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Abstract—The lack of labeled data is one of the main prohibit-
ing issues on the development of deep learning models, as they
rely on large labeled datasets in order to achieve high accuracy
in complex tasks.

Our objective is to evaluate the performance gain of having
additional unlabeled data in the training of a deep learning
model when working with medical imaging data. We present a
semi-supervised learning algorithm that utilizes a teacher-student
paradigm in order to leverage unlabeled data in the classification
of chest X-ray images.

Using our algorithm on the ChestX-ray14 dataset, we manage
to achieve a substantial increase in performance when using small
labeled datasets. With our method, a model achieves an AUROC
of 0.822 with only 2% labeled data and 0.865 with 5% labeled
data, while a fully supervised method achieves an AUROC of
0.807 with 5% labeled data and only 0.845 with 10%.

Index Terms—Semi-Supervised learning, Teacher-Student,
Chest X-Ray, Medical Image Classification

I. INTRODUCTION

Deep learning models rely on optimizing parameters for
specific tasks, requiring large labeled datasets for producing
sufficiently accurate image classification models. Many tasks
require thousands of images to train a model for each class,
increasing with the necessary accuracy.

With the development of Computer Assisted Diagnostic
(CAD) tools with the aid of deep learning models, we face
the challenge of obtaining sufficiently large labeled datasets
for the specific pathology we intend to classify. Some tasks
require high accuracy in order to be useful in the diagnostic
process, as wrong predictions can have great impact in the
patient’s health.

The lack of labeled data is one of the first prohibiting
issues on the development of many deep learning models, even
more so for pathology classification and detection. Acquiring
accurate labels for medical images requires the work of
medical professionals, which are often difficult to obtain or
expensive.

Although labeled data is difficult to obtain, it is often
possible to have access to a larger, but unlabeled dataset. This
kind of data has no explicit information we can use in the
supervised training of a deep learning model, but it still carries
information in the context of the image. This motivates us to
search for a method that can use both the information from
the labeled and unlabeled data in the training of deep learning
models.

This class of algorithms is called Semi-Supervised Learning
(SSL), in which we leverage unlabeled data as well as labeled
data in order to increase the model accuracy when compared
to an exclusively supervised training method.

One approach for semi-supervised learning is the teacher-
student pipeline, in which two models are used in a multi-
step training algorithm in order to make use of the unlabeled
data. In this framework the unlabeled data is leveraged in the
training process by the student model, using a set of pseudo
labels produced by the teacher model.

Our objective in this paper is to evaluate the performance
gain of having additional unlabeled data in a medical imag-
ing dataset when training a deep learning model, using a
teacher-student approach. We want to measure the value of
labeling data when compared to using unlabeled data in semi-
supervised training.

We have chosen to use the dataset ChestX-ray14 for our
tests, as it is one of the largest medical imaging datasets
available. With over 100.000 frontal view X-ray images with
14 classified diseases (see Fig. 1), it has allowed the develop-
ment of large, accurate models that match the radiologist-level
performance for pneumonia detection [1].

In this paper we use a teacher-student semi-supervised
learning algorithm to train a convolutional neural network for
classification of chest X-ray images from the ChestX-ray14
dataset—which, to the best of our knowledge, had not been
done before. We evaluate the performance of deep learning
models with only partially labeled datasets, considering several
proportions of labeled data.

The main contributions of this paper are:
• Evaluation of a teacher-student pipeline for semi-

supervised learning in the ChestX-ray14 medical imaging
dataset;

• Pseudo labels processing and balancing for filtering out
low confidence predictions;

• Performance comparison for different proportions of la-
beled data.

II. RELATED WORKS

There are multiple approaches for semi-supervised learning
on convolutional neural networks, such as adversarial learning
[2], consistency learning [3], [4], contrastive learning [5], [6],
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Fig. 1: Chest x-ray images from the ChestX-ray14 dataset. (a) Images with no identified pathology. (b) Images labeled with
pleural effusion.

the use of pretext tasks [7], [8], teacher-student pipeline [9],
[10] and others [11].

In this section we review some of these approaches, as well
as some important concepts related to our work.

A. Self-supervised Learning

Self-supervised learning is a form of unsupervised learning
which has many similarities with semi-supervised algorithms
[10]. It has the objective of learning good feature repre-
sentation by utilizing information contained in the images
themselves, and not in the labels.

This methods generally involves the use of pretext tasks,
meaning that it works by optimizing functions that may not
be directly related to the main objective [12]. Ultimately, a
model trained this way can be adapted to a supervised task by
fine-tuning the model with extra labeled data, in such a way
that the self-supervised training works as a pre-training step
to the algorithm [13].

Multiple pretext tasks have been developed for use with
image classification, such as colorization [8], tracking [14]
and Jigsaw puzzle reassembly [7].

B. Contrastive Learning

SimCLR [6], [15] and MoCo [12] are both popular frame-
works that make use of a contrastive loss for learning visual
representations effectively. They work with unlabeled data by
maximizing agreement between differently augmented views

of the same data example via a contrastive loss in the latent
space. The model

Altough this methods achieve promising results, they require
a large amount of computational power in order perform well
because they fundamentally rely on large batch sizes to work.
This problem becomes even worse when working with medical
images, as they often have larger resolution and smaller points
of interest.

C. Teacher-Student and pseudo labels

Our paper is based on the work of Yalniz et al. [10],
which introduces a teacher/student based pipeline for semi-
supervised learning.

This algorithm makes use of a two step process similar
to information distillation [10], in which a teacher model is
first trained with the labeled data and the student model is
trained to reproduce the best outputs of the teacher. Yalniz et
al. have shown that this method can be adapted to leverage
large amounts of unlabeled data into an image classification
task.

Our objective is to use this method on the ChestX-ray14
dataset, adapting it to work on a much smaller dataset.

A similar approach is taken by Shaw et al. [16] for histology
image classification, extending the approach to a chain of
teacher-student models, where the student becomes the teacher
to the next student. This chain of teacher/student models shows
improvement over the single teacher-student models when



training for multiple iterations with less than 1% of labeled
data

Xiao Qi et al. [17] also use a teacher-student pipeline
for classifying COVID-19 diagnosis on a different chest X-
ray dataset. In addition to the semi-supervised training, they
utilize a model and data augmentation methods specific to the
classification of COVID-19, such as local phase features. They
also perform a filtering step in the pseudo labels generated for
the unlabeled dataset, although the results obtained differ from
ours. This difference can be explained by the distinct dataset
and task, as even though they both contain chest x-ray images,
many differences can occur in the quality of images and labels.

III. METHODS

This section describes the steps required for training the
model, as well as some important details in the execution of
the pipeline.

A. Teacher/student pipeline

Our algorithm is inspired by the training pipeline shown by
Yalniz et al. [10] which is based on a teacher/student method.
This algorithm makes use of the unlabeled dataset by creating
pseudo labels for the data based on a preliminary training
done solely on the labeled dataset. This means we first train
the teacher model on the labeled dataset, and use this model
to produce labels for the unlabeled data.

This algorithm is agnostic to the model used, and is flexible
with training of both the teacher and student models. In this
paper we will be considering the teacher and student model
to have the same architecture.

For our experiments, we divide the original training dataset
of size N into two parts of different size using a ratio λ. This
results in a labeled dataset D of size Nl = λN and a unlabeled
dataset U of size Nu = (1− λ)N .

Given that we have a teacher model θt and a student model
θs, the training steps are as follow:

1) We use the labeled dataset D to train the teacher model
θt using the standard cross entropy loss.

2) Classify the images from the unlabeled dataset U using
the teacher model θt, producing a set of labels L.

3) Filter the set of pseudo labels L, keeping only the high
confidence predictions and maintaining class balance.

4) Train the student model θs using only the unlabeled
dataset U and the filtered labels.

5) Fine-tune the student model using the labeled dataset D.

B. Prediction filtering

One of the possible problems with the pseudo labels created
for the unlabeled dataset is that we may be producing incorrect
labels for the data. Although our algorithm is tolerant to noisy
labels [9], they can decrease the ability for our model to
learn. In order to avoid this issue, we consider only the high
confidence predictions, filtering out the remaining data.

In this process, we also guarantee that the class balance
remains the same between the labeled dataset and the new set
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Fig. 2: Effects of the parameter κ in the training of the student
model. This test is done in the case λ = 10%. We can see both
higher and lower values of κ can be detrimental to the model’s
performance, and that the highest AUROC value is obtained
with κ = 75%.

of labels. We match the proportion of classes in the set with
the statistics obtained in the labeled dataset.

In order to do this, we define the threshold κ as the
proportion of images that will be kept for training. This means
that only the best K = κNu predictions on U will be kept for
the intermediate training of the student model, distributed for
each class proportionally to the class distribution seen on the
labeled dataset.

As per Fig. 2, we optimize the value of κ in order to
maximize the AUROC (Area Under the Receiver Operating
Characteristic curve) [18] of the student model. We found that,
for our dataset and task, a value of κ = 75% is optimal for
our setup. We can conclude that a small κ results in poor
performance caused by the lack of data, while using too many
images can deteriorate the performance by including low-
confidence and flipped labels in the training.

C. Data augmentation

Data augmentation is a very important aspect of training
deep learning models, as it decreases overfitting effects on the
training data and ultimately increases the model’s performance
[19]. The use of a small labeled dataset in semi-supervised
learning makes powerful models like DenseNet121 even more
susceptible to overfitting, meaning we must pay more attention
to the augmentation pipeline used.

We have tested the effects of data augmentation in the
training of the teacher and student models by evaluating the
training results with multiple different augmentation pipelines.
As per Fig. 3, we can see that the student model achieves better
results when using strong augmentation functions that modify
the image in a meaningful way.
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Fig. 3: AUROC values on the validation set during the fine-
tuning of the student model on the labeled dataset, given differ-
ent augmentation pipelines. We see that a strong augmentation
results in better performance for the student model. Tests were
done with λ = 10%, with all models starting from the same
pre-trained model.

The same behavior was not observed while training the
teacher model or in the initial training of the student model
with the dataset U . In these cases, little difference was ob-
served on the performance of the models, and we use the same
augmentation as the student model in the remaining tests.

For the remaining experiments in this paper, we use the
following augmentations:

• Random horizontal flip (with 50% probability)
• Random rotation (max 25◦)
• Random translation (max 15% in any direction)
• Random scaling (in range (0.9, 1.1))
• Random perspective transform (max 0.2 distortion)

IV. EXPERIMENTAL SETUP

A. Models

We use for both the student and teacher model a DenseNet
[20] network. Our algorithm allows us to choose any archi-
tecture for the models, as the training pipeline is transparent
to this choice.

We have decided to use DenseNet121 models for our tests
based on the results of Rajpurkar et al. [21], and it shows to
be a good baseline for this problem.

Starting with a DenseNet121 model pretrained on the Im-
ageNet dataset [22], we replace the last layer with a fully
connected layer with sigmoid activation.

B. Dataset

For both the labeled and unlabeled datasets we use the
ChestX-ray14 dataset released by Wang et al. [1], which con-
tains 112120 frontal-view X-ray images. In total, the dataset
contains 14 different pathologies, but we restrict our tests

to the subset of the data that either contains the pathology
Effusion or no pathology. From the total of 73719 images, we
use N = 51666 images for training, 7371 for validation and
14682 for testing.

We constructed the labeled dataset D and unlabeled dataset
U by randomly picking images from the full training dataset
and hiding the labels for U .

As our objective is to analyze the effects of different
proportions of labeled to unlabeled data in the accuracy of the
models, we divided the original dataset into multiple cases.
We have created subsets with λ = {20%, 10%, 5%, 2%},
containing Nl = {10333, 5166, 2581, 1033} labeled images
and Nu = {41333, 46500, 49085, 50633} unlabeled images re-
spectively.

C. Training Details

For training, we re-scale the images to a resolution of
256x256, training with a batch-size of 16. We use an Adam
optimizer with learning rate starting from 10−4, multiplying
the learning rate by a factor of 0.9 at each epoch. We train the
teacher model for 25 epochs, the student model for 10 epochs
with the pseudo labels and 15 epochs with the labeled data.

The experiments are run on a single GTX1660 with 6GB
of memory and 16GB of RAM.

For evaluating the validation and test datasets we use
TTA (Test-time Augmentation), which show to increase the
accuracy of predictions especially for smaller datasets [23].
We produce ten 224x224 different crops from the original
image, taking the four corners and the central crop, plus
the horizontally flipped version of these, and making an
independent prediction for each crop. The final prediction for
the given image is the average of the ten crop predictions.

For training the teacher and student model, we have used
strong affine augmentations for the images, including random
rotations, scaling and translation, as well as random perspec-
tive transforms.

V. RESULTS

We evaluate our algorithm on validation and test datasets,
both derived from the ChestX-ray14 dataset. We measure the
AUROC values for both the teacher and student models at
every epoch with the validation dataset (see Fig. 4) and with
the test dataset (see Table I) once training is finished.

From Fig. 4 we can see that using our method of semi-
supervised learning the student model has better accuracy
and stability during training, with more significant results for
smaller values of λ.

We can see from Table I a gain in performance at every
value of λ tested. Even though the intermediate step for
training the student model uses only pseudo labels, it still
achieves a higher AUROC than the teacher model itself, except
for the case λ = 20%.

The increase in AUROC is more prominent at lower pro-
portions of labeled data, as the model benefits proportionally
more from the extra information gained from the unlabeled
dataset. The largest increases in AUROC occurs at λ = 2%,
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Fig. 4: AUROC values on the validation set during the training of the teacher and student models, given different proportions
of labeled data. We see that the performance for both models gets better as the number of labeled data increases. Our student
model trained with 2% of the labeled data (AUROC=0.841) almost matches the AUROC values from the teacher model with
10% of labeled data (AUROC=0.852) in the validation set. We also show the results for training the teacher model with
λ = 100, meaning a fully supervised model with the entire labeled dataset.

where the AUROC increases from 0.750 to 0.822, while the
smallest one occurs at λ = 20%, with a small increase from
0.887 to 0.893.

From Table I we can also see that the student model trained
with λ = 2% has better results than the teacher model trained
in a supervised method with λ = 5%, even though it has
less than half the amount of labels to train. The same can be
observed for the student trained with λ = 5%, which has a
better result than the teacher at λ = 10%.

TABLE I: Comparison results from the baseline model
(teacher) and the student model. The intermediate results show
the AUROC values for the student model trained only in the
unlabeled dataset.

Labeled data Teacher Intermediate Student
2% 0.750 0.795 0.822
5% 0.807 0.823 0.865

10% 0.845 0.869 0.879
20% 0.887 0.867 0.893

100% (fully supervised) 0.906 - -

VI. CONCLUSION

In this paper we have considered a teacher-student algorithm
for leveraging unlabeled data in the training of deep learning
models and evaluated its performance on the ChestX-ray14
image classification dataset.

We have shown that this technique can have a substantial
benefit to the performance of models, when compared to the
purely supervised counterparts.

We can see that there is a diminishing return in labeling
data beyond a certain point, because a combination of labeled

and unlabeled data can be sufficient to reach the performance
of a fully supervised training method.

This kind of algorithm can be of great benefit for developing
CAD (Computer-Assisted Diagnostic) tools, as it decreases the
reliance on labeled data. Deep learning techniques have shown
promising results in the area of medical imaging, and we hope
that semi-supervised learning can help the development of
practical tools for medical professionals.

Future works include developing a multi-label framework,
allowing the easier training of models for multiple pathologies.
It is also possible to include an iterative training pipeline
[9], [16] by replacing the teacher model with the current
student and restarting the training steps, and using probability
distributions for the pseudo labels instead of binary values.
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