAM,
whose name derives from Adaptative Moment Estimation, it
is a newer algorithm than the previous ones and popular in
applications involving Deep Learning [52].

For MLP-C6 Learning Rate, each of the possibilities is
characterized as follows: Constant is a learning rate η =
0, 001. causes the learning rate to gradually decrease, with
period t using an inverse scale exponent η = η/t0.5. Adaptive
learning rate keeps learning rate constant while training loss
continues to decrease. Each time two consecutive epochs fail
to decrease training loss by at least 0, 0001, or fail to increase
the validation score by at least 0, 0001, the current learning
rate is divided by 5.

2) AG-MLP Ensemble: This model is analogous to the
previous one, II-C1, in the use of MLPs as main elements,
however with the difference that instead of choosing an ANNs
only for the Residue Model and Combination Model, the
best ANNs are chosen in order to make an average in the
prediction among the best. For the correct implementation of
this model, a chromosome plus C5 is added to those that have
been explained and illustrated in Figure 2.

The C5 chromosome has a crossover equivalent to that
demonstrated by the Algorithm 1, however its mutation occurs
from the variation of the addition of an integer obtained by a
uniform distribution between -10 and 10.

Based on the presented methodology and algorithms, in the
next sections results were obtained for three Brazilian cities.

III. RESULTS

To obtain the results, the following methodology for the use
of the models proposed is established:

1) AutoArima is executed to obtain the SARIMAX model,
with seasonal frequency 24 and all exogenous variables
highlighted in the section II-A.

2) The PSO-ACO SARIMAX described in II-B algorithm
is executed.

a) Increase the maximum dimensionality limit for the
parameters (p, d, q) and (P,D,Q) given by the
AutoArima. Seasonality is searched in multiples
of 24 for greater exploitation, and because of the
natural pattern of solar radiation series.

b) Exogenous variables are added as search variables.

c) If the result is worse than that obtained by the Au-
toArima, the latter is maintained. The comparison
is made using the AICc metric.

3) The winning SARIMAX model continues for use in the
hybrid models described in subsections II-C1 e II-C2.

a) 80% of data for training, 20% for test.
Maceió-AL is the city chosen for the first preliminary result

of the defined methodology. The data set for this city is
30 days, between 03/12/2020 at 9 pm and 11/04/2020 at
8 pm from the base to the city of Maceió-AL. Having an
economically important metropolitan region, with ecotourism
attractions, Florianópolis-SC, it was chosen to integrate the
results. This is the second time series that will be presented
in the results of this work. The last 15 days of the base
obtained are used, between 12/17/2019 at 0 am and 12/31/2019
at 11 pm. The third time series chosen is 15 days, between
7/17/2020 at 0 am and 7/31/2020 at 11 pm from the base to
the city of Bom Jesus da Lapa-BA. This location was chosen
because it contains nearby photovoltaic plants and is one of the
points of greatest incidence of photovoltaic radiation according
to the Brazilian Solarimetric Atlas [3].

Although the number of cities/series is small, the reason
difference of sample sizes length is to show that good results
can be achieved for both. The Table I shows the result of the
comparison between the algorithms described in the section
II-B. For every model, some level of optimization was used to
achieve the better results. Although some of the models may
lead to variations in results, for the same random generator
number seed, all algorithm would let to identical results,
reason why statistical tests are not considered.

The results of the Hybrids models of the sections are shown
in the Table II, A LSTM model was also tested for comparison,
as it is a popular method for predicting short-term solar
radiation. The topology consists of two LSTM Layers and
two dense MLP layers, number of units, activation function
and optimizer were defined by a simple grid search for each
layer. A CLSTM model following the similar architecture as
in [27] was also implemented.

For the Maceió-AL data, hybrid models with GA results
were achieved with 3 generations and population size of 12.
Meanwhile, Florianópolis-SC and Bom Jesus da Lapa-BA,
used both 4 generations and 15 individuals. Test data that can
be seen in Figure4. It is noticed that there is correction of
the time series with emphasis on the moments when the solar
radiation must be zero due to the night. This correction can
be numerically perceived when analyzing the MAPE metric
in Table II, this result is replicated with the next time series.

IV. CONCLUSIONS

In this work, the pipeline applies in different stages three op-
timization algorithms PSO, ACO and GA. First, it is proposed
to use two popular algorithms PSO and ACO to optimize the
parameterization of SARIMAX linear models, also searching
for seasonality and available exogenous variables. Right after,
two ways of generating hybrid models with MLPs are shown,



(a) Maceió-AL

(b) Florianópolis-SC

(c) Bom Jesus da Lapa - BA

Fig. 4. Results data plot for models MMFF, LSTM, CLSTM, AG-MLP, AG-MLP-Ensemble, SARIMAX and Original radiation time series



TABLE I
COMPARISON OF RESULTS BETWEEN AUTOARIMA AND PSO-ACO FOR BRAZILIAN CITIES.

City Algorithm (p, d, q)(P,D,Q, S)
SARIMAX

Exogenous Variables AICc MAPE
Maceió-AL AutoArima (1,0,2)(1,0,2,24) All -1488.858 5.3497
Maceió-AL PSO-ACO (2,0,0)(1,0,1,24) Air Temperature -1516.263 6.7475

Florianópolis-SC AutoArima (0,1,1)(2,0,2,24) All -695.210 57.106

Florianópolis-SC PSO-ACO (2,0,2)(1,0,1,24) Precipitation
Air Temperature

-754.475 52.316
Bom Jesus da Lapa - BA AutoArima (3,0,2)(2,0,2,24) All -825.1507 0.9518

Bom Jesus da Lapa - BA PSO-ACO (1,0,0)(2,0,2,24) Wind Speed
Humidity

Air Temperature

-831.802 0.9233

TABLE II
COMPARISON BETWEEN PROPOSED HYBRID MODELS, SARIMAX,

NARNN-ARMAX [24], MMFF [25], LSTM [26], [53] AND CLSTM
[27]. ALL METRICS ARE EVALUATED IN THE SCALE DESCRIBED IN

SECTION II-A. PLEASE READ MC AS MACEIÓ, FR AS FLORIANÓPOLIS
AND BJL AS BOM JESUS DA LAPA.

City Model MAE MSE MAPE
MC - AL SARIMAX 0.0352 0.0029 2.9130
MC - AL NARNN-ARMAX 0.0498 0.0059 2.6581
MC - AL MMFF 0.0503 0.0079 1.7874
MC - AL LSTM 0.0313 0.0038 0.6249
MC - AL CLSTM 0.0546 0.0089 0.7969
MC - AL Hybrid AG-MLP 0.0243 0.0018 0.9090
MC - AL Hybrid AG-MLP-Ensemble 0.0268 0.0024 0.5304
FR - SC SARIMAX 0.0337 0.0027 7.635
FR - SC NARNN-ARMAX 0.0366 0.0029 8.8285
FR - SC MMFF 0.0308 0.0036 0.4140
FR - SC LSTM 0.0313 0.0036 1.7034
FR - SC CLSTM 0.0463 0.0054 0.6717
FR - SC Hybrid AG-MLP 0.0280 0.0022 1.4620
FR - SC Hybrid AG-MLP-Ensemble 0.0237 0.0024 0.9386

BJL - BA SARIMAX 0.0311 0.0025 0.3485
BJL - BA NARNN-ARMAX 0.0371 0.0048 0.3008
BJL - BA MMFF 0.0442 0.0068 0.3205
BJL - BA LSTM 0.0427 0.0069 0.2116
BJL - BA CLSTM 0.0526 0.0070 0.8094
BJL - BA Hybrid AG-MLP 0.0310 0.0030 0.1917
BJL - BA Hybrid AG-MLP-Ensemble 0.0322 0.0027 0.2519

the first using MLP to make residue correction from combi-
nation and modeling of the residue and the second using an
ensemble of MLPs.

From the results obtained, it is observed that the use of
PSO and ACO for parameterization of SARIMAX models is
promising, with better results than AutoARIMA, since the
proposed method search space goes beyond AutoARIMA and
implements a nested optimization instead of the step wise
algorithm of AutoARIMA. Highlighting the utility of the
proposed PSO-ACO in optimally automating the choice of
exogenous variables.

The strategy adopted to correct the residue by optimizing
elements that model the error and also make a non-linear
combination of the modeled residue with the SARIMAX
prediction is also shown to be relevant, since for all the series
chosen, it had a better performance according to at least two

of the metrics adopted. In general, what was proposed in this
work can be easily applied and used in autonomous time series
forecasting systems with the use of exogenous variables, more
specifically for forecasting solar radiation.
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