
Extended Kalman Filter Enhanced by Neural
Network to Solve the SLAM Problem

Bruno França Coelho
Programa de Pós graduação em Engenharia Elétrica

Universidade Federal do Maranhão
Maranhão, Brasil

bruno.fc@discente.ufma.br

João Viana da Fonseca Neto
Programa de Pós graduação em Engenharia Elétrica

Universidade Federal do Maranhão
Maranhão, Brasil

joao.fonseca@ufma.br

Abstract—This work presents a way for online estimation of
the location and mapping of a non-holonomic robot by means of
an algorithm that uses EKF and in the output of this algorithm,
a multilayer perceptron neural network (MLP) has been added
that aims to improve the estimation of the robot pose in an
unfamiliar environment. The effectiveness was proven through
the comparison between the EKF-SLAM and the EKFMLP-
SLAM, where it was evidenced a significant improvement in
relation to the location of the poses of the robot.

Index Terms—EKF, SLAM, MLP, artificial neural network

I. INTRODUCTION

The ability to place a robot in an unknown location
and environment and then have it build a map, using only
relative observations of the environment, and then use this
map simultaneously to navigate, actually turns that robot into
“aautonomous” [1].

The problem of simultaneous location and mapping, also
known as SLAM, has attracted immense attention in the
mobile robotics literature. SLAM addresses the problem of
building a map of an unknown environment from a sequence
of measurements of landmarks obtained from a moving robot.
As the movement of the robot is also subject to errors, the
mapping problem necessarily induces a problem of location
of the robot - hence the name SLAM. SLAM is considered
by many to be an essential capability for autonomous robots
operating in environments where accurate maps and position-
ing are not available [2]. Thus, the main advantage of SLAM
is that it eliminates the need for artificial infrastructures or a
priori topological knowledge of the environment.

A SLAM algorithm consists of exploring the unknown
environment to build or update your map and determine
the position of the robot on the map based on a series of
actions and observations [3]. There are many applications of
the SLAM solution, such as autonomous vehicles [4], [5],
minimally invasive surgery [6], [7] and harvest [8]. SLAM
is a complex problem due to the strict requirements in mobile
robots, especially related to the robustness, computational
efficiency and precision of the [9] algorithm. Although the
position of the robot can be obtained through signals from the
Global Positioning System (GPS), they have limitations, so
they can be blocked by buildings or thick clouds. The SLAM

method can be used to resolve the limitations of this GPS
signal.

Nonlinear SLAM is predominantly implemented as an ex-
tended Kalman filter (EKF), where system noise is assumed
to be Gaussian and nonlinear models are linearized to suit
the Kalman filter algorithm. EKF-SLAM represents the state
uncertainty by an approximate mean and variance. This is a
problem in two ways. First, these moments are approximated
due to linearization and may not accurately correspond to the
first and second ”true” moments. Second, the true probability
distribution is non-Gaussian, so that even the true mean and
variance may not be an adequate description. These factors
affect how the SLAM probability distribution is projected over
time, over a sequence of movements and measurements, and
how the approximation errors accumulate [10].

In this work we present an algorithm for online estimation
of the location of a non-holonomic robot by means of an
algorithm that uses EKF and at the output of this algorithm
is added a multilayer perceptron neural network (MLP) [11]-
[15], which aims to improve the estimation of the pose of the
robot in an unknown environment.

This paper is organized as follows: Section 2 presents the
Simultaneous Location and Mapping of a robot using the
Extended Kalman Filter and a mathematical modeling based
on the speed of a non-holonomic robot; Section 3 presents
an MLP neural network with two hidden layers to improve
the estimation of the robot’s pose in relation to the unknown
environment; Section 4 presents the results and computational
experiments related to the EKF-SLAM and EKF-SLAM al-
gorithm with the addition of an MLP neural network. Next,
the conclusions about the work developed are exposed and
finally the references used for the elaboration of this research
are presented.

II. EKF APPLIED IN SLAM

The Kalman Filter (KF) is a recursive filter proposed by
Kalman [16], and is the most studied implementation of the
Bayes Filter. It estimates the current state of a linear dynamic
system from the observations acquired so far.

In KF, the belief is represented by a multivariable Gaussian
distribution, parameterized by an average µt and covariance
Σt. The average µt is a vector that has the same dimension as

x, while the covariance Σ is a positive, semi-defined square
matrix, with the same dimensionality as x. An important
feature is that Gaussian distributions are unimodal, that is,
they have a single maximum, making it possible to use them
for tracking the pose in many robotic problems [9].

The linear dynamic model in (1) describes the state predic-
tion used in KF, and (2) measurement prediction:

xt = Atxt−1 +But−1 + εx, εx ∼ N (0, R) (1)

ẑt = Ctxt + εz, εz ∼ N (0, Q) (2)

being, xt ∈ Rn×1 e xt−1 ∈ Rn×1 the state vectors, ut−1 ∈
Rm×1 the control vector and ẑt ∈ Rk×1 the measurement
vector. At and Bt are matrices Rn×n and Rn×m, respectively,
and describe the temporal evolution of the state. The random
Gaussian vectors εx ∈ Rn×1 and εx ∈ Rk×1, have zero mean
and covariance denoted by R e Q, respectively, modeling the
uncertainties introduced by state transition and measurement.
The matrix Ct ∈ Rk×n performs the mapping between xt
and ẑt, in which k is the dimension of the measurement
vector ẑt and N represents a random noise component with
(approximately) zero mean [9].

Algorithm 1 EXTENDED KALMAN FILTER
1: Inputs: µt−1,Σt−1, ut−1, zt
2: Prediction:
3: µ̄t = g(ut, µt−1)
4: Σ̄t = GtΣt−1G

T
t +Rt

5: Update:
6: K = Σ̄tH

T
t (HtΣ̄tH

T
t +Qt)

−1

7: µ = µ̄t +Kt(zt − h(µ̄t))
8: Σt = (I −KtHt)Σ̄t
9: return µt, Σt

The entry of EKF is the belief in time t− 1, represented
by µt−1 e Σt−1. To update these parameters, use the control
input ut−1 and measurement zt. The output of the EKF
is the belief in time t. The variable Kt represents Kalman
gain, and specifies the degree to which the measure zt is
incorporated into the new state estimate. In line 7, the average
is manipulated µ̄t, adjusting it proportionally to the gain Kt

and the deviation from the current measure zt. Finally, in
line 8, the new covariance of the belief is calculated. Process
and measurement noises are assumed to be independent and
normally distributed with covariance Rt and Qt, respectively.
EKF is presented in the Algorithm 1.

The assumptions of linearity of the observability and tran-
sience functions are crucial for the use of KF. However, these
functions are rarely linear in practice. The Extended Kalman
Filter (EKF) is used when the system has non-linearity. EKF
linearizes the model around the current estimation and then
uses the traditional FK equations. The EKF is based on the lin-
earization of the state transition function and the measurement
function by means of the Taylor series approximation, tracing
the first order term, and disregarding higher order terms. This

approximation can cause problems if the nonlinearities are
very large, causing the algorithm to diverge.

Observing the Algorithm 1, you can see that (1) and (2)
were relaxed, and the state transition probability and mea-
surement are described by xt = g(ut − 1, xt−1) + εx and
ẑt = h(xt) + εz , respectively, for functions g and h arbitrary.
The idea of EKF is to linearize g and h using the first-order
Taylor expansion approach.

A. Kinematic model of the mobile robot

The model of the current robot pose µt = (xt, yt, θt)
T after

executing the motion command ut−1 = (vt−1, ωt−1)T in the
state mt−1 = (xt−1; yt−1; θt−1)T is given by:

 xt
yt
θt

︸ ︷︷ ︸

µt

=

 xt−1

yt−1

θt−1

+

 ∆t cos (θt−1) vt−1

∆t sin (θt−1) vt−1

∆tωt−1

︸ ︷︷ ︸

g(ut−1,µt−1)

+N (0, R)︸ ︷︷ ︸
εx

,

(3)
being ∆t the sampling time, vt−1 the velocity linear , ωt−1

the angular velocity, and µt is the estimation of the robot’s
pose. It can be observed in (3) that g (ut−1, µt−1) it is clearly
non-linear, so the EKF should be used to estimate the pose.
The matrix Gt and Ht in Algorithm 2 are given by:

Gt =
∂g (ut−1, µt−1)

∂µt−1
=

 1 0 −∆tsin(θt−1)
0 1 ∆tsin(θt−1)
0 0 1

 , (4)

Ht =
∂h (µ̄t)

∂µ̄t
= −

1

q

[
−√qδx −√qδy 0

√
qδx

√
qδy

δy −δx −1 −δy δx

]
,

(5)
being δ = (mx − µx my − µy)T , q = δT δ and m
represents the coordinate of the landmark.

B. EKF-SLAM Algorithm

The Algorithm 2 presents an application of the extended
Kalman filter to solve the SLAM problem.

For a better understanding, the following are presented the
inputs and outputs of the algorithm for SLAM using an EKF:

Inputs
• The average of the pose estimate in the previous time

step:

µt−1 = (xt−1 yt−1 θt−1 m1,x m1,y m2,x m2,y · · ·
mn,x mn,y)

T
.

– xt−1 is the robot’s previous x position in meters;
– yt−1 is the robot’s previous y position in meters;
– θt−1 is the robot’s previous heading in radians;
– mi,x is the x position of the landmark i in meters;
– mi,y is the y position of the landmark i in meters.

• Fx is a matrix that maps the three-dimensional state
vector to a dimension vector (5 × 2n + 3), being n the
number of landmarks.

• The covariance matrix from the previous timestep: Σt−1

– represents the uncertainty of the pose estimate.

• The control inputs in the current time step: ut = (vt ωt)

– vt s the robot’s linear velocity in meters/sec;
– ωt is the robot’s angular velocity in radians/sec.

• Current measurements: zt =
(
z1
t z

2
t . . . z

k
t

)
, k represents

the number of measurements over time t
– each zit =

(
rit φ

i
t

)T
where

∗ rit is the range to landmark i in meters;
∗ φit is the bearing to landmark i in radians.

Outputs
• the updated pose estimate, µt;
• updating the covariance matrix, Σt.

Algorithm 2 FKE-SLAM
1: Initialize Nt = Nt−1, Fx, Gt e Qt
2: µ̄t = g(ut, µt−1)
3: Σ̄t = GtΣt−1G

T
t + FTx RtFx

4: for all zit =
[
rit φit

]T do
5:

6:

[
µ̄Nt+1,x

µ̄Nt+1,y

]
=

[
µ̄t,x
µ̄t,y

]
+ rit

[
cos
(
φit + µ̄t,θ

)
sin
(
φit + µ̄t,θ

)]
7: for k = 1 to Nt+1 do
8: zi = h(xt, j,m) +N (0, Qt)

9: Fx,j =

 I3×3 0 0 0
0 0︸︷︷︸

2j−2

I2×2 0︸︷︷︸
2j−2

10: Ht

k low = ∂h(µ̄t)
∂µ̄t

11: Hk
t = Ht

k lowFx,k
12: Ψk = Hk

t Σ̄t
[
Hk
t

]T
+Qt

13: πk = (zt
i − ẑkt)Ψk

−1(zt
i − ẑkt)

14: end for
15: πNt+1 = α
16: j(i) = arg minπk
17: Nt = max{Nt, j(i)}
18: Kt

i = Σ̄t

[
H
j(i)
t

]T
Ψj(i)

−1

19: end for
20: µt = µ̄t + ΣiK

i
t(z

i
t − ẑ

j(i)
t)

21: Σt = (I − ΣiK
i
tH

j(i)
t)Σ̄t

22: return µt, Σt

Starting the iterative process, there is the observation and
prediction step, which consists of estimating the current state
of the robot, then performing the calculation of the Jacobian
matrices Ht, Gt and then calculate the covariance matrix Σ̄t.
Continuing, another iterative loop responsible for making the
updates begins. Then the distances between the landmarks and
the current position of the robot are calculated and then it is
possible to calculate the error between the estimated and the
observed positions. Kalman’s gain is also calculated at this
stage Kt, updating the estimated state µ̂t and updating the
covariance matrix error.

III. MLP NEURAL NETWORK

In order to improve the estimation of the robot’s location
in relation to the environment, a multilayer perceptron neural

network (MLP) was added. The training of the MLP network
is given by the algorithm backpropagation which is based
on the calculation of the error in the output layer of the
neural network, the values of the weights of the vector w are
recalculated, performing the back propagation until reaching
the input layer of the network [17]. The general formula for
updating weights is given by

w = w − η ∂E
∂w

, (6)

being η represents the learning rate of the neural network, the
weight value in the current iteration will be the weight value in
the previous iteration. The negative sign is that the algorithm
is going in the opposite direction to the gradient. The error
function is defined by

E(y, ŷ) =

i=1∑
N

(yi − ŷi)2. (7)

The MLP used in this work has two layers and the hyper-
bolic tangent was chosen as the activation function. The input
signals in the neuron of the first layer is the estimated pose of
the robot through the Algorithm 2 .

x = (x y θ)T , (8)

upon reaching the neuron, they are multiplied by their respec-
tive synaptic weights w, generating the activation potential z
that is given by

z =

N∑
i=1

xiwi + b, (9)

being b the bias, the value z goes through an activation
function σ.

The following are the calculations for obtaining the formula
for updating the weights of the backpropagation algorithm.
In MLP, the x vector passes through the initial layer whose
output values are linked to the inputs of the next layer, until
the network provides the output values of the last layer as a
result.

The calculation of the error derivative in relation to the z
activation potential of layer (2), using the chain rule

∂E

∂z
(2)
i

=
∂E

∂ŷi

∂ŷi

∂z
(2)
i

= −2 (yi − ŷi)σ′
(
z

(2)
i

)
, (10)

to simplify the equations we indicate that

∂E

∂z
(2)
i

= δ
(2)
i . (11)

Using the chain rule again, the partial derivative of the error
is computed as a function of the weight w[j, i]

∂E

∂w
(2)
j,i

=
∂E

∂z
(2)
i

∂z
(2)
i

∂w
(2)
j,i

= δ
(2)
i

∂

∂w
(2)
j,i

(
M∑
k=1

w
(2)
k,iy

(l)
k + b

(2)
i

)
= δ

(2)
i y

(l)
j .

(12)
The calculation in relation to the bias is similar, resulting

in
∂E

∂b(2)
= δ

(2)
i (13)

Replacing (12) em (6), we have

w
(2)
j,i = w

(2)
j,i − ηδ

(2)
i y

(1)
j , (14)

likewise the bias update is given by

b
(2)
i = b

(2)
i − ηδ

(2)
i . (15)

In the same way, calculations are performed for the anterior
neuron. Then it is necessary to calculate the partial derivative
in relation to the yi output of layer (1), resulting in

∂E

∂y
(1)
i

=
N∑

j=1

∂E

∂z
(2)
j

∂z
(2)
j

∂y
(1)
i

=
N∑

j=1

δ
(2)
j w

(2)
i,j . (16)

continuing we have:

∂E

∂z
(1)
i

=
∂E

∂y
(I)
i

∂y
(I)
i

∂z
(I)
i

=

 N∑
j=1

δ
(2)
j w

(2)
i,j

σ′
(
z
(I)
i

)
= δ

(I)
i , (17)

being δ the local gradient in relation to the i-th layer neuron
(1). So it is possible to calculate

∂E

∂w
(1)
j,i

=
∂E

∂z
(1)
i

∂z
(I)
i

∂w
(I)
j,i

= δ
(I)
i

∂

∂w
(l)
j,i

(
L∑

k=1

w
(I)
k,ixk + b

(I)
i

)
= δ

(I)
i xj .

(18)

Replacing (6) in (18), it has

w
(I)
j,i ← w

(1)
j,i − ηδ

(1)
i xj . (19)

Next, the computational experiments and the results ob-
tained are presented.

IV. COMPUTATIONAL EXPERIMENTS

Simultaneous location and mapping (SLAM) is a key com-
ponent for mobile robot navigation that allows for many
applications in service robots. The ability to acquire accurate
maps of an environment is very important for robots to perform
various tasks with a high degree of autonomy. This section
presents the initial results of implementing the algorithms for
locating and mapping robots EFK − SLAM .

The simulations were performed on a computer that has a
Core i5-8300H 2.30 GHz processor, and 16 GB of RAM, the
codes were executed in the MATLAB program.

Inputs are initialized (µt−1 Σt−1 ut zt) on algorithm
EFK − SLAM , for this simulation it was defined µt−1 =
(0 0 0)T , Σt−1 = I3×3, being I an identity matrix, both
control entries ut and observations zt were subjected to noise
with Gaussian distribution, the control input ut is shown in
Fig.1.

Fig. 1. Inputs u = (v ω)T of the robot with addition of Gaussian noise.

Then the reference points or (landmarks) are added that will
be mapped by the robot, in total there were 63 points, these
are spatial coordinates in the xy plane. The Observation Range
was determined to be 20 meters, that is, the limit at which the
robot can identify the landmarks.

A circular path robot’s was defined through the control
input ut, it started from position (0, 0) and executed a circular
path as can be seen in Fig. 2, the blue line represents the
actual displacement of the robot, the red line corresponds to
the estimation of the robot’s location through the FKE filter,
the black line is the Dead reckoning, that is, estimate of the
robot’s position without the when using filtering, the circles
are landmarks and the blue asterisks represent the estimate of
the position of the landmarks.

In Fig.2 the simulation is illustrated when the robot moves
from its initial pose, it has its own pose uncertainty, detects
the nearby landmarks that are already mapped with its pose
uncertainty and obtains a measurement uncertainty from range
sensor. The final aspect of the simulation when the robot
detects the first reference point again, the uncertainty of its
current pose is reduced. This observation also reduces the
uncertainty for the other landmarks on the map that were
previously seen by the same robot.

Fig. 2. Estimated robot path and waypoint positions using EKF −SLAM ,
disturbed by Gaussian noise, with a range of 20 meters.

Fig. 3. Map generated using the EFK − SLAM algorithm, with a range
of 20 meters.

Fig. 4. State estimation, with a range of 20 meters.

Fig. 5. Error estimating the poses of the mobile robot (EKF-SLAM algo-
rithm), x, y and θ. The horizontal axis represents the number of iterations
and the vertical the signal amplitude.

The map consists of a fixed number of landmarks. The
map generated after the robot passes through an unknown

environment and makes a circular path is shown in Fig. 3,
the circles represent the marks and asterisks in blue are the
estimates of the positions of the marks. Where it is possible
to observe that the points that have not been mapped are out
of the range of the sensor and the points that have more than
one asterisk are the points at which the sensor has captured
the reference point more than once.

The estimation of the robot states, with x and y being
the dimensional coordinates θ the orientation. The robot pose
is described by the vector (x y θ)T , the subscript (est) are
the states estimated by means of the EKF-SLAM filter, the
subscript (d) are the states estimated by Dead reckoning, these
poses are illustrated in Fig. 4.

The error related to the estimation of the robot pose is shown
in Fig. 5, this error is the difference between the actual poses
and those estimated using EKF.

The MLP neural network was added to the EKF-SLAM
algorithm to improve the accuracy of the robot’s pose estima-
tion, Fig. 6 shows a significant improvement in the location of
the mobile robot. Where it is possible to see that the accuracy
of the robot’s location has been greatly improved and that it
was only possible to notice the difference between the actual
and estimated position of the robot through the enlargement
of a section of the image.

Fig. 6. Location through EFKMLP-SLAM.

Using the EKFMLP Algorithm, it is possible to observe that
a better precision in the estimation of the robot’s location was
obtained, however the algorithm does not always converge.
The Fig. 7 graphically shows the curve of the neural network
loss function, where it is possible to notice that in approxi-
mately 400 iterations this function has been minimized.

Fig. 7. Loss function.

It is also possible to observe this improvement in the
estimation through the error graph.

Fig. 8. Error estimating the poses of the mobile robot (Algorithm EKFMLP-
SLAM), x, y and θ. The horizontal axis represents the number of iterations
and the vertical the signal amplitude.

CONCLUSIONS

The extended Kalman filter proved to be efficient for solving
the SLAM problem of a nonhomonic planar robot in an
unknown environment, it has some limitations when many
benchmarks are added. Simulations were shown in which it
was possible to observe the accuracy of the mapping and
location of a robot. An MLP neural network was also added
to the output of the EKF-SLAM algorithm in order to improve
the estimation of the robot’s location and thereby improve the
mapping performed by the algorithm. The EKFMLP-SLAM
proved to be an efficient technique in estimating the location
of the robot, presenting a better result in relation to the EKF-
SLAM.

ACKNOWLEDGMENT

The authors are indebted to the Federal University of
Maranhão (UFMA), the Graduate Program in Electrical Engi-
neering (PPGEE), the State University of Maranho (UEMA),
the Embedded Systems and Intelligent Control Laboratory
(LABSECI), the Coordination of Undergraduate Personnel Im-
provement (CAPES), and the National Council for Scientific
and Technological Development (CNPq) for the development
infrastructure and financial support.

REFERENCES

[1] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte
and M. Csorba, ”A solution to the simultaneous localization and map
building (SLAM) problem,” in IEEE Transactions on Robotics and
Automation, vol. 17, no. 3, pp. 229-241, June 2001.

[2] M. Montemerlo and S. Thrun, ”Simultaneous localization and mapping
with unknown data association using FastSLAM,” 2003 IEEE Interna-
tional Conference on Robotics and Automation, 2003, vol.2, pp. 1985–
1991 .

[3] H. Sobreira, C.M. Costa ,I. Sousa, et al. ”Map-Matching Algorithms
for Robot Self-Localization: A Comparison Between Perfect Match,
Iterative Closest Point and Normal Distributions Transform”. J Intell
Robot Syst, 2019, vol. 93, pp. 533-–546.

[4] S. Kato et al., ”Autoware on Board: Enabling Autonomous Vehicles with
Embedded Systems,” 2018 ACM/IEEE 9th International Conference on
Cyber-Physical Systems (ICCPS), 2018, pp. 287–296.

[5] J. Tang , S. Liu, J. Gaudiot, S. Wu, L. Li, ”Creating Autonomous Vehicle
Systems”. Morgan and Claypool Publishers, UK, 2020.

[6] J. Song, J. Wang, L. Zhao, S. Huang and G. Dissanayake, ”MIS-
SLAM: Real-Time Large-Scale Dense Deformable SLAM System in
Minimal Invasive Surgery Based on Heterogeneous Computing,” in
IEEE Robotics and Automation Letters, Oct. 2018, vol. 3, no. 4, pp.
4068–4075.

[7] P. Mountney and G. Yang, ”Dynamic view expansion for minimally
invasive surgery using simultaneous localization and mapping,” 2009
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, 2009, pp. 1184–1187

[8] F. Cheein and G. Steiner and G. Paina and R. CarelliG. Eason, ”Op-
timized EIF-SLAM algorithm for precision agriculture mapping based
on stems detection”, Computers and Electronics in Agriculture, vol. 78,
pp. 195–207, 2011.

[9] S. Thrun, W. Burgard, D. Fox and R.C. Arkin, ”Probabilistic Robotics”,
Intelligent Robotics and Autonomous Agents series, MIT Press, 2005.

[10] T. Bailey, J. Nieto, J. Guivant, M. Stevens and E. Nebot, ”Consistency of
the EKF-SLAM Algorithm,” 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2006, pp. 3562-3568.

[11] F. S. Vidal, P. F. F. Rosa, A. d. M. Neto and T. E. A. d. Oliveira,
”Multilayer Perceptron Use in a Mapping Task by Cooperating Robots,”
2013 BRICS Congress on Computational Intelligence and 11th Brazilian
Congress on Computational Intelligence, 2013, pp. 580-585.

[12] J. Jung, S. Lee and H. Myung, ”Indoor Mobile Robot Localization
and Mapping Based on Ambient Magnetic Fields and Aiding Radio
Sources,” in IEEE Transactions on Instrumentation and Measurement,
vol. 64, no. 7, pp. 1922-1934, July 2015.

[13] Z. Alsayed, G. Bresson, A. Verroust-Blondet and F. Nashashibi, ”2D
SLAM Correction Prediction in Large Scale Urban Environments,” 2018
IEEE International Conference on Robotics and Automation (ICRA),
2018, pp. 5167-5174.

[14] F. S. Vidal, P. F. F. Rosa, A. de Melo Neto and T. E. A. de Oliveira,
”Cooperating robots for mapping tasks with a multilayer perceptron,”
IECON 2013 - 39th Annual Conference of the IEEE Industrial Elec-
tronics Society, 2013, pp. 4073-4078.

[15] A. Raibolt, A. Angonese and P. Rosa, ”Comparative Evaluation of
Feature Descriptors Through Bag of Visual Features with Multilayer
Perceptron on Embedded GPU System,” 2020 Latin American Robotics
Symposium (LARS), 2020 Brazilian Symposium on Robotics (SBR) and
2020 Workshop on Robotics in Education (WRE), 2020, pp. 1-6.

[16] R. E Kalman, ”A New Approach to Linear Filtering and Prediction
Problems.” ASME. J. Basic Eng. March 1960; 82(1): pp.35—45.

[17] S. Haykin, ”Neural networks and learning machines”, Prentice Hall,
2009.

