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Abstract—Typical semantic segmentation methods do not rec-
ognize unknown pixels during the test or deployment stage. This
capability is critical for open-world environment applications
where unseen objects appear all the time. Recently, to solve
those limitations, Open Set Semantic Segmentation (OSSS) was
introduced. This task aims to produce known and unknown pixels
semantic segments. However, due to its recent introduction, few
works are found in the literature, and consequently, few datasets
are publicly available. This work carried out a comparative study
between the existing OSSS methods on a new synthetic dataset
of images and the well-known PASCAL VOC 2012 dataset.
The compared methods include SoftMax-T, OpenMax-based, and
OpenIPCS. The results are encouraging and show some of the
advantages and main limitations of each technique. However, in
general, they demonstrate that the problem of OSSS remains
open and demands further research aiming at real applications,
such as autonomous driving and robotics.

Index Terms—Open Set Recognition, Open World Problem,
Semantic Segmentation, Synthetic Geometry Dataset

I. INTRODUCTION

In recent years, multi-class semantic segmentation has been
boosted by advances in deep learning models [1]–[3]. This task
aims to divide an image into multiple semantically meaningfull
regions. This is done by classifying each image pixel in one
of the predefined classes at the training step. There are several
real-world applications of semantic segmentation, for instance,
autonomous driving and robotics, since they are based on
scene understanding to perform actions [4]–[7].

However, most existing approaches focus on a fixed number
of known classes. In other words, those models are trained
and evaluated on closed set conditions, which means that all
test samples are present during training. This assumption can
be easily violated in open-set problems, in which new ob-
jects might emerge unexpectedly after training. This scenario
is particularly evident in autonomous driving, for instance,
considering that it is practically impossible to collect and
annotate a priori all instances found in the real-world. The
ideal setting is to segment unknown regions of images in the
test step, besides the known classes, informing users which
image regions do not belong to the labels already learn during
the training of the model. This task can be called Open Set
Semantic Segmentation (OSSS).

Due to the recent introduction of OSSS, few works in
the literature approach this problem. The OpenPixel proposed
in [8] consists of patchwise training of a Convolutional Neural

Network (CNN) and the definition of a probability threshold
after the SoftMax layer. Pixels with class probability less than
the threshold are labeled as unknown. In [9], the authors
proposed a non-parametric statistic test to identify the presence
of unknown regions in the prediction confidence map, obtained
from the SoftMax layer of a trained CNN over the closed set.
After this identification, an adaptive threshold is applied to
the prediction confidence histogram to separate known and
unknown regions in the image. In [10], [11], an OpenMax-
based approach [12] is presented. It consists of replacing
the last activation layer of a semantic segmentation network,
usually the SoftMax layer, with the OpenMax layer, estimating
the input probability, and labeling it as known or unknown.

Similarly, in [10], the authors presented a method based
on principal components of the CNN’s internal features to
segment unknown regions, named Open Principal Compo-
nent Scoring with Incremental Training (OpenIPCS). Those
methods were applied to a set of aerial images, limiting the
performance analysis in other applications. As a matter of
fact, a detailed comparison pointing out the limitations of each
method is still lacking in the literature.

Due to the importance of those methods for real-world ap-
plications, this work proposes a comparative study of the fol-
lowing state-of-the-art OSSS methods: SoftMax-Thresholding
(SoftMax-T), OpenMax-based, and OpenIPCS in two distinct
sets of images. The first is a set of synthetic images, and
the other includes images with high intra-class and inter-class
variability indexes. Hence, the main contributions of this work
are:

• Building a new synthetic image dataset for OSSS task;
• Establishing two new benchmarks for training and eval-

uation protocol in OSSS tasks;
• Investigating the limitations of the state-of-the-art OSSS

methods;
• Reassessing the main existing challenges for the OSSS

task.

This work is organized as follows. Section II presents the
OSSS problem and the methods used in this work. Section III
shows the datasets used to compare the OSSS approaches.
Section IV describes the configurations to conduct the ex-
periments. Section V presents the quantitative and qualitative
results obtained from the experiments. Section VI presents the



main challenges observed in the OSSS and, finally, Section VII
presents the conclusions and future research directions.

II. BACKGROUND

In this Section, we present the OSSS task and an overview
of the main methods currently used in the literature: A)
SoftMax-T; B) OpenMax-based; and C) OpenIPCS.

A. Open Set Semantic Segmentation

OSSS is a derivation of the Open Set Recognition problem
introduced in [13]. The authors proposed the concept of
openness, assuming that even knowing all classes during the
supervised training, one should still consider the possibility
of unknown samples appear later, during the prediction step.
In summary, practical recognition systems must consider three
basic categories, which are shown in Table I.

TABLE I
THE THREE BASIC CATEGORIES OF OSSS.

Category Description
Known known
classes (KKCs)

Classes with distinctly labeled positive training
samples (also serving as negative samples for
other KKCs).

Known
unknown
classes (KUCs)

Labeled negative samples, not necessarily
grouped into meaningful categories, such as
background [14] and universum [15] * classes.

Unknown
unknown
classes (UUCs)

Classes without any available information dur-
ing training.

* The universum [15] classes represent the samples that do not belong to
either class of interest for the specific learning problem.

The objective of OSSS is to classify each pixel of an
image into one of the existing known classes (KKC and
KUC) or the unknown class (UUC). The UUC can often
combine many other classes that do not appear in the training
dataset. Therefore, the segmentation model must be trained in
a database without the presence of unknown classes [9].

B. SoftMax-T

Most DNNs use the SoftMax layer to classify input data.
The SoftMax layer assigns probabilities to each class in a
problem of several known classes. The class with the highest
probability is assumed to be the predicted class.

A variant of SoftMax, named SoftMax-T, applies a threshold
to the probability obtained by the SoftMax layer, following
the premise that lower probabilities can be motivated by
UUCs [10]. Thus, SoftMax-T consists of defining a Minimum
Confidence Threshold (MCT) to classify the input data into
one possible known class. Input data with a probability above
the MCT are classified as unknown classes.

C. OpenMax-based

OpenMax was initially proposed for the Open Set Recogni-
tion task [12]. However, recently, OpenMax was applied to the
OSSS task [10], [11]. This method consists of replacing the
SoftMax layer with a layer called OpenMax that incorporates
the explicit recognition of unknown classes using the extreme

Fig. 1. Flow for adjusting and using the OpenMax-based method.

value theory [16]. Figure 1 shows a schematic diagram of this
approach.

Based on a visual inspection, in [12], the authors found
that the output of the last hidden layer before the SoftMax
layer, called the activation vector (AV), provides consider-
able discriminative information between known and unknown
classes. The dimensionality of the AV is equal to the number
of known classes. Thus, the authors proposed that each known
class can be represented as Mean Activation Vector (MAV),
with the mean being calculated only on correctly classified
training samples. Subsequently, the Euclidean distance of each
correctly classified AV, for each obtained MAV, is calculated.
The largest distance values of each MAV (tailsize) are used to
fit the Weibull Cumulative Distribution Function (CDFWeibull)
for each known class.

In the test step, the distance of the AV to the MAVs of
the known classes is calculated. Those distances are used to
calculate the CDFWeibull probability of each sample belong
a determined known class. Later, together with weighting
weights (alpha), they are used to recalibrate the AV, by incor-
porating the probabilities of the unknown class. In this method,
a MCT on the probabilities obtained by the OpenMAX layer
is also used, working similarly to the SoftMax-T method.

D. OpenIPCS

The OpenIPCS [10] was inspired by the Conditional Gaus-
sian Distribution Learning (CGDL) proposed by [17].It is a
Variational Autoencoder (VAE) model for conditional Gaus-
sian distribution estimation, capable of learning conditional
distributions of known classes and rejecting unknown exam-
ples. It uses more than one activation layer, replacing the VAE
with the Principal Component Analysis (PCA) and performing
the adjustment of the generative model with validation data
instead of training samples.

Shwarts and Tishby [18] demonstrated that the deeper
a layer is placed in a deep neural network, the closer to
the label space the activation features are. This approach is
different from the OpenMax-based, which considers only the
last activation layer to adjust the CDFWeibull for each KKC.
In addition to the last layer, OpenIPCS takes into account the
enabling characteristics of the previous layers, combining low-
level and high-level semantic information.



Then, for each output pixel, a corresponding activation
vector is constructed by concatenating the activation layers of
the network. Such a concatenation produces high-dimensional
and redundant feature vectors due to the hundreds or thousands
of activation channels present in the CNN and the fully
convolutional network (FCN) layers [2], [19].

As described by Tipping and Bishop [20], PCA, in addition
to dimensionality reduction, can also be used as a probability
density estimator with Gaussian priors. These features allow
OpenIPCs to use PCA as a generative model (G) for novelty
detection while solving the high-dimensionality problem of
feature vectors.

This G is incrementally adjusted using only the validation
images. This process consists of adjusting the PCA with a
batch of samples belonging to the validation set. The clas-
sification step using the G consists of projecting the main
components of the test images in the latent space obtained
by adjusting the PCA on the validation images and, then, per-
forming the inverse process. At the end, the difference between
the original feature vector and the one after the projection is
calculated. Consequently, pixels of known classes have low
difference values, while pixels belonging to the unknown class
have high difference values. The overall process is illustrated
in Fig. 2.

Fig. 2. Flow for adjusting and using the OpenIPCS.

III. DATASETS

Since OSSS has been underexplored in the literature, there
is no publicly available reference dataset for this task. In this
Section, we present the datasets used in this work.

A. Synthetic Geometry Dataset

The Synthetic Geometry Dataset (SGDataset) is a synthetic
dataset, inspired by [21], in which images are procedurally
generated by drawing geometric shapes randomly. The dataset
consists of three geometric shapes (circle, rectangle, and
triangle) and a completely white background class.

Due to its procedural characteristic, the dataset is easily
configurable for closed and open set segmentation tasks, with
few limits for image generation. To create a closed set dataset,
define the number of images that will be generated and the
minimum and the maximum number of objects that will be
drawn per image. To create an open set dataset define one
or more geometric shapes as a UUC and further define if
the images are for training or testing. This is important as
unknown objects must not be present in the training stage.
To ensure the reproducibility of the experiments, it is enough

to define the same random seed. The process of creating an
image of the dataset is summarized in the Algorithm 1.

Algorithm 1: Generation of a SGDataset image.
Input: Requires the minimum (min) and the maximum (max)

number of geometric objects in the output image.
Input: Requires the number of known classes (k).
Input: Requires a new input image (x) and a ground truth

(y) – are filled with a values 255 and 0, respectively.
Output: Returns the generated image (x) and ground truth (y).

1: n = random(min,max)
2: for i = 0...n do
3: c = random(0, k + 1)
4: if c < k then

x, y = draw known class(x, y, c)
5: else

x, y = draw unknown class(x, y, c)
6: end if
7: end for
8: return x, y

Geometric shapes are scaled based on a percentage of the
input width image (see Table II).

TABLE II
PERCENTAGE RANGES OF INPUT IMAGE WIDTH FOR DEFINING THE

DIMENSIONS OF THE GEOMETRIC SHAPES.

Class Percentage range
Rectangle width: [7.5%, 15%] , height: [15%, 30%]
Circle radius: [7.5%, 15%]
Triangle radius: [7.5%, 15%]

Object colors can vary randomly in a color space defined
by the Matplotlib library, as shown in Figure 3.

Fig. 3. Color Map for the SGDataset.

B. PASCAL Visual Object Classes 2012 Dataset

The PASCAL Visual Object Classes (VOC) 2012 dataset
[22] consists of 10,583 training images (including the extra
annotations provided by [23]) and 1,449 validation images, to-
taling 12,031 images with pixel-level annotations. The dataset
contains 20 well-known classes and one background class.
The known classes were mapped to categories according to
Table III to increase intra-class and inter-class variability,
in addition to simplifying the experiments performed in this
work.

IV. EXPERIMENT SETUP

Experiments were performed on a workstation with an Intel
Core-i5 9600K processor, 64GBytes of RAM, and a Nvidia
RTX 3090 GPU, running Ubuntu 18.04 LTS operating system.
The framework developed in this work was built using Python.
The neural network architecture used was proposed by [10],
a FCN with DenseNet-121 [2] pre-trained on ImageNet [24]



TABLE III
MAPPING OF PASCAL VOC 2012 CLASSES.

Original classes Mapped class
Background, Bottle, Chair, Dining table, Potted
plant, Sofa, TV/monitor

Background

Person Person
Bird, Cat, Cow, Dog, Horse, Sheep Animal
Aeroplane, Bicycle, Boat, Bus, Car, Motorbike,
Train

Vehicle

was built in PyTorch. The implementation of PCA was build
with the scikit-learn.

A. Overview

Figure 4 presents a block diagram of the proposed method
used to carry out the experiments. The process is detailed
as follows. First, the open set dataset is split into two:
train and test data (see Section IV-B). The next step is to
perform the closed set flow for obtaining the best model in
the closed set (see Section IV-D). In the open set flow, the
OSSS methods are trained to identify unknown samples (see
Section IV-E). The last step is to compute the evaluation
metrics (see Section IV-F).

Fig. 4. Block diagram of the proposed method.

B. Open Set Dataset

The open set dataset is split into train and test data to be
consistent with the OSSS task in which data from the UUC
need not be present in the training step. Hence, PASCAL VOC
2012 images with UUC pixels were removed from the train
data and allocated to the test data. A percentage of 20% of the
images without UUC pixels were also allocated to compose
the test data. Table IV shows the number of images by classes
for training and testing.

In the SGDataset, the division was automatically accom-
plished at the creation time, as described in Section III-A.
A total of 2000 and 500 images were used for training and
testing data, respectively.

C. Pre-processing

In the first stage of pre-processing, the images were resized
to 224 × 224 pixels due to the input size requirement of the
convolutional model used in this work.The second step was to
apply data augmentation techniques to improve segmentation
results [25]. The last pre-processing step was to normalize the

TABLE IV
AMOUNT OF IMAGES USED IN THE EXPERIMENTS WITH THE PASCAL VOC

2012 DATASET.

UUC Train data Test data
Person 6149 5882
Animal 6136 5895
Vehicle 6312 5719

images using the mean (µ) and standard deviation (σ) of the
images available in ImageNet [24], as shown in the Eq. 1:

zi =
xi − µi ∗ 255
σi ∗ 255

, (1)

in which xi is the RGB channels of the input image, zi is
the channels normalized by µ = 0.485, 0.456, 0.406 and σ =
0.229, 0.224, 0.225. Pre-processing was applied to all images
used in this work.

D. Closed-set training

The first step is to split train data using the cross-validation
with k = 3. The low value of k was chosen to increase the
proportion of samples from known and unknown classes in
the testing folds.

The second step was to apply a data augmentation method
to the training folds before applying the operations defined
in Section IV-C. We used the Albumentations1 library to
perform the transformations shown in Table V, applied with a
probability of 20%.

TABLE V
DATA AUGMENTATION TRANSFORMATIONS.

Transformations Parameters
Shift, Scale e Rota-
tion

The shift and scaling factor range:
[−0.5, 0.5]. Rotation factor range:
[−90, 90].

Random Brightness
and Constrast

The factor range for brightness and con-
trast: [−0.3, 0.3].

GridDropout [26] The pixels of the removed input image
region are filled with a value of 255.

Finally, the model was trained with a batch size of 16
images until the cross-entropy loss stagnates for 5 consecutive
epochs. For this process, we used the Adam optimizer with an
initial learning rate of 0.0001, and weight decay coefficient of
0.00001. The training process was repeated until all folds are
used in the testing.

E. Open-set training

The OSSS methods studied in this work depend on a
semantic segmentation model for open set recognition. Thus,
the model with the highest (m)IoU (mean Intersection over
Union) in the closed set was selected for this step. Due to
the simplicity of the SoftMax-T method in thresholding the
output of the SoftMax function, it is not necessary to carry
out any training process for this method. OpenMax-based and
OpenIPCS need to adjust the CDFWeibull and G, respectively,

1https://albumentations.ai/



for classification of known and unknown pixels, as described
in Section II. For the evaluation of the methods, 20% of the
images were reserved from the test data presented in Table IV.

F. Evaluation

In this work, the following metrics were used for evaluating
the proposed approach: Precision, Recall and IoU, defined
by Equations 2, 3 and 4, respectively. These metrics are
commonly used to evaluate closed set segmentation methods
and have been recently explored in the context of open set
segmentation [9]–[11].

Precisioni =
TPi

TPi + FPi
, (2)

Recalli =
TPi

TPi + FNi
, (3)

IoUi =
TPi

TPi + FPi + FNi
. (4)

where TPi, FPi, FNi are true positives, false positives, and
false negatives for each class i.

Precision is a measure that indicates the proportion of cor-
rectly segmented pixels. Recall is a measure of completeness
that specifies the proportion of positive pixels in the ground
truth that is also identified as positive by the segmentation. The
IoU is calculated for each semantic class. This measure seeks
to assess the similarity between two finite sets, in this case,
ground truth and the segmentation predicted by the model.
The mIoU is the average of all classes.

V. EXPERIMENTAL RESULTS AND DISCUSSION

This Section is divided into two parts: quantitative and
qualitative results, and both parts include the results obtained
by each open set segmentation method: SoftMax-T, OpenMax-
based, and OpenIPCS.

A. Quantitative Results

Tables VI and VII show the results of the three
OSSS methods evaluated in this work using the SG-
Dataset and PASCAL VOC 2012 image datasets, respec-
tively. The parameters presented were defined through
an exhaustive search in the following values: threshold:
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], alpha: [2, 3] and tail-
size: [20, 40, 60, 80, 100].

The average results obtained by the methods in the SG-
Dataset, which has a more controlled set of images, suggest
that OpenIPC presented superior results in terms of accuracy,
recall, and IoU. This fact indicates that it is the most suitable
method among those proposed for this application. However,
analyzing the results obtained on the PASCAL VOC 2012
dataset, which has a more complex set of images with high
intra-class and inter-class information variability, the superior-
ity presented in the previous experiment was not repeated. In
general, the results found are similar between the three models
and far from being considered satisfactory for practical OSSS
tasks.

Considering only the unknown classes, in general,
OpenIPCs was superior to SoftMax-F and OpenMax. For the
SGDataset, in particular, the UUC: circle presented similar
results in terms of precision between the three methods.
However, recall and IoU were 80% and 58.62%, respectively,
with the OpenIPCS method, indicating that the predictions
performed by the method were more consistent with respect
to pixels of unknown class. That is, the pixels predicted to be
unknown by the segmentation are actually unknown pixels in
the ground truth. Similar behavior happens in PASCAL VOC
2012, with UUC: vehicle, with lower recall and IoU values,
40% and 30.04%, respectively.

Analyzing only the results obtained on the PASCAL VOC
2012, we can highlight the relationship between the animal
and person classes. When one of the classes was used as UUC,
the other obtained low values for the metrics. This indicates a
possible confusion between the OSSS methods, probably due
to the similarity between the classes.

The best result obtained among all the analyzed experiments
was in the UUC: triangle class. The three methods achieved re-
sults above 72% in all metrics analyzed. The best method was
OpenIPCs which averaged 87.72%, 92.09%, and 85.47% for
accuracy, recall, and IoU metrics, respectively. The semantic
segmentation network learns different elements of the object
to make predictions such as shape, texture, color, etc. The
UUC: triangle class stands out for the coloring of the objects
defined in the section III, which is slightly different from the
other objects. In the next section, we will explore the visual
characteristics of images further.

B. Qualitative results

Tables VIII and IX present some samples of the best seg-
mentations generated by the methods discussed in this work.
In the Figures it is possible to observe that the quantitative
assessment is reflected in the qualitative results. In general,
all methods have limitations to precisely segment objects of
the UUC classes.

OpenIPCS stands out compared to SoftMax-T and
OpenMax-based, specially in situations where there is not a
large variety of intra-class pixels. That is, in all UUCs of the
SGDataset and the UUC: vehicle of the PASCAL VOC 2012
dataset. On the other hand, OpenIPCS produces artifacts of the
UUC class, even in the best results obtained by the method.
This feature can also be seen in his original work [10].

The results generated by SoftMax-T and OpenMax-based
are similar to each other and inferior to OpenIPCS in more
controlled situations, as in the case of the SGDataset. Another
important factor is the difficulty of these methods in dealing
with the boundaries between classes in images. In general,
predicting the pixels in this region as belonging to the UUC.
This result is due to the characteristic of the methods in
manipulating the SoftMax layer outputs to include the UUC
prediction. The SoftMax layer produces class predictions with
lower certainty for pixels belonging to the boundary regions
between objects [10].



TABLE VI
PERFORMANCE OF CLOSED SET SEMANTIC SEGMENTATION AND OPEN SET SEMANTIC SEGMENTATION ACHIEVED ON THE GEOMETRY DATASET.

BOLD VALUES INDICATE THE BEST RESULTS OF (M)IOU.

UUC: Circle

KKCs Closed set SoftMax-T OpenMax-based OpenIPCS
(m)IoU Precision Recall (m)IoU Precision Recall (m)IoU Precision Recall (m)IoU

Background 91.37% 99.64% 98.54% 94.57% 99.75% 98.31% 95.38% 99.98% 83.91% 83.63%
Rectangle 94.48% 39.43% 89.42% 48.20% 39.64% 88.92% 48.24% 72.41% 91.43% 76.00%
Triangle 92.64% 98.11% 83.36% 82.96% 98.44% 82.30% 81.99% 96.44% 87.22% 86.94%

Unknown - 32.52% 12.17% 9.63% 33.41% 14.22% 11.07% 33.96% 80.00% 58.62%
Average 92.83% 67.42% 70.87% 58.84% 67.81% 70.94% 59.17% 75.70% 85.64% 76.30%

Parameters Threshold: 0.8 Tailsize: 80, Alpha: 3, Threshold: 0.8 Threshold: 0.8
UUC: Rectangle

KKCs Closed set SoftMax-T OpenMax-based OpenIPCS
(m)IoU Precision Recall (m)IoU Precision Recall (m)IoU Precision Recall (m)IoU

Background 93.04% 99.77% 97.11% 93.96% 99.84% 96.59% 94.47% 99.94% 88.34% 87.51%
Circle 96.23% 58.47% 93.40% 49.58% 58.92% 92.78% 49.66% 79.20% 94.79% 72.75%

Triangle 92.58% 96.51% 81.84% 81.29% 97.46% 78.68% 78.32% 90.99% 87.63% 87.06%
Unknown - 16.17% 10.09% 8.06% 16.05% 12.26% 9.41% 29.77% 70.00% 54.98%
Average 93.95% 67.73% 70.61% 58.22% 68.07% 70.07% 57.97% 74.98% 85.19% 75.57%

Parameters Threshold: 0.8 Tailsize: 100, Alpha: 3, Threshold: 0.8 Threshold: 0.7
UUC: Triangle

KKCs Closed set SoftMax-T OpenMax-based OpenIPCS
(m)IoU Precision Recall (m)IoU Precision Recall (m)IoU Precision Recall (m)IoU

Background 92.52% 99.22% 97.27% 84.44% 99.45% 96.41% 87.17% 99.05% 97.59% 83.35%
Rectangle 92.14% 87.79% 76.98% 67.31% 88.89% 72.25% 64.36% 90.98% 93.42% 88.40%

Circle 96.02% 99.40% 88.83% 88.28% 99.72% 86.05% 85.86% 95.74% 97.35% 94.75%
Unknown - 39.58% 70.76% 52.03% 35.85% 77.45% 53.51% 65.10% 80.00% 75.38%
Average 93.56% 81.50% 83.46% 73.02% 80.98% 83.04% 72.72% 87.72% 92.09% 85.47%

Parameters Threshold: 0.9 Tailsize: 100, Alpha: 3, Threshold: 0.9 Threshold: 0.8

TABLE VII
PERFORMANCE OF CLOSED SET SEMANTIC SEGMENTATION AND OPEN SET SEMANTIC SEGMENTATION ACHIEVED ON THE PASCAL VOC 2012

DATASET. BOLD VALUES INDICATE THE BEST RESULTS OF (M)IOU.

UUC: Person

KKCs Closed set SoftMax-T OpenMax-based OpenIPCS
(m)IoU Precision Recall (m)IoU Precision Recall (m)IoU Precision Recall (m)IoU

Background 86.09% 89.16% 91.60% 57.64% 89.45% 91.36% 58.10% 88.87% 86.28% 53.15%
Animal 93.69% 70.14% 72.90% 66.72% 65.90% 77.99% 69.71% 59.03% 78.42% 68.41%
Vehicle 90.61% 88.13% 62.30% 60.87% 88.75% 61.64% 60.35% 75.35% 76.14% 71.72%

Unknown - 41.66% 41.66% 25.88% 41.57% 41.04% 26.19% 39.05% 40.00% 29.41%
Average 90.13% 72.27% 67.12% 52.78% 71.42% 68.01% 53.59% 65.58% 70.21% 55.67%

Parameters Threshold: 0.9 Tailsize: 20, Alpha: 3, Threshold: 0.8 Threshold: 0.4
UUC: Animal

KKCs Closed set SoftMax-T OpenMax-based OpenIPCS
(m)IoU Precision Recall (m)IoU Precision Recall (m)IoU Precision Recall (m)IoU

Background 82.91% 93.72% 90.26% 67.47% 94.67% 89.17% 69.14% 93.81% 82.23% 60.78%
Person 87.77% 35.04% 68.42% 53.32% 37.26% 67.27% 53.78% 32.74% 76.60% 57.91%
Vehicle 87.80% 82.59% 69.56% 68.08% 85.56% 67.32% 66.24% 65.97% 72.89% 69.13%

Unknown - 52.60% 49.78% 31.57% 53.11% 57.33% 35.12% 43.54% 50.00% 34.42%
Average 86.16% 65.99% 69.51% 55.11% 67.65% 70.27% 56.07% 59.02% 70.43% 55.56%

Parameters Threshold: 0.8 Tailsize: 20, Alpha: 2, Threshold: 0.7 Threshold: 0.5
UUC: Vehicle

KKCs Closed set SoftMax-T OpenMax-based OpenIPCS
(m)IoU Precision Recall (m)IoU Precision Recall (m)IoU Precision Recall (m)IoU

Background 84.86% 81.58% 97.35% 47.45% 81.57% 97.46% 47.27% 86.58% 92.60% 52.56%
Person 88.59% 86.29% 70.31% 68.85% 85.20% 72.48% 70.88% 77.40% 77.23% 73.92%
Animal 91.08% 90.66% 83.17% 82.02% 89.97% 83.96% 82.84% 85.55% 74.41% 72.98%

Unknown - 29.35% 6.87% 5.14% 32.09% 6.89% 5.32% 54.82% 40.00% 30.04%
Average 88.18% 71.97% 64.42% 50.87% 72.21% 65.20% 51.58% 76.09% 71.06% 57.38%

Parameters Threshold: 0.8 Tailsize: 20, Alpha: 3, Threshold: 0.6 Threshold: 0.4



TABLE VIII
SOME OF THE BEST VISUAL RESULTS SAMPLES OBTAINED ON THE

SGDATASET. UUC IS REPRESENTED BY RED PIXELS.

UUC: Circle
Image Ground

truth
Closet Set SoftMax-T OpenMax-

based
OpenIPCS

UUC: Rectangle
Image Ground

truth
Closet Set SoftMax-T OpenMax-

based
OpenIPCS

UUC: Triangle
Image Ground

truth
Closet Set SoftMax-T OpenMax-

based
OpenIPCS

TABLE IX
SOME OF THE BEST VISUAL RESULT SAMPLES OBTAINED ON THE

PASCAL VOC 2012. UUC IS REPRESENTED BY RED PIXELS.

UUC: Person
Image Ground

truth
Closet Set SoftMax-T OpenMax-

based
OpenIPCS

UUC: Animal
Image Ground

truth
Closet Set SoftMax-T OpenMax-

based
OpenIPCS

UUC: Vehicle
Image Ground

truth
Closet Set SoftMax-T OpenMax-

based
OpenIPCS

VI. CHALLENGES IN OPEN SET SEMANTIC
SEGMENTATION

Considering that the objective of OSSS is to precisely
segment the pixels of the known and unknown classes, a
detailed analysis of the results was carried out to demonstrate
the main challenges of this task. In this review we expand and
redefine the challenges summarized by [9]:

1) Invisible objects in known classes that resemble the
unknown class: due to difficulties in annotating a large
volume of images for semantic segmentation, several
image regions end up being “ignored” in the labeling
process. Typically, these regions were labeled as the
background (known) class, making it reasonable for the
OSSS model to classify objects of the background class
as objects of the unknown class and vice-versa.

2) Objects of unknown classes similar to known classes:
due to a large number of possible classes in the classifi-
cation task, it is natural to find objects of known classes
similar to some objects of unknown classes. In this chal-
lenge, we will expand the description proposed by [9],
considering that the neural networks for segmentation
use different aspects of the object (color, texture, shape,
etc) to perform the task. A strong similarity in only one
of these aspects can increase the difficulty for the model
to classify pixels. For example, to the human eyes, we
might think that the person class does not have animal-
like appearance. However, the human hair is very similar
to the animal hair, making it difficult for these parts to be
classified correctly. This similarity can also be expanded
to other objects such as sofas, rugs, etc.

3) Precisely segmented objects of known and un-
known classes: this challenge incorporates several sub-
problems that are found in closed-set segmentation and
also occur in open-set segmentation. In closed-set seg-
mentation, the models suffer from the sub-problem of
overlapping between objects, making it difficult to accu-
rately separate the boundaries between objects. Another
common sub-problem is the small objects present in the
images, which are generally classified as objects of other
classes, such as the background class. All these sub-
problems are inherited by the OSSS task. However, in
open-set segmentation, we still have the challenge of
accurately classifying regions of completely unknown
objects, while dealing with the sub-problems derived
from closed-set segmentation.

VII. CONCLUSION

In this work, we investigate the performance of the main
OSSS methods applied to different image segmentation prob-
lems. Two main points were explored: (i) the quantitative
and quantitative performance of the methods; and (ii) possible
limitations of the methods.

Regarding the first point, the experiments showed that the
methods found difficulties in dealing with the OSSS task.
Only OpenIPCS presented promising results for particular



situations, e.g., where the unknown class had a high intra-
class variation and a low inter-class variation.

In the second point, the main limitations of the SoftMax-T
and OpenMax-based methods were linked to their formulation,
which uses only one layer of the neural network to incorporate
the recognition of the unknown. Possibly, this is causes a
drawback in separating distinct, but similar, classes with pixels
belonging to regions of boundaries between objects that have
low predictive probability values, being commonly segmented
as belonging to an unknown class. OpenIPCS mitigated the
problem of pixels belonging to object boundaries by using
more than one layer of the neural network to map the feature
space of known classes. However, this method presents arti-
facts of the unknown class in the resulting image, probably
due to the similarity of the pixels in specific points of the
image with the unknown class.

In general, this work revealed that it is hard to implement
the semantic segmentation methods in real-world applications,
where the segmentation of the known and unknown classes
must be done precisely. We also redefined the main challenges
of OSSS, in order to collaborate with future work that can
address these limitations. Finally, based on the experiments
done, we consider that the OSSS task is still an open problem.
Thus, it is expected that future works can improve the perfor-
mance of the models and make this task viable for real-world
applications. We believe that studies in Deep Metric Learning
and Bayesian Deep Learning may boost the performance of
the OSSS task.
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Fundação Araucária for the financial support by means of
PRONEX 042/2018.

REFERENCES

[1] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2015, pp. 3431–3440.

[2] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[3] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proc. of the European Conference on Computer Vision, 2018,
pp. 801–818.

[4] M. Siam, M. Gamal, M. Abdel-Razek, S. Yogamani, M. Jagersand, and
H. Zhang, “A comparative study of real-time semantic segmentation
for autonomous driving,” in Proc.of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2018.

[5] A. Milioto, P. Lottes, and C. Stachniss, “Real-time semantic segmen-
tation of crop and weed for precision agriculture robots leveraging
background knowledge in cnns,” in Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2018, pp. 2229–2235.

[6] M. Hofmarcher, T. Unterthiner, J. Arjona-Medina, G. Klambauer,
S. Hochreiter, and B. Nessler, “Visual scene understanding for au-
tonomous driving using semantic segmentation,” in Explainable AI:
Interpreting, Explaining and Visualizing Deep Learning. Springer,
2019, pp. 285–296.

[7] M. H. Hamian, A. Beikmohammadi, A. Ahmadi, and B. Nasersharif,
“Semantic segmentation of autonomous driving images by the combi-
nation of deep learning and classical segmentation,” in Proc. of the 26th
International Computer Conference, Computer Society of Iran, 2021,
pp. 1–6.

[8] C. C. V. da Silva, K. Nogueira, and J. A. Oliveira, Hugo N Santos,
“Towards open-set semantic segmentation of aerial images,” in Proc. of
the IEEE Latin American GRSS & ISPRS Remote Sensing Conference
(LAGIRS), 2020, pp. 16–21.

[9] Z. Cui, W. Longshi, and R. Wang, “Open set semantic segmentation with
statistical test and adaptive threshold,” in Proc. of the IEEE International
Conference on Multimedia and Expo (ICME), 2020, pp. 1–6.

[10] H. Oliveira, C. Silva, G. L. S. Machado, K. Nogueira, and J. A.
Santos, “Fully convolutional open set segmentation,” ArXiv preprint,
vol. 2006.14673, 2020.

[11] Y. Liu, Y. Tang, L. Zhang, L. Liu, M. Song, K. Gong, Y. Peng,
J. Hou, and T. Jiang, “Hyperspectral open set classification with un-
known classes rejection towards deep networks,” International Journal
of Remote Sensing, vol. 41, no. 16, pp. 6355–6383, 2020.

[12] A. Bendale and T. E. Boult, “Towards open set deep networks,” in Proc.
of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 1563–1572.

[13] W. J. Scheirer, A. de Rezende Rocha, A. Sapkota, and T. E. Boult,
“Toward open set recognition,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 7, pp. 1757–1772, 2012.

[14] A. R. Dhamija, M. Günther, and T. E. Boult, “Reducing network
agnostophobia,” in Proc. of the 32nd International Conference on Neural
Information Processing Systems, 2018, p. 9175–9186.

[15] J. Weston, R. Collobert, F. Sinz, L. Bottou, and V. Vapnik, “Inference
with the universum,” in Proc. of the 23rd International Conference on
Machine Learning, 2006, pp. 1009–1016.

[16] W. J. Scheirer, A. Rocha, R. J. Micheals, and T. E. Boult, “Meta-
recognition: The theory and practice of recognition score analysis,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 33,
no. 8, pp. 1689–1695, 2011.

[17] X. Sun, Z. Yang, C. Zhang, K.-V. Ling, and G. Peng, “Conditional
gaussian distribution learning for open set recognition,” in Proc.of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13 480–13 489.

[18] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” ArXiv preprint, vol. 1703.00810, 2017.

[19] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Highway networks,”
ArXiv preprint, vol. 1505.00387, 2015.

[20] M. E. Tipping and C. M. Bishop, “Mixtures of probabilistic principal
component analyzers,” Neural Computation, vol. 11, no. 2, pp. 443–482,
1999.

[21] Y. Liu, E. T. Psota, and L. C. Pérez, “Layered embeddings for amodal
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