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Abstract—In the forecasting time series field, the combination
of techniques to aid in predicting different patterns has been
the subject of several studies. Hybrid models have been widely
applied in this scenario, where the vast majority of series are
composed of linear and nonlinear patterns. The Autoregressive
Integrated Moving Average (ARIMA) presents satisfactory re-
sults in a linear pattern prediction but can not capture nonlinear
ones. In dealing with nonlinear patterns, the Support Vector
Regression (SVR) has shown promising results. In order to map
both patterns, an optimized nonlinear combination model based
on SVR and ARIMA is proposed. The main difference in compar-
ison with other works is the use of an interactive Particle Swarm
Optimization (PSO) to increase the prediction performance. To
the experimental setup, six well-known datasets of the literature is
used. The performance is assessed by the metrics Mean Squared
Error (MSE), Mean Absolute Percentage Error (MAPE), and
Mean Absolute Error (MAE). The results show the proposed
system attains better outcomes when compared to the other tested
techniques, for most of the used data.

Index Terms—Time series forecasting, hybrid models, ARIMA,
SVR

I. INTRODUCTION

The prediction of electricity load has a fundamental role in
the planning of electrical energy distribution systems [1], [2].
An inaccurate estimate of the demand curve generates waste of
resources, either due to underestimation or overestimation [3].
Underestimation occurs when there are no sufficient resources
to the load demand in some period, causing a power outage
and increasing customer dissatisfaction. On the other hand, the
overestimation leads to a waste of resources, which increases
the cost of generating power [4].

The non-linear nature of the load curve’s behavior and its
dependence on external factors, such as time, day, weather
conditions, calendar effects, and economic activities, for ex-
ample, are obstacles in forecasting systems [5]. Therefore,
the development of systems capable of satisfactorily modeling
temporal phenomena has proved to be a relevant and challeng-

ing task and has been the subject of several studies in the past
decades [6]–[12].

Traditionally, Box and Jenkins’ statistical models have
been widely used for load forecasting due to their flexibility
and simplicity [11]–[13], such as Autoregressive Integrated
Moving Average (ARIMA). However, regarding time series,
these approaches can only map linear patterns, limiting their
applicability. Modeling a real world time series becomes a
challenging problem because it is usually made up of a
combination of linear and non-linear patterns [14], [15].

In the literature, there is no single approach that can predict
well both patterns. Due to this, hybrid proposals, capable
of handling different models, have been highlighted in the
literature. This architecture combines statistical models and
computational intelligence techniques to improve the quality of
prediction and is more robust to changes in time series patterns
[16]. Commonly, statistical models are used for predicting the
linear patterns of the series.

The prediction process generates prediction errors, also
called residuals errors, calculated by the difference of the
original data and the predicted one. The residual series con-
tains the nonlinear components that were not modeled by the
first model. To improve the final forecast, the residual series
is modeled by a machine learning technique. Combining the
prediction of the original series with the residual one can
increase the performance of the prediction system [17].

Among the nonlinear models, approaches based on Support
Vector Machine (SVM) have shown significant results in the
forecasting scenario [9], [15], [18]–[20]. SVMs are success-
fully used in time series forecasting due to the structural risk
minimization principle and the capability to solve a linear con-
strained quadratic programming problem, returning a globally
optimal solution [18]. With the introduction of Vapnik’s ε-
insensitive loss function [21] and kernel functions, the SVM
has also been extended to nonlinear regression problems.

To improve the accuracy of the forecasts it is necessary to



find the optimal set of parameters of the chosen model. It may
be a challenge, and there are several studies to find the best
way for this purpose. In the approaches which use Support
Vector Regression (SVR), one traditional form proposed by
Hsu et al. [22] is to combine all the possibilities of a pre-
established range of parameters, performing a grid search to
find the optimal or suboptimal combination of the parameter’s
values. However, depending on the number of parameters,
this strategy can generate a high time cost. Some works use
optimization algorithms, such as Particle Swarm Optimization
(PSO), to select the parameters of machine learning techniques
[19], [23]–[26].

Depending on the time series characteristics, linear combi-
nation methods can be effective and have been widely used
in the literature [27]–[29]. However, these models have some
limitations, since real-world time series are rarely pure linear.
They often contain both linear and nonlinear patterns which
linear models can not deal with. Khashei and Bijari [30]
introduced an approach that uses a nonlinear combination
between the predictions of linear and nonlinear patterns. The
choice of approaches will depend on the characteristics of the
time series used. There is no methodology defined as ideal for
all problems. Searching for the best combination is an open
problem. If the linear model is well specified, there must be
no linear correlation in the residual series. Therefore, non-
linear models based on machine learning may be applied.
A challenge with these techniques is the vulnerability to
overfitting or underfitting.

The essence of ML techniques is to capture the dominant
behavior and to fit the data according to that behavior. When
the model is overtrained, secondary patterns that may not be
necessary for the generalization of the model can be mapped,
causing overfitting. On the other hand, when the model does
not learn enough patterns from the training data, not capturing
the dominant trend, the underfitting occurs. Besides that, in
sequential forecasting systems, whose prediction of the first
model serves as the basis for the second, and so on, the error
of the forecasts ends up spreading through the stages of the
system.

In this paper, a new hybrid technique is proposed for
forecasting time series based on the ARIMA, SVR, and PSO
algorithm. In consonance with other methods of the literature,
ARIMA is used to predict the linear components of the series.
Then, an optimzated SVR is used to forecast the residual series
and combine the predictions. The main difference between
the proposed method and techniques of the literature is how
PSO algorithm is used. The choice of topology and inertia
coefficient is part of the forecasting system, which can change
according to the characteristics of each dataset. To combine
the forecast from the first and the second model, the SVR is
also used as a nonlinear model combination.

The present work is organized as follows: Section II presents
the related works that are the basis for the proposal; Section III
describes the proposed hybrid method; Section IV shows the
experimental setup and the results obtained; the discussion of
the proposed method and the concluding remarks are provided

in Section V.

II. RELATED WORKS

Real-world time series can be purely linear or purely non-
linear, but in the majority of cases, it presents a combination
of linear and nonlinear patterns [31]. For that reason, single
models can not perform as well as hybrid models, which can
handle different combination of patterns. As Zhang has shown
[16], modeling separately linear and nonlinear patterns using
two predictors improves the performance of single models.
Another way to improve the accuracy of the system is to deal
separately with time series and residuals series [27]. In the
works that use the SVR, some authors have proposed different
approaches to find the optimal set of parameters to improve
the forecast result [19], [23]–[26].

Shamsuddin and Sallehuddin proposed a hybrid model [25]
that combines SVR and ARIMA to crime rate forecasting. The
PSO was used by them in two executions: one to estimate
the parameters of the SVR and the other to estimate ARIMA
parameters. Oliveira and Ludemir made a different approach
[19], using the PSO algorithm to improve the quality of
predictions. They proposed a distributed ARIMA-SVR hybrid
system simultaneously optimized by a discrete PSO and a
continuous-valued PSO. The discrete PSO selects the param-
eters of the ARIMA model, while the continuous version
selects the SVR ones. In [7] the PSO is used to find the
best hyperparameters for SVR models to perform residual
forecasting in a combinational hybrid proposal.

A. Autoregressive Integrated Moving Average (ARIMA)

The ARIMA is a traditional forecasting method introduced
by Box and Jenkins [11]. According to Zhang [16], it is one
of the most important and widely used model to time series
forecasting. The ARIMA model (p, d, q) consists in an Auto
Regressive (AR) model of order p, a Moving Average (MA)
model of order q and a differentiation step d to make the series
stationary. In an ARIMA model, the values of the prediction
are supposed to be a linear combination of past values and
past residual errors, that is,

yt = θ0 + φ1yt−1 + ...+ φpyt−p

+εt − θ1εt−1 − ...− θqεt−q,
(1)

in which yt and εt are the actual and error values at time period
t, respectively. The model coefficients are θi(i = 1, 2, ..., q)
and φj(j = 1, 2, ..., p), where p and q are the degrees of the
autoregressive and moving average polynomial functions.

The major limitation of ARIMA is the inability to capture
nonlinear patterns, which ends up limiting its applicability in
real-world problems when used alone.

B. Support Vector Regression

In most linear regression models, the main objective is to
minimize the squared errors. However, the Support Vector
Regression (SVR), proposed by Vapnik [32], is based on the
Structured Risk Minimization (SRM) principle to overcome
overfitting, estimating a function that minimizes the upper



limit of the generalization error. In the SVR, a deviation of
the real value can be acceptable as long as they are less than
a previously established value.

Consider a training set (xi, yi), where x ∈ Rd is the
input vector, yi ∈ R is the ith predicted value, and d is the
embedding dimension of the time series. The goal of SVR is
to find the best function in the form

{f |f(x) = wTx+ b with w ∈ R, b ∈ R}, (2)

where w is the weight vector estimated by minimizing the
regularized risk function and b is a previously established
threshold. One can describe this as an optimization problem,
which needs to

minimize
1

2
||x||2 + C

L∑
i=1

L(yi, f(xi)), (3)

where C is a regularization factor, ||.|| is a 2−norm, and L(·, ·)
is a loss function. To induce sparsity in SVR, one creates an
ε-tube allowing some predictions with deviation within these
limits. For this, the ε-insensitive loss function is subject to

L(y, f(x)) =

{
0, |f(x)− y| < ε

|f(x)− y| − ε, otherwise.
(4)

Another particularity of SVR is to introduce slack variables,
denoted by ξ and ξ∗i , to measure the errors that occurs by
values outside the limits of ε-tube. So, the SVR function is
rewritten to

minimize
1

2
||x||2 + C

L∑
i=1

(ξ − ξ∗), (5)

subject to 
wxi + b− yi ≤ ε+ ξi

yi −wxi − b ≤ ε+ ξ∗i
ξi, ξ

∗
i ≥ 0.

(6)

In SVR, the employment of kernels allows performing
nonlinear mappings into a higher dimensionality space. The
regression procedure is expressed as

f(x) =

l∑
i=1

(αi − α∗i )k(xi,x) + b, (7)

in which α and α∗ are Lagrange multipliers, k(xi,x) is a
kernel function, and b is a previously established threshold.
In the present work, the kernel used is the radial basis function
(RBF), also known as Gaussian kernel, which takes the form

k(xi,xj) = exp
(
−||xi − xj ||2

2γ2
)

)
, (8)

where γ is a parameter of the RBF kernel.

C. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [33] is a population-
based stochastic algorithm inspired by the collective behavior
of a bird flocking. In the PSO, each particle represents a poten-
tial solution to the problem, and the swarm is the population
of solutions. As the metaphor suggests, the search for the best
position is carried out based on the interaction between the
birds. Each particle determines its movement combining the
historical information about its own positions and of other
particles. After these interactions, the swarm tends to move
close to the best global location already found.

At each iteration t of the algorithm, the best global position,
called gbest, is calculated, and for each particle i of the swarm
P , the best personal position is calculated, called pbest. After
that, in the next iteration, the particles move according to the
velocity function, as

vi(t+ 1) = w × vi(t) + c1 × r1 × (pbesti − xi(t)) +
c2 × r2 × (gbesti − xi(t)),

(9)

where w is the inertia weight, vi is the actual velocity, c1 and
c2 are acceleration coefficients, r1 and r2 are random values
in the range [0,1] and xi is the ith element of the current
solution x.

III. PROPOSED METHOD

The main objective of this paper is to propose a new
alternative for time series forecasting using a nonlinear ap-
proach with different PSO topologies, called SVR(ARIMA,
PSOSVR). Also, the proposed approach is compared to other
techniques in the literature, such as traditional linear and
nonlinear forecasting techniques using ARIMA and SVR. In
general, the hybrid forecasting systems are divided into three
sequential steps. First, the linear patterns are modeled by
a linear technique. Thus, it is expected that the correlated
components, such as trend and seasonality, are not observed
in the residues, avoiding multicollinearity. After that, the
difference between the original data and the first forecast is
calculated generating the residual base, which is modeled by
a nonlinear technique. Lastly, the combination of the forecasts
is carried out. This combination can be linear, adding both
forecasts, or non-linear, performed by some machine learning
algorithm, for example.

Besides using traditional approaches, the proposed method
uses the PSO to find the optimal or sub-optimal set of param-
eters for the technique used in the second model; specifically
in the present paper the SVR is used. The performance of
the PSO is strongly related to its topology, which should
be chosen according to the characteristics of the problem.
An improper choice of the topology may lead the PSO to
premature convergence or may lead to low search efficacy [34].
Due to this, the choice of topology and coefficient of inertia
to be used was incorporated into the model, which may vary
depending on the characteristics of the base. The architecture
of the proposal is shown in Figure 1.

In the proposed method, the ARIMA is used in the first
stage, performing the linear patterns prediction. The difference



Fig. 1. Proposed hybrid architecture: SVR(ARIMA, PSOSVR).

between the original and predicted data results in a new series,
known as residuals. The second stage of the proposed system
is responsible to model the residuals. For this, one uses the
SVR, whose parameters are optimized by the PSO algorithm,
which returns the lowest mean squared error of the prediction.
Since there is not a universal optimal model for all datasets,
the choice of the topology used by the PSO was incorporated
to the system, varying between local and global topology,
and with or without linear decay. In order to compare the
results, other previously published methods are implemented,
as shown in Table I. According to [17], the combination of
the first prediction with the residual serie can improve the
precision of the whole system. The nonlinear combination,
introduced by Khashei and Bijari [30], that was used as basis
for the Nonlinear Combination Method [20], has provided
good results for time series prediction in terms of accuracy
[20]. Due to this, the SVR is used as the combination model
for the forecasts.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section the experimental setup is detailed along with
the presentation of results.

A. Experimental Setup

In this paper, six datasets from the Time Series Data Library
[36] are used to evaluate the performance of the methods.
The description of each series is shown in Table II. These
time series, presented in Figure 2, are commonly used in
the literature [9], [19], [31], [37], [38] and are from different
application areas with distinct characteristics.

Approximately 50% of the data was used as a training
set and the remaining 50% for the test set. Specifically for
machine learning techniques, the training set was subdivided

Fig. 2. Time series dataset used.

for the training and validation steps. All data sets were
normalized, that is, represented in the range [0,1], according
to the equation

x =
x− xmin

xmax − xmin
, (10)

in which xmin is the lower value of the series and xmax is
the highest one.

The evaluation of methods was performed using three well-
known performance measures in the literature [9], [16], [39]:
Mean Squared Error (MSE), Mean Absolute Percentage Error
(MAPE), and Mean Absolute Error (MAE), given by the
equations 11, 12, 13, respectively,

MSE =
1

N

N∑
t=1

(yt − y′t)
2
, (11)

MAPE =
100

N

N∑
t=1

∣∣∣∣yt − y′tyt

∣∣∣∣ , (12)

MAE =
1

N

N∑
t=1

|yt − y′t| , (13)

in which N is the dataset size, yt is the real value at time t and
y′t is the forecast value at the same time. For these metrics,
the lower is the value, the better is the accuracy. The MSE is
commonly used as an error measure in time series forecasting
domain. However, this metric has some limitations such as
being sensitive to outlier data and being scale-dependent [40].
On the other hand, the MAPE metric is not scale-dependent
and outputs a percentage error. In terms of sensitivity to



TABLE I
NOMENCLATURE OF THE PROPOSED METHOD AND LITERATURE MODELS.

Approach Models Reference Short descriptions
Single model ARIMA Zhang [16] Single ARIMA prediction.

Linear combination ARIMA + SVR de Oliveira and Ludermir [35] Sum of ARIMA and SVR predictions.
ARIMA + PSOSVR de Olanda and de Oliveira [7] PSO to set the SVR parameters in a linear combination.

Nonlinear combination SVR(ARIMA, SVR) de Mattos Neto et. al [20] SVR to perform the combination of predictions.
SVR(ARIMA, PSOSVR) Proposed Method PSO to set the SVR parameters in a nonlinear combination.

TABLE II
DATASET DESCRIPTION.

Dataset Size Description
Airline 144 Monthly International airline passengers

Carsales 108 Monthly car sales in Quebec
Electric 486 Australian Electricity: Electricity end use

Gas 192 Monthly gas demand in Ontario
Paper 120 Industry sales for printing and writing paper
Wine 187 Monthly Australian wine sales

outliers, an alternative is the MAE metric, which is best suited
for being unambiguous and more robust to outliers [41].

The values of the parameters for the techniques used are pre-
sented in Table III. For ARIMA, the choice of parameters (p,
q, d) was made using the autoarima function, which chooses
them in order to minimize the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) [42].
For the models which do not use the PSO algorithm, the
parameters were defined through an exhaustive search, which
combines all the values of a pre-set discrete range and finds
the optimal arrangement. Regarding the PSO technique, the
parameters used are well-established in the literature.

In time series forecasting domain, an important parameter
to be defined is the number of lags that will be used, that is,
how many past instants will be used to predict a future one.
The number of lags is an overriding factor in making good
predictions. The number of lags used for each database was
configured according to [7], [9], [19], [38], and are shown in
the Table IV.

TABLE III
LIST OF PARAMETERS.

Model Parameters Values
ARIMA p, d, q Hyndman [36] methodology

SVR

Kernel Radial Basis Function (RBF)
ε [10−8, 10−7, · · · , 10−2]
C [0.01, 0.1, 1, 10, 100, 1000, 10000]
γ [0.01, 0.1, 1, 10, 100, 1000]

PSO

c1 and c2 2.05
w 0.723 and [1, 0.723]

Particles 30
Iteration 5000
Topology Local and global

The analysis of the results is divided as follows: the first,
second and third subsection are based on the MSE, MAPE,
and MAE error measures, respectively, for all the techniques.
In the last subsection comparisons are presented between

TABLE IV
BEST EMBEDDING DIMENSION FOR EACH DATASET.

Dataset Lag
Airline 12

Carsales 12
Electric 12

Gas 12
Paper 20

Redwine 12

the ARIMA and the proposal method. For the approaches
that use the PSO, which is a non-deterministic technique, 20
simulations for each database were performed. In these cases,
the results are presented as a± d, where a is the average and
d is the standard deviation.

B. Analysis based on MSE

The results concerning the MSE are presented in Table V,
where the best results are highlighted in bold. According to
the results, the proposed method achieved the lowest MSE
values on five datasets: Airline, Carsales, Electric, Paper, and
Redwine. Regarding the standard deviation, it can be noted
that the values, in most cases, are close.

C. Analysis based on MAPE

The results are also analyzed under the MAPE criterion,
which is very important in time series forecasting domain.
The standard deviation is presented in percentage points (p.p.).
According to this metric, the proposed method outperformed
all techniques in four cases: Airline, Electric, Paper and,
Redwine, as one can see in Table VI. Concerning the standard
deviation, the results obtained for the Carsales and Redwine
databases present a greater difference between the techniques.
For the Carsales database, observing only the average of the
results, the method ARIMA + PSOSVR is superior. However,
when evaluating the standard deviation, one notice a smaller
deviation for the results obtained by the proposed method. For
the Redwine database, the proposed method obtains a better
performance in terms of average and deviation.

D. Analysis based on MAE

Another analysis is made according to the MAE metric,
and the results are shown in Table VII. The proposed method
presented the best results considering Airline and Electric
datasets. Analyzing the standard deviation, for the Carsales
and Redwine dataset, we can notice a significant difference
between the ARIMA + PSOSVR technique and the proposed



TABLE V
MEAN SQUARE ERRORS (MSE) FOR ALL DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Dataset ARIMA ARIMA + SVR SVR(ARIMA, SVR) ARIMA + PSOSVR SVR(ARIMA, PSOSVR)
Airline 0.00943 0.00138 0.00138 0.00132 ± 0.00051 0.00127 ± 0.00052

Carsales 0.03824 0.01398 0.01427 0.01443 ± 0.00531 0.01373 ± 0.00260
Electric 0.00549 0.00198 0.00194 0.00163 ± 0.00061 0.00142 ± 0.00051

Gas 0.01224 0.00323 0.00322 0.00341 ± 0.00108 0.00369 ± 0.00133
Paper 0.08310 0.00873 0.01172 0.00821 ± 0.00262 0.00804 ± 0.00261

Redwine 0.02857 0.00946 0.00973 0.00838 ± 0.00281 0.00814 ± 0.00011

TABLE VI
MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) FOR ALL DATASETS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Dataset ARIMA ARIMA + SVR SVR(ARIMA, SVR) ARIMA + PSOSVR SVR(ARIMA, PSOSVR)
Airline 13.13% 4.48% 4.49% 4.56% ± 1.53 p.p. 4.41% ± 1.53 p.p.

Carsales 24.86% 17.95% 18.20% 17.89% ± 5.90 p.p. 18.55% ± 1.12 p.p.
Electric 8.38% 4.75% 4.72% 4.28% ± 1.41 p.p. 4.00% ± 1.31 p.p.

Gas 11.75% 6.08% 6.07% 6.02% ± 1.91 p.p. 6.11% ± 1.95 p.p.
Paper 63.73% 16.99% 17.06% 15.88% ± 5.06 p.p. 15.55% ± 4.97 p.p.

Redwine 36.20% 17.89% 17.83% 15.87% ± 5.16 p.p. 15.42% ± 0.26 p.p.

method. According to these values, it can be observed a
smaller dispersion in the proposed method, resulting in a better
performance when compared in terms of deviation.

E. Final analysis

Comparing with the literature methods, regarding the aver-
age results, for the Airline and Electric datasets, the proposed
method presented better results in terms of the three metrics
used. Considering the standard deviation results, the proposed
method presented superior results for the Carsales, Electric
and Redwine.

When comparing to ARIMA, the proposed method obtained
better results for all datasets. Table VIII presents superiority in
terms of MSE, MAPE and MAE for each dataset. Figures 3,
4 and 5 present the curves referring to the original time series,
the ARIMA prediction and the proposed approach prediction,
for the Carsales, Electric and Redwine datasets, respectively.
One may note that the proposed method’s curve is closer to
the original one than the curve of the ARIMA method.

V. CONCLUSION

In this paper, an optimized hybrid system for forecasting
time series was proposed. It is assumed that, in general, time
series are composed of linear and nonlinear patterns. The first
step of the system consists of capturing the linear patterns
using a linear model. In the second one, a machine learning
technique is used to predict the generated residual errors, and
finally, a nonlinear combination of the obtained predictions
is accomplished. The parameter optimization was performed
using PSO algorithm to improve the predictions. The choice of
the PSO topology was incorporated into the system, increasing
the flexibility of the model to different types of data. The
proposed model obtained promising results when compared to
other techniques in the literature.

In order to carry out a comparative analysis, four methods
were considered: Zhang [16], de Oliveira [19], de Holanda

[7] and de Mattos Neto et al. [20], which uses ARIMA, SVR
and, PSO, in single, linear and nonlinear approaches. Based
on the experimental results obtained, it is possible to note that
no technique obtained systematic superiority for all datasets.
However, the proposed method outperformed the others in five
out of six datasets used, concerning the MSE, and four out of
six concerning MAPE and MAE metrics. In relation to [7],
which uses the PSO algorithm to optimize the parameters, our
results suggest that allowing the system to choose the best
combination of the PSO parameters improves the accuracy of
the system. It may occur because the model fits the different
characteristics of the time series.

As future works, we aim to develop a multiobjective-
optimized hybrid system to reduce the error propagated in
sequential models, using multiobjective swarm algorithms, for
example. Also we intend to investigate the performance of
other machine learning techniques to improve the combination
of the linear and nonlinear forecasting models. Other swarm
algorithms could be analysed to enhance the system’s param-
eter choice.
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