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Abstract—With the advancement of technology the speed of
industrial processes has greatly increased resulting in the need of
obtaining models and controllers in a faster and more interactive
way. Fortunately, the speed and ability to obtain data have also
shown great advances, allowing the use of techniques capable
of modeling processes reliably and quickly using the System
Identification process. For generate a model from the input
and output data of the systems, the System Identification has
been the subject of many studies, with several techniques being
proposed capable of generating reliable models in a short period
of time. Two of these techniques, presented in this article, are
the techniques known as Regional Models and Robust Regional
Models, which use Clustering techniques such as Self Organizing
Map (SOM) and K-means to dividing the system’s data space into
similar regions in order to produce more reliable models using
supervised neural networks; the robust approach also performs
the treatment of Outliers in the data using the M-Estimation
technique. The techniques presented are applied in nonlinear
industrial systems and evaluated based on their Normalized Mean
Square Error (NMSE) and the residual autocorrelation.

Index Terms—System Identification, Neural Networks, ELM,
SOM, Regional Models

I. INTRODUCTION

Currently, modeling process has demanded even more ad-
vanced techniques in order to produce faithful models, better
physical knowledge and for the realization of stable and
precise control of processes. However, the demand is also for
these models to be obtained quickly, especially in industrial
environments where the production process must remain on
the maximum possible scale, making the white box technique
often impracticable.

An alternative to these challenges is system identification,
also known as black box modeling because only the input and
output data of the system are known, the information about
the physics of the system is basically zero. Or, in some cases,
gray box modeling is extremely viable, where the scientist has
some physical information from the system and can improve
the model obtained.

Due to the growth over the years of hybrid and nonlinear
industrial processes, it is necessary to implement systems
identification methods that meet the needs of modeling and
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controlling processes in a fast and effective way. Considering
these factors, new and improved algorithms appear in the
research that seek to meet the demand presented above, using
hybrid methods and nonlinear modeling techniques (Neural
Networks, Fuzzy Systems, Genetic Algorithm, etc.).

In short, the established algorithms use techniques capable
of providing global models, which represent the system as a
whole, generating a single regression model, or local models,
characterized by the presence of several regression models
for the same system or process - usually using clustering
techniques for such purposes. Global models are more easily
found in the literature, however, the interest in local models has
increased due to their ease in characterizing systems that have
different operating points or many nonlinearities. Obviously
the best way to choose a model or modeling technique is to
carry out research and tests.

Another approach that was recently proposed in the work
of [3], is the use of regional models. The approach consists
of using local modeling algorithms, performing a clustering
at two levels [2], in order to separate the studied system
in regions of more similar data and that can generate more
reliable global regression models.

In the present work, linear and nonlinear regional models
generated from the system identification process are used
to characterize industrial system databases. The generated
models, differently of the work that has proposed these tech-
niques, are inverse models, obtaining the desired input for the
generation of a certain output, a process that facilitates the
subsequent control action of the systems. Robust models will
also be produced in order to reduce the effect of outliers in
the modelling process, here is used the M-estimation method.

II. SYSTEM IDENTIFICATION

System identification is a process through which, provided
only with the input information u(k) and output y(k) of a
system, there is a mathematical model that, at least in an
approximate way, can define a cause and effect relationship
between them [1]. This process consists of 5 steps, namely:

o dynamical tests and data collect;



o choose of mathematical representation to be used;

¢ determination of model structure;

e parameter estimation;

« model validation.

Exemplifying the process [5] [3], it is assumed that a system
can be represented by the autoregressive with exogenous inputs
linear model (ARX):

y(k) =Y agy(k—j)+ > bk —1). e)
j=1 =1

After the stage of testing and collecting the data, it is desired
to obtain the parameters a; € R and b; € R. Thus, the input
matrix x(k) containing the data and the parameter vector 6 is
defined:

x(k) = [y(k = 1)..y(k = p)lu(k —1)..u(k — )", (2

0 = [ay...ap|by..b,]", (3)

thus, the ARX model presented in (1) can be rewritten as:

y(k) = 0"x(k). €))

Looking at the equation (4) it is noticed that, in order to
arrive at a satisfactory regression model, a good estimation of
the parameters 6 is necessary. A common and well accepted
technique among the scientific community is that of Ordinary
Least Squares (OLS), some of its more recent applications
and studies can be found at [8]-[11]. There is versions of this
technique in Batch or Recursive form, using the Kalman filter
[6], [7], or even robust versions of Least Squares, as will be
presented in another topic of this article.

Using OLS, it is possible to arrive at the value of the
parameters through the equation 5:

6 = (X"X)"'XTy, ©)

the matrix X is represented as shown in (6)

y(p) y(1) u(p) ulp—q+1)
y(p+1) y(2) u(p +1) u(p —q+2)
YIN=1) .. y(N-p) u(N-1) u(N = g)

(6)

where N represents the total number of input-output pairs
used in the estimation process.

The nonlinear approach of the model presented in (1)
constitutes a nonlinear autoregressive model with exogenous
inputs (NARX), shown in (7)

y(k) = fly(k = 1), ...,y(k = p);u(k = 1), ..., u(k — q)|©],

= fIx(k)[6],
)

where f(-) represents a nonlinear mapping of the system.

The parameters and mapping of the NARX model can be
obtained using several computational intelligence approaches
that have been studied and improved over time, due to the need
to better understand and control a large demand for nonlinear
dynamic systems. Among the methods used, we can mention
neural networks [12]-[15], Takagi-Sugeno-Kang fuzzy models
[16]-[18] and hybrid models [19]-[22].

III. REGIONAL MODELLING

This technique was developed from the 2-level clustering
technique [2] and aims to partition the global data space into
similar smaller spaces, in order to obtain global models for
these regions, using neural networks as Extreme Learning
Machine (ELM) [24] or Multilayer Perceptron (MLP) [23],
so that the system as a whole can be more faithfully repre-
sented. Here, the clustering techniques used will be the Self-
Organizing Map neural network (SOM) [25] and the K-means
algorithm, however other techniques such as Winner Takes All
(WTA), Radial Basis Function (RBF), etc. can be used.

First of all, hyper-parameters must be defined, such as
regression orders p e ¢, the value of the SOM prototypes C' and
the maximum number of regions K,,,;, being indicated here
as possible values C' = 5v/N; and K,,q, = v/C, being N,
the number of samples intended for training. After defining
the hyper-parameters, the method used to generate regional
models is basically five steps.

1) Step 1: SOM Training: In this step, given an input vector
X, training of the SOM network is carried out using the C
prototype vectors defined and the partition of the Voronoi cells,
according to the rule presented in (8),

V; ={x € R || x—w; ||<|| x—w; ||,Vj=1,...,C,j #i}.
(®)
2) Step 2: Clustering of the SOM: After SOM training, it
is necessary to partition the prototype vectors into K regions.
In this stage, cluster validation techniques can be used, such
as Davies-Bouldin (DB) [26] to reach an optimum value of
regions K,,;, among the values of K =1, ..., K.
Kopt = arg ming_, DB(W,PK), )

seers Kmax

where PX denotes the set of K prototype vectors.

3) Step 3: Partitioning SOM prototypes into regions: From
the value found K,,;, SOM prototypes w; must be distributed
between the prototypes of the K-means algorithm p,., r =
1,..., Kopt, following the rule given in (10):

W, = {wie RPT| | w; —p, [[<[|wi—p, |,
Vi=1,..,Cj#r}

4) Step 4: Mapping data points to regions.: The fourth
step is to map the training data to the defined regions,
assigning the data to the region that the nearest SOM prototype
belongs to the partition W,., thus generating the regions {X },
{X2},...{X;}, that will be used to generate the regression
models.

(10)



5) Step 5: Building regression models over the regions:
Finally, for each region, the necessary parameters for the
construction of the models are calculated. The OLS method
can be used directly to arrive at linear models of the system by
calculating the parameter vector ©, for each region as shown
in (11),

(1)

or, for a nonlinear approach, the ELM or MLP network can
be used. Some uses of ELM and MLP in system identification
may be seen in [27]-[30], [32].

@7" = (Xz—'XT)i 1X7"yra

IV. M-ESTIMATION: ROBUST MODELS

Generally, when using regression algorithms, the same
contribution value is assigned to all error samples. However,
the error value can be generated from training data with
outliers, which negatively affects the ability to generalize the
algorithms. This problem can be solved by removing the
outliers present in the data, but this process can be exhausting
and complicated. A viable alternative is the realization of the
so-called robust regression, using estimation methods that are
not so sensitive to outliers, allowing the adaptation and re-
weighting of algorithms such as ELM and OLS [3], [31].

The robust regression process is based on the M-estimation
technique proposed by Huber [33] - where M is related to the
“maximum likehood”, which allows to increase the robustness
of the model by minimizing a cost function different from the
sum of the quadratic errors and which allows the weighting
and filtering of the contribution of each error to the function.
Applying the technique to any OLS algorithm, you can in-
crease the robustness of the algorithm by following the steps
below:

1) Step I1: Generate an initial parameter array é(O) through
the standard use of the OLS algorithm.

2) Step 2: At each t iteration of the algorithm, collect the
residuals from the past iteration egf _1), with n = 1,..., Ny
and then store the values of the weights generated wg_l) =
w(egf 71)). The value of the weights can be computed from
several functions, such as Andrews, Cauchy, an example is
that of Huber,

12)

k .
e if len| > ke
w(e,) =4 &
(en) {1 otherwise.

The constant k. is a tuning value, so it is understood that
from the given condition |e,| > ke, the higher the value of
the residue, the lower the value of the weight.

3) Step 3: In the last step is needed to solve the weighted
least squares equation and find the vector of parameters

6® = (XTBU-VX)~IXTB(Vy, (13)

where BV = diag(w' ™) it’s a matrix Ny x N;.

This algorithm applied to OLS is called iteratively
reweighted least-squares (IRLS), proposed by [3], and also
can be used in MLP, ELM, SOM [34] etc.

V. EXPERIMENTS AND RESULTS

In the research, four data sets obtained from the DalSy
repository (Database for the Identication of Systems) were
used, two industrial systems and two mechanical systems:
Hydraulic Actuator, Robot Arm, Heat Exchanger, Continuous
Stirred Tank Reactor (CSTR). The sets studied here have their
characteristics presented and were modeled and analyzed using
local models in the work of [4].

In the study carried out, 4 different techniques were used
for the process of identifying the data sets. First, regional
models were obtained using K, linear models obtained using
the OLS technique, a method called the Regional Linear
Model (RLM). Nonlinear models were also built using ELM
algorithm, chosen in short due to its speed of learning, since it
does not require long training cycles such as the MLP network,
this method was given the name Regional Extreme Learning
Machine (RELM) [3].

The RLM and RELM methods were also subjected to the
IRLS technique, in order to reduce the influence of outliers
on them through the interactive treatment that is performed.
The robust regional models are then called Robust RLM
(R2LM) and Robust RELM (R2ELM). The regression models
generated are of the ARX type, and inverse regression models
are built, that is, the result obtained through the tests performed
is the system input necessary to obtain certain desired output
values, thus facilitating the action of control.

For the training stage, an initial learning rate oy = 0.1 and
final ar = 0.01 were used as hyper-parameters for the SOM
network. The neighborhood function chosen was Gaussian,
having as initial neighborhood radius oy = 10 and final op
= 0.01. The number of prototype vectors for each data set
was defined in approximate values of 5v/N and 50 training
epochs were held. The data were normalized in the interval
[-1,+1].

The value of K,,; and the number of neurons present in
the hidden layer h used in the ELM network were defined
through the training and validation process, ranging from K to
a value of K., this being defined as an approximate value of
v/C'. The number of neurons in hidden layer was varied from
10 to 100 and the tangent-hyperbolic activation function was
used for the network. The data separation process for training,
validation and testing had the following proportion: training
data = 50%; validation data = 30%:; test data = 20%.

The comparison between the algorithms for the same data
set was performed through the analysis of the generalization
error, comparing the value of the Normalized Mean Squared
Error NMSE):

Yoy (1)

NMSE = &=L~ 14

Ny52 (14

being No the number of samples of the test set, e(t) the

predction error calculated as e(t) = u(t) — w(t) and G2 the
variance of the original test time series.



Next, the parameters and results for each data set will be
presented, as well as the presentation of the residual analysis
through the graph of the autocorrelation function.

A. Hydraulic Actuator

For the hydraulic actuator set, were selected the memory
orders used by [35]: p = 3 and q = 2. For nonlinear models
based on ELM (RELM and R2ELM) the number of neurons
used in the hidden layer was h = 20 and the value of K,
obtained for all models was 2.

TABLE I
RESULTS HYDRAULIC ACTUATOR
Used NMSE
Models Mean Variance
R2ELM 0.0012 1.19e-006
RELM 0.0015 1.89¢-006
R2LM 9.34e-005 | 2.32e-015
RLM 9.34e-005 | 2.41e-015
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Fig. 1. Hydraulic Actuator - Autocorrelation Function: R2ZELM.
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Fig. 2. Hydraulic Actuator - Autocorrelation Function: RELM.

As can be seen from the quantitative analysis, the R2LM
algorithm presented the best performance for the set, with a
result very close to that of the RLM, but with less variance
of the data, the qualitative results showed that the algorithms
produced decorrelated models.
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Fig. 3. Hydraulic Actuator - Autocorrelation Function: R2LM.
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Fig. 4. Hydraulic Actuator - Autocorrelation Function: RLM.

It is worth mentioning that in the work of [3], the analysis
of the mean square error was also performed for the same data
set, however, a direct model was generated, without the use
of the inverse modeling technique as in this paper.

In Fig. 5 can be seen the regression curve of predicted data
for the best case and the test set that originated it.
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Fig. 5. Regression Curve Hydraulic Actuator.



B. Robot Arm

For the robotic arm set, the following memory orders were
selected: p = 5 and q = 4. For nonlinear models based on
ELM (RELM and R2ELM) the number of neurons used in
the hidden layer was h = 100 and the value of K,,; obtained
for all models was 1.

TABLE II
RESULTS ROBOT ARM
Used NMSE
Models Mean Variance

R2ELM | 0.0204 | 1.79e-005
RELM | 0.0202 | 1.18e-005
R2LM 0.0042 | 7.78e-037

RLM 0.0042 | 3.11e-036
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Fig. 6. Robot Arm - Autocorrelation Function: R2ELM.
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Fig. 7. Robot Arm - Autocorrelation Function: RELM.

As can be seen through the analysis of the NMSE, the
R2LM algorithm achieved the best results, considering the
lowest rate of variance for it, however, the graphs show that
the linear models (R2LM and RLM) have strongly correlated
functions.

In Fig. 10 can be seen the regression curve of predicted data
for the best case and the test set that originated it.
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Fig. 8. Robot Arm - Autocorrelation Function: R2LM.
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Fig. 9. Robot Arm - Autocorrelation Function: RLM.
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C. Heat Exchanger

For the heat exchanger set, were used the memory orders:
p = 6 and q = 3. For nonlinear models based on ELM, the
number of neurons in the hidden layer used for the R2ZELM
algorithm was h = 100 e for the RELM algorithm it was
h = 70. The value of K,,; obtained for all models was 4.

TABLE III
RESULTS HEAT EXCHANGER
Used NMSE
Models Mean Variance

R2ELM | 0.3611 0.0016
RELM | 0.3527 | 7.32e-004
R2LM 0.3493 | 8.99e-007

RLM 0.3497 | 2.81e-007
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Fig. 11. Heat Exchanger - Autocorrelation Function: R2ZELM.
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Fig. 12. Heat Exchanger - Autocorrelation Function: RELM.

As can be seen from the quantitative analysis, the R2LM
algorithm presented the best performance for the set, the
graphs with the autocorrelation functions showed that the
algorithms produced decorrelated results.

In Fig. 15 can be seen the regression curve of predicted data
for the best case and the test set that originated it.
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D. CSTR

The memory orders selected here were p = 4 and q = 3.
For nonlinear models based on ELM (RELM and R2ELM)
the number of neurons used in the hidden layer was h = 60
and K,pvalue = 3. For the linear models (R2LM and RLM)
the optimal number of regions found was K,,; = 4.

TABLE IV
REsuULTS CSTR

Used NMSE
Models Mean Variance
R2ELM | 0.0314 | 2.15e-005
RELM 0.0315 | 2.54e-005

R2LM 0.0240 | 8.63e-011

RLM 0.0240 | 8.37e-011
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Fig. 16. CSTR - Autocorrelation Function: R2ELM.
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Fig. 17. CSTR - Autocorrelation Function: RELM.

As can be seen from the quantitative analysis, the R2LM
algorithm presented the best performance for the set, with a
result very close to that of the RLM, but with less variance of
the data, the autocorrelation graphs showed satisfactory results,
showing that the data of the model are decorrelated.

In Fig. 20 can be seen the regression curve of predicted data
for the best case and the test set that originated it.
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Fig. 18. CSTR - Autocorrelation Function: R2LM.
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VI. CONCLUSION

The use of regional models aims especially to understand
and analyze certain more similar data spaces in a given set,
being able to treat them in a similar way, avoiding analyzing
them in a very generally or very sampled way, at the risk of
losing certain characteristics.

Therefore, the models obtained for the data sets presented
satisfactory results, considering a general panorama and also
if compared to other models obtained for the same data, such
as those of the work of [4], showing that the regional models
presented are a interesting way to be explored and are able to
compete with other systems identification algorithms.

In all the systems presented, the linear models were the
ones that stood out the most, providing lower and more robust
NMSE values, proving to be reliable even in systems with
nonlinear characteristics, a process facilitated by the approach
in regions.

It is important to note that during the process of validating
the algorithms, it was noticed that the division of systems
in many regions, often worsened the results of the models,
often generating high values of NMSE, or generating prototype
vectors that were unable to represent any data of the sets.

In the future, it is intended to expand the scope of the
models obtained, using other vector quantization algorithms
in addition to the SOM network, also replacing the ARX
regression model used by a NARX model. The authors of
the work that originated this [3] are also developing adaptive
variants of the algorithms [36], allowing an online version of
regional models.
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