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Abstract—The Radial Basis Function Network centres deter-
mination is a open problem. In this work, the cluster centres
are determined by a proposed gradient algorithm using the
information forces acting on each data point. These centres
are applied to a Radial Basis Function Network for data
classification. A threshold is established based on Information
Potential to classify the outliers. Combined, the threshold and
the centres determined by information forces show good results
in comparison to a similar Network with a k-means clustering
algorithm.

Index Terms—Radial Basis Functions Networks, Classification,
Clustering and Outliers.

I. INTRODUCTION

Broomhead and Lowe in 1988 [1] presented the Radial
Basis Function Network (RBFN) concept. It is a universal
approximator [2] [3]. The training of a RBFN is done in two
stages: initially, the centres cj and the variance σj of the basis
functions are determined, then, the network weights wij . This
work focuses on determining these RBF centres. Clustering
techniques can be used to determine the RBF centres. These
techniques find the cluster centers that reflects the distribution
of the data points [4]. The most common is the k-means
algorithm [5].

The Information Potential (IP) and Information Force (IF)
constitute two concepts of Information Theory [6] that de-
scribe, respectively, the amount of agglomeration and the
direction where this agglomeration increases. These concepts
are used in some clustering techniques, such as the one
developed by Jenssen et. al. [7].

This work presents two algorithms that are developed based
on those two concepts above. The principal one finds the
cluster centres by a gradient algorithm using Information
Forces. These cluster centres are applied to the RBFN. The
second one uses the concept of Information Potential to reduce
the number of outliers. The algorithms are applied to a data
classification problem.

This article was organised as follows: In Section II, the
RBFN is illustrated; In Section III, the concepts of Informa-
tion Potential and Force are described, also the algorithm to
estimate the RBFN centres is presented. In Section IV, the
algorithm to reduce the outliers is described; In Section V, the
Data is presented; In Section VI, results are displayed and the

algorithm parameters are analysed. In Section VI, conclusion
and future works are discussed.

II. RADIAL BASIS FUNCTION NETWORK

The RBFN is shown in figure 1. This network is composed
by an input layer p, a hidden layer, and an output layer which
provide the classification. When an input datapoint p is fed into
a node, distance is calculated from a centre cj , transformed by
a Radial Basis Function ϕj(·) and multiplied by a weighting
value wij [8]. All the values produced in the K nodes are
summed for each class, and the point p is classified where
this sum is maximum.

Fig. 1: Artificial Neural Network
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This Network is a function presented in the equation:

Classi = f(p) = w0 +

K∑
j=1

wijϕj(p) (1)

The methods to obtain those parameters influence the clas-
sification performance. In this work, the centres are estimated
via IF and, for comparison, the k-means algorithm [5]. The
weights wij are determined by pseudoinverse matrix and a
Gaussian Function are chosen for RBF:

ϕj(p) = exp (−||p− cj ||2

2 · σ2
j

) (2)



For the k-means clustering, the variance is estimated for
each node as the average distance between the nj data points
pi in the cluster and its centre cj :

σj =
1

nj
·

√√√√ nj∑
i=1

(pi − cj)2 (3)

The IF algorithm proposed in this work does not separate the
data into clusters, which makes it impossible to use equation
3. Therefore, for this algorithm, the variance is estimated by
the equation proposed by Haykin [5]:

σ =
dmax√
2 ·K

(4)

In which dmax is the maximum distance between the cluster
centres and K is the number of nodes. The variance is equal
for all nodes.

III. RBF CENTRES ESTIMATION VIA IF GRADIENT
ALGORITHM

A. Information Forces

Considering xi ∈ Rm, i = 1, 2, ..., n a set of samples
belonging to a random variable X ∈ Rm, a Parzen Window [9]
can be associated with a Gaussian kernel, directly estimating
the Probability Density Function (PDF) of the data. This
function can be described by:

f̂x(x) =
1

n

n∑
i=1

G(x− xi, h2) (5)

Where G is the Gaussian Kernel and h is the kernel band-
width. There are several ways to estimate the ideal bandwidth
h [10]. In Probability Density Function (PDF) that are near to
the Normal distribution the Rule-of-Thumb [11] is the most
practical and simple one:

h = 1, 06 ·min{σ̂, IQR
1, 34

}n− 1
5 (6)

where n is the number of data points, σ̂ is the estimated
standard deviation of the dataset and IQR = Q3 − Q1 is
the interquartile range.

The Renyi entropy equation of order two [12] is given by

HR2
(X) = − log[

∫
X

f2x(x)dx] (7)

Applying the Parzen Window: ∫
X

f2x(x)dx =∫
[
1

n

n∑
i=1

G(x− xi, h2)]2dx =

1

n2

n∑
i=1

n∑
j=1

∫
G(x− xi, h2)G(x− xj , h2)dx =

1

n2

n∑
i=1

n∑
j=1

G(xi − xj , 2 · h2)

(8)

That means:

HR2
(X) = − log[

1

n2

n∑
i=1

n∑
j=1

G(xi − xj , 2h2)] (9)

The argument of the natural logarithm above is the Informa-
tion Potential over all the dataset, in an analogy with potential
energy of physical particles [13].

P ({x}) = 1

n2

n∑
i=1

n∑
j=1

G(xi − xj , 2h2) (10)

The Information Potential over a single point xi in the
dataset is the sum of interactions of this point across all the
dataset.

P ({xi}) =
1

n2

n∑
j=1

G(xi − xj , 2h2) (11)

The IP indicates the amount of agglomeration around the
point. Its derivative is the Information Force acting in point
xi [7].

F if =
∂

∂(xi − xj)
P ({xi}) =

− 1

N2 · h2
n∑

j=1

G(xi − xj , 2h2) · (xi − xj)
(12)

B. Gradient Algorithm

The IF points in the direction where the amount of agglom-
eration increases. Then, a centre candidate ci can approximate
to the central cluster by successive interaction of the equation:

ci(s+ 1) = ci(s) + ηF if (13)

This candidate ci could erroneously converge to a local
maximum, similar to other algorithms based on Gradient De-
scent/Ascent. Two approaches via Information Theory could
minimise this error. The first one is reducing the number of
local maximum by smoothing the IP distribution over. [7].
The ideal h (eq. 6) is multiplied by a parameter κ > 1 which
smooths the PDF’s distribution over.

Another solution is to variate the learning rate η over the
data space. The magnitude of the IF is bigger in the border
of the cluster and decreases as the candidate c approximates
to the central cluster and the force vectors are balanced out.
Then,

η = α · e||Fif || (14)

Outliers also hinder the IF gradient algorithm. They are
removed from the data in the training phase for a better estima-
tion of the cluster centres. Candidates with small Information
Potential behave like outliers. Then, they are also removed
for the centre estimation. The detailed description of the IF
Gradient Algorithm is illustrated in Algorithm 1.

Initially, a set of centre candidates c is raffled between the
dataset. This set is sufficiently big to ensure that at least one
point is raffled on each cluster. Some candidates could be
too close. In this case, one of the points is eliminated. Many
candidates tend to converge to a single central cluster. On each



Algorithm 1: Estimation of RBFN Centres via IF
input :
• Xtrain % Data to train the RBFN;
• α % Learning rate constant;
• n center % Number of initial candidates;
• δ % Threshold of Information Potential;
• β % Minimum distance between candidates;
• max epochs % Maximum epochs;
• γ % Constant of convergence;

output:
• Ccluster % Cluster centres.

1 begin
2 % Pif (·) calculates the information potential.
3 % Fif (·) calculates the information force.
4 for i ∈ 1 : n center do
5 % Raffle the candidates
6 Ccand(i) = random(Xtrain);
7 if Pif (Ccand(i)) < δ then
8 Eliminate Ccand(i);
9 end

10 end
11 s = 0;
12 while (s < max epochs) and (not all

Ccandidate are eliminated or converged) do
13 % Eliminate points to close each other
14 for i and j ∈ 1 : n center do
15 if ||(Ccand(i)− Ccand(j))|| < β then
16 Eliminate Ccand(i)
17 end
18 end
19 % Update the center candidate
20 for i ∈ 1 : n center do
21 Ccand(i, s+ 1) =

Ccand(i, s) + α ∗ e||Fif (i,s)|| ∗ Fif (i, s)
22 if |e||Fif (i,s+1)|| − e||Fif (i,s)||| < γ then
23 Ccand(i) converge
24 end
25 end
26 s = s+ 1
27 end
28 Ccluster = ∪Ccand that converge.
29 return Ccluster

30 end

interaction, if two candidates are too close to each other, one
of them is eliminated.

The points raffled with small IP constitute another problem.
Far from the central cluster, the greatest information force is
exerted by the point initially picked. In this way, the centre
candidate ci is stuck to the starting point. To avoid that, the
IP is calculated in the initial epoch over the candidates. If it
is below a threshold, the centre candidate is eliminated.

The interactions over a specific centre candidate stop when

the difference is reached:

| exp (|Fif |)(s+ 1)− exp (|Fif |)(s)| < γ (15)

Where γ is a small value described in result section. When
a centre candidate nears a cluster centre, the forces tend to
equilibrium and the left-hand side of inequality 15 tends to
zero.

The algorithm completely stops when all the candidates’
centres converge or are eliminated. If they do not converge, it
stops when it reaches the maximum number of epochs.

IV. OUTLIER REDUCTION

The RBFN has difficulties in identifying the outliers. A
mechanism of outlier detection improves the RBFN results.
This can be done by observing the IP on each point, because
outliers have small information potential.

A threshold δ can be established with the training data.
Then, this threshold can be applied to the test data and most
outliers can be identified. The detailed description of this
mechanism is in algorithm 2 below.

Algorithm 2: Outlier Detection
input :
• Xtrain % Data to train the RBFN;
• Xtest % Data to test the RBFN;
• n outlier % nº of outliers in training data;
• θ % constant of outlier reduction;

output:
• COutlier % Set of outliers.

1 begin
2 for i ∈ 1 : size(Xtrain) do
3 pottrei(i) = Pif (Xtrain(i)) % The IP
4 end
5 % Sort in ascend order.
6 pottrei = sort(pottrei,

′ ascend′)
7 δ = pottrei(θ · n outlier) % The threshold.
8 for i ∈ 1 : size(Xtest) do
9 if Pif (Xtest(i)) ≤ δ then

10 Xtest(i) ∈ COutlier

11 end
12 end
13 return COutlier

14 end

The threshold δ is estimated using the IP values of the
outliers. Some points in the clusters also have small IP and
could be erroneously classified as outliers. The constant θ
(< 1) is established to avoid this problem.

V. DATA

The data are generated artificially via the Multidimen-
sional Dataset Generator for Clustering (MDCGen) [14]. Two
datasets are generated with an ascendant level of complexity.
All datasets are two-dimensional spaces with three clusters and
points located in the interval (0, 1) on all directions. Each set is



divided into two subsets: train and test, in a ratio respectively
of 80%/20%. The data characteristics are presented in Table I
and the data distribution in Figure 2.

TABLE I: Dataset characteristics.

Distribution Number of
points

Number of
outliers

Dataset I Gaussian 4000 0
Dataset II Ring-shaped 4400 400

Fig. 2: Dataset distributions.

VI. PARAMETERS AND RESULTS

A. Parameters

1) Learning rate constant: Figure 3 shows the effect of the
Learning rate constant α on algorithm 1.

Fig. 3: Learning rate constant

The black dots represent the estimated cluster centres. The red lines
represent the trajectory of the eliminated candidates. The blue lines

represent the converged ones.

If the constant α is too small, some centres candidates
erroneously converge to local maxima. If α is too big, the
candidates oscillate around the central cluster and the algo-
rithm loses accuracy. If α is very big, the algorithm does not

converge before reaching the maximum epochs. Experimen-
tally, a good value for α is ten times the standard deviation of
the clusters.

2) Minimum distance between centres candidates: Figure
4 shows the constant β effects on algorithm 1.

Fig. 4: Minimum distance between centres candidates

If this distance is too small, just a few points are eliminated
on each epoch and the algorithm demands more computational
effort. If β is too big, a centre candidate in one cluster could
eliminate good centre candidates in other clusters. Experimen-
tally, a good value for β is 10% of the standard deviation of
the clusters.

3) Constant of convergence: Figure 5 shows the constant
γ effects on algorithm 1.

Fig. 5: Constant of convergence



The precision increases when the constant γ diminishes, al-
though the algorithm takes more epochs to converge, requiring
more computational effort. If γ is too big, the centre candidates
stop before the forces balance out, far from the actual central
cluster. Experimentally, γ = 10−5 is an appropriate value.

4) IP threshold: Figure 6 shows the threshold δ effects on
the algorithm 1. The potential is calculated at each point. The
threshold is tested as the 1st, 5th, 10th and 50th percentile
from the IP distribution of the points.

Fig. 6: IP threshold

Some centre candidates are raffled on points with small IP.
These candidates are stuck close to the origin, not converging
to the actual cluster centres. If the threshold δ is too small,
these centre candidates are not eliminated by the algorithm.
In the other side, if δ is too big, it eliminates good centre
candidates in clusters with small IP.

5) Smoothie parameter: Figure 7 shows the parameter κ
effects on Algorithm 1.

Fig. 7: Smoothie parameter.

If κ is small, the candidates converge to local maxima inside
the clusters but far from the actual centre. If κ is big, points
too far from the central cluster exert too much influence in the
IF vectors, confusing the gradient algorithm. Experimentally,
κ values between 1 an 3 enable good results.

6) Constant of outlier reduction: Table II shows, in Dataset
II, the performance of the RBFN associated with Algorithm 2
using different values of the parameter θ.

TABLE II: Accuracy of the RBFN associated with the outlier
reduction for different θ values.

θ
Correctly
Classified

0,5 96,82%
0,75 97,61%

1 96,14%

As described in section III, some points inside the cluster
but far from the actual centre have small IP. The parameter θ
partially avoids that the outlier reduction algorithm misclassi-
fies these points. The value of θ depends on the concentration
level of points in the clusters.

B. Results

The RBFN centres are estimated by information forces
(Algorithm 1) and by k-means algorithm for comparison. The
k-means are tested with one, two and three centres per cluster.
The figures 8 and 9 show the centres location on each dataset.

Fig. 8: Estimated cluster centres in dataset I

The black dots represent the estimated cluster centres.

The information forces point to one centre on each cluster.
When both algorithms return to the same number of centres,
their location are very similar. In dataset I, the centres deter-
mined via IF are, on average, only 0.0043 units away from
the correspondent centres determined via k-means with one
centre per cluster.



Fig. 9: Estimated cluster centres in dataset II

The estimated centres are applied to the RBFN. The per-
centage of correctly classified points are presented in table
III.

TABLE III: Percentage of Accuracy in out-of-sample data.

Accuracy out-of-sample
Dataset I Dataset II

IF 99,50% 90,91%
IF with

outlier reduction - 97,61%

k-means 1 94,38% 96,36%
k-means 2 93,25% 93,30%
k-means 3 94,38% 93,30%

The estimation via IF without outlier reduction outperforms
the k-means algorithm in datasets I. The RBFN with centres
estimated by IF have good performance in datasets with a
few or no outliers. In datasets II, the k-means outperforms.
However, the IF gradient algorithm without outlier reduction
still has a reasonable performance on this dataset. There is an
improvement when the outlier reduction is used alongside the
RBFN with centres estimated by IF. This improvement leads
the IF gradient algorithm to outperform the k-means.

VII. CONCLUSION AND FUTURE WORKS

This proposed method to assign the RBFN centres presents
satisfactory preliminary results in comparison to the traditional
k-means algorithm. Also, the outlier reduction based on infor-
mation potential improves the results. It is noteworthy that the
proposed method accuracy depends on the correct adjustment
of some parameters, but this also happens in other methods.

Future works may analyse the performance of the proposed
methods on more complex and non artificially generated
datasets. Further on, it may analyse how the RBFN behaves
with the IF gradient algorithm alongside other methods to
determine the basis function variance and the network weights.
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