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Machine Intelligence and Data Science Laboratory (MINDS)

Department of Electrical Engineering
Universidade Federal de Minas Gerais

31270-901, Belo Horizonte, Brazil
fredericoguimaraes@ufmg.br

Abstract—Artificial Intelligence (AI) approaches that achieve
good results and generalization are often opaque models and
the decision-maker has no clear explanation about the final
classification. As a result, there is an increasing demand for
Explainable AI (XAI) models, whose main goal is to provide
understandable solutions for human beings and to elucidate the
relationship between the features and the black-box model. In
this paper, we introduce a novel explainer method, named PDTX,
based on the Perceptron Decision Tree (PDT). The evolutionary
algorithm jSO is employed to search for the weights of the
PDT to approximate the predictions of the black-box model
with high fidelity. The PDTX was tested in 10 different datasets
from a public repository as an explainer for three classifiers:
Multi-Layer Perceptron, Random Forest and Support Vector
Machines. Decision-Tree and LIME were used as baselines.
The results showed remarkable performance in the majority of
the experiments, achieving 87.34% of average accuracy, against
64.23% and 37.44% from DT and LIME, respectively. The
PDTX can be used for black-box classifier explanations, for local
instances and it is model-agnostic.

Index Terms—Explainable AI, Interpretability, Machine
Learning, Local explanations, xAI

I. INTRODUCTION

Recently, Machine Learning (ML) and Deep Learning (DL)
techniques have grown enormously and achieved promising
results in the most diverse fields, such as computer vision,
speech recognition, robot control, medicine applications, credit
card transactions, and others [1], [2]. However, some of these
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methods are deemed as black-box models, which means that
there is no clear relation between its input and output. Con-
sequently, it is not possible to easily understand the decisions
made by those systems. Because of this lack of transparency,
the demand for approaches that make these methods more
comprehensible also emerged.

In [3], transparency is understood when the model that
extracts parameters from the training data and generates labels
for the test can be described and motivated by the model
design. In other words, transparency is the way used by expert
systems to explain how that result was achieved. Following
the idea, interpretability is related to some properties of an
ML model that make it understandable to humans. However,
there is a gap between accuracy and transparency since high-
precision techniques are usually opaque. A known strategy is
to approximate the predictions of a black-box model by an
interpretable one, such as a Decision Tree (DT).

In some fields, errors can lead to critical consequences.
In medicine, for example, the utilization of some ML/DL
approaches is still sensitive because the decisions might affect
people’s lives and health. Hence, the clinicians must be able
to understand why the model made such a prediction [4].
Besides that, there is also a movement of the governments in
the creation of new rules and laws to protect user’s data and
measure the impacts and consequences of AI-based decisions.
The European Union, for example, promulgated in 2019
the European Union’s General Data Protection Regulation
(GDPR), which defines the “right to explanations” for its
members. The definition in the art. 22 and in Recital 71 EU
GDPR says: “The data subject should have the right not to be
subject to a decision, which may include a measure, evaluating
personal aspects relating to him or her which is based solely
on automated processing and which produces legal effects



concerning him or her or similarly significantly affects him or
her, such as automatic refusal of an online credit application
or e-recruiting practices without any human intervention” [5].

Thus, explainability is a hot topic. It presents fundamental
relevance for the scientific community since the results of the
AI-based approaches become more understandable to analysts
and experts. For this reason, the outputs of these systems
still lack the utilization of communicable representations
through mathematical, logical, linguistic, or visual resources.
Therefore, the eXplainable AI (XAI) aims to develop more
explainable models and with high accuracy levels and, at the
same time, allowing humans not just to understand, but also to
trust and manage these kinds of systems [6]. As pointed out
by Rudin [7], the best strategy is to elaborate methods that
are transparent for default. Nevertheless, although some ML
methods are mathematically interpretable, such as Decision
Tree and Logistic Regression [8] in some kind of data most
of them are not efficient as the black-box ones. Furthermore,
building new methods that are transparent in their formulation
and outputs and also able to provide high accuracy is still a
hard task. On the other side, some authors are collaborating
with new interpreters (also called explainers) such as: (i)
Local Interpretable Model-Agnostic Explanations (LIME) [9],
SHapley Additive exPlanations (SHAP) [10] and Genetic
Programming Explainer (GPX) [11] to cite a few.

In this scenario, this paper presents a new method for the
local explanations named Perceptron Decision Tree Explainer
(PDTX). It is based on the Perceptron Decision Tree (also
known as PDT or Oblique Decision Tree) [12]. PDT divides
the features space by considering combinations of the attribute
values, whether linear or nonlinear. Since that each internal
node evaluates a linear combination of the attributes, they
are equivalent to hyperplanes at an oblique orientation to
the axes [13]. Furthermore, the tree-form representation of
a PDT naturally yields an analytic expression that gives a
local explanation of the proportional contribution of each
feature to the prediction. Therefore, using this approach, we
can approximate the predictions of black-box models and
also providing interpretability for classification problems with
structured data.

To do so, this paper is organized as follows. Section II
presents the XAI terminologies and briefly discuss some
existing interpretable models. Section III present the process
that are part of the proposed PDTX and how it works. Section
IV presents the experimental setup used to validate the PDTX.
Section V presents the results, some discussion as well as
future extensions/applications. Section VI concludes the paper.

II. EXPLAINABLE AI
A. The black-box problem

A black-box method can be addressed as one in which the
input and output are known, however, the internal process
is not available or, when it is, it has high complexity to be
understood. In this sense, even if the weights and parameters
are accessible, it is not possible to obtain a clear relationship
between the features and the result. Consider a neural network,

for instance: the knowledge of all the weights of the model
does not help explaining why a given decision was made. In
this way, the XAI provides directions to attend to this demand.

B. Terminologies

The literature has presented a set of terminologies associated
with the XAI field, some of them consolidated in the works
of [4], [6], [11], [14].
• Explainability: it is related to the notion of explanation

as an interface between humans and a decision-maker
that is both an accurate proxy of the decision-maker and
understandable to humans.

• Interpretability: is to be able to explain or provide
meaning in a fashion understandable to a human being.
Or still, the degree to which a person can understand the
reason for an outcome.

• Understandability: it refers to the human knowledge of
system functions without explanations about its intern
functionalities.

• Comprehensibility: it is the ability of a learning system
to show its learned knowledge in a human intelligible
way.

• Transparency: a model is transparent if it is self-
understandable. It regards the necessity to describe, in-
spect and reproduce the mechanisms through which AI
systems make decisions and learn to adjust to their
environment and the governance of the data used created.

• Complexity: is the level of effort required by a user to
understand an explanation taking into account the user’s
training or any time constraints required for understand-
ing.

• Responsible AI: is AI that is mindful of social values
and moral and ethical concerns.

C. Interpretable Models

Some ML models are inherently transparent and inter-
pretable, such as DT, Linear Regression, Logistic Regression,
and Naive Bayes. Due to this, there is a mathematical and/or
logical explanation about why certain results were achieved.
A model is better interpretable if its decisions are easier for
a human being to understand than other models [15]. Despite
that, black-box models, especially those related to DL, are
more accurate for some specific tasks as image recognition.

In that context, the interpretations can be addressed in two
ways: explanation by design and black-box explanation [16].
The former is about building solutions that already produce
explanations in decision-making and, the latter is to produce
explanations from the ready-made black-box system.

Thereby, explainability methods can be roughly split into
global and local explanations [4], [14]. Global ones make it
easy to understand the entire logic of a model and follow
the reasoning that leads to the different solutions. In contrast,
explaining the reasons for a particular decision or a single case
implies that interpretability is occurring over only this sample.
This case is invoked to produce an individual explanation,
usually to justify why the model took a specific decision. It



is argued that analyzing all the solutions is difficult to reach
in practice, especially for models with many parameters [14].
Local interpretability may be easier to understand by humans,
since understanding the context of just one sample is easier
than an entire set. Additionally, there is another classification
that can be applied to explanation models, according to their
applicability. It is named model-agnostic whether can be used
in any black-box ML model or model-specific, if it can be
applied only for a single type or class of algorithm.

Also, fidelity may be used as a measure of quality. Accord-
ing to [15], it means how well the explanation approximates
the prediction of the black-box model. Thus, high fidelity is
preferable since an explanation with low fidelity is essentially
useless.

In this work, we can classify the PDTX into the three cate-
gories aforementioned: (i) used for black-box explanation, for
local instances, and model-agnostic, since it can be extended
for any kind of black-box classification model.

III. EVOLVING EXPLANATIONS

In this section, we present the entire process that is part
of the proposed PDTX. In Section III-A we explain the
fundamentals of the PDT, and how it works in Section III-B
through the approximation with the outputs of the black-
box ML models. And finally in Section III-C the extracted
information that composes the PDTX.

A. Perceptron Decision Tree

In DT, each internal node indicates a test on an attribute
and the leaf nodes correspond to a class, and in this way,
the tests associated with each node are equivalent to axis-
parallel hyperplanes in an input space [13]. In a PDT, the
internal nodes test a linear combination over the attributes that
divides the input space by hyperplanes at general positions.
Here, we define a PDT as [17] by testing the internal nodes
with the equation wx + θ = z, where w is a weight vector,
x are the features and θ is a constant. Thus the search space
is divided by hyper-planes in general positions, which are not
necessarily axis parallel. To illustrate, an example is presented
in Figure 1, with depth equal to 3. The root node tests the
inequality x − y < 0, where [1,−1] is the w vector, θ = 0,
and they are the coefficients of the linear equation that defines
the first partition of the search space.

x - y < 0

x + y - 4 < 0 y - 4 < 0

A1 A2 A3 A4

Fig. 1. Illustration of a PDT of depth equal to 3

The corresponding areas of this tree are then presented in
Figure 2. The region where the inequality x− y < 0 is True
lies above the diagonal, covering A1 and A2. The region where
the inequality is False covers both A3 and A4. Again, the
space is divided for x + y − 4 < 0 and y − 4 < 0 to obtain
the other partitions. Following this idea, it is easy to visualize
that a PDT can partition the search space recursively, splitting
the space into the corresponding classes.

A1

A2

A3

A4

Fig. 2. Example of the partition made by PDT of height 3.

In this work, similar to [17], each PDT is a complete binary
tree with linear classifiers in the internal nodes, according to
the previous definition, being w a vector of length n and the
constant θ. n is the number of attributes of the classification
problem. PDT has also 2h−1−1 leaf nodes, being h the depth.
The learning process occurs in a recursive manner beginning
in the root node where the linear classifier is applied. In the
case of whether it is considered a matrix structure to represent
the binary tree, after using the linear classifier at position i of
n, the classifier at position 2i is used if the output is lower
than 0 (left node) or the classifier 2i + 1 is used otherwise
(right node). The space of the w and θ is continuous and that
of the other is discrete.

To induce PDTs and to produce the explainer, it is necessary
to find the values of w and θ that divide the feature space in the
best way. Heuristic techniques may be applied to minimize the
classification errors. In this paper, Differential Evolution (DE)
algorithm, a population-based evolutionary algorithm, was
used. It starts with a random population defined in the search
space and for each individual pi generates a mutant vector
mi which is used to create a new individual from a crossover
operation with pi. The new individual is compared with the
current one, and, if it is better, it is replaced for it. The original
DE was introduced in 1995, and up to now many works have
used either the classical method or improved versions. One
of them is the jSO approach [18] that presents an automatic
adaptation of the parameters showing promising results on
solving numerical unconstrained optimization problems.

In this work, where each individual of the population is
a PDT, we applied jSO to determine the weights and the
constant values of each PDT and, then to approximate the
PDT outputs to the predictions of the black-box classifier. For
the leaf nodes, a random configuration is applied from the
possible values of classes that the problem has. Also, local
search has been used to achieve the best value of the leaves



in some elements in each generation.

B. PDT for Local Explanations

This section describes how the PDTX was used to obtain
local interpretability for ML models. For sake of simplicity, we
also present an example to clarify the manner that the problem
was solved.

The problem was modeled similar to [11] as follows: Let
x ∈ R an input to a pre-trained black-box model, k points
are generated in the vicinity of x, or noise set η, from a
multivariate Gauss distribution centered at x with covariance
matrix,

∑
= In×σ, where In is the squared identity of order

n and σ is measured on the training data.
PDTX aims to obtain a function that simulates the behavior

of the original ML model. It was done by minimizing the
prediction error between the output obtained by the interpreter
and that generated by the ML model. This concept is called
fidelity, and it is defined below:

w∗, θ∗ = argmin
∑
si∈η

err(si), (1)

where

err(si) =

{
1 if f(si)) 6= g(si)
0 if f(si)) = g(si)

(2)

and {s1, s2, ..., sk} are the samples from the noise set η, f(si)
the prediction generated by a given individual in the population
and g(si) that given by the black-box ML model for a si
sample.

Consider a classification problem in which there are 1, 000
samples in training data divided into two classes. Class 0 are
represented by the green points and Class 1 the black ones,
as illustrated in Figure 3.

Fig. 3. Data generated with the 2dnormals function from mlbench represent-
ing a 2-dimensional Gaussian problem [19]

Being SVM the g(.) black-box model previously trained
with training data, a noise set η with 200 samples is built
from a single sample x from the testing data, as showed in
Figure 4. For better visualization of the results, the x (red
point) was chosen between the two classes.

Figure 5 shows a single PDT that represents the best
individual from jSO. This experimental result using the SVM
achieved 99% of accuracy (fidelity). It means that the PDT

Fig. 4. Noise set generated in the vicinity of the (red) sample

has successfully approximated the predictions of the black-
box model.

-2.85x[1] - 5.06x[2] - 0.30 < 0

-3.09x[1] + 3.50x[2] + 0.19 < 0 -0.14x[1] - 1.65x[2] + 1.26 < 0

Class 0 Class 0 Class 0 Class 1

Fig. 5. PDT generated from the jSO showing the sample partitions in the
search space

The separation of the classes is presented in Figure 6. The
root node divided the data points with the red line straight.
Note that this single line is clear enough to divide well the two
classes. Next, the blue straight line divides the areas colored
in green and blue, and the orange one divides the classes in
yellow and red. With these 3 partitions, it is clear that a better
classification was provided. It is also worth mentioning that it
is possible to both increase the depth of the tree in search of
a higher classification rate (Figures 5 and 6) and also to have
other trees that may present the same accuracy.

Fig. 6. Separation of classes made by PDT

The deeper the PDT is, the more divisions are going to



be made in the search space and, consequently, the greater
the separability among the samples. It works well when the
data is not linearly separable. However, if more divisions are
made than necessary, the pruning is useful and some nodes
may be discarded. In Figure 6, the division made by the blue
straight line is unnecessary. For cases such as this one, the
pruning operation is performed, and the correspondent node
is removed at the explaining step.

C. Fundamentals and Operation of the PDTX

After the approximation of PDT with the noise set, the local
explanation for a specific sample can be reached with the steps
described below.

1) Obtain the path (inequalities) followed to classify the
input sample;

2) Apply the pruning operation to discard the unnecessary
inequalities;

3) Over the remaining inequalities, calculate the hyper-
planes that separate the samples;

4) Calculate the feature importance from the coefficients of
the hyper-plane closest to x. This hyper-plane allows the
user to compute the absolute value of partial derivatives
of it and evaluate the local importance of each feature.

With this information, it is possible to provide an important
local explanation for the problem. The rules extracted from the
PDT when all features are kept fixed and only one is changed
are shown in the tree of Figure 7 and Figure 8. Figure 7 is
obtained by identifying all possible paths of the tree to each
leaf, when all attributes, except one, are kept fixed.

x[1] > -0.107 | fixing x[2] = 0

x[2] > -0.06  | fixing x[1] = 0

Class 0
 -9.043 < x[1] < -2.763 | fixing x[2] = 0

 1.006 < x[2] < 1.633   | fixing x[1] = 0 

Classe 0 Classe 1

Fig. 7. Rules extracted from PDT

The PDTX output has the following information:
1) Local fidelity of the generated model;
2) Predicted class by the PDTX for the sample;
3) Real predict probabilities (taken from black-box model);
4) Hyper-planes directly obtained from the PDT;
5) Feature importance regarding predicted class, obtained

from coefficients of the closest to x hyper-plane ;
• The absolute value of the coefficient denotes the

importance of the feature for Class prediction;

• Fixing the all the features, we obtain the down/upper
bounds of xi.

6) Another way to analyze a PDT is to identify the feature
importance for each split. An evaluation method using
average feature values and coefficients of a given split is
proposed in [20], which consists of multiplication of the
average feature value for coefficients and scaled-down
the result to the range of [−1, 1]. The larger the result
is, the more that feature contributes to the split node as
can be seen in the last chart of Figure 8.

Figure 8 shows the PDTX output for this example. The
model reached 99% of fidelity, and the classification for
x = (0, 0) was Class 0, which is following the black-box
predict probabilities. From the hyper-plane, the rules generated
to obtain this result were: x1 is greater than −0.107 and x2
greater than −0.06, when x2 and x1 were kept fixed. Both
features had positive importance for the prediction, and the
impact of x2 being greater than x1. Since only one hyper-plane
was necessary for predicting x, the calculation was done only
on it, which confirms the bigger importance of x2 over x1.

Fidelity: 99% of accuracy 
Predicted class:  0 

hyperplanes:  

plt.xlabel('Split importance')
plt.show()
 

 
i t lib i

-2.8542.x[1] + -5.0558.x[2] + -0.3049  <= 0

Fig. 8. Explanations taken from PDTX

The local approximation can be verified from small changes
around x, while the impact in the prediction probability
determined for the g(.) was obtained by Sklearn package [21].

In Table I, the first column corresponds to the points in the
vicinity of x, the probability column contains the black-box



model predictions, and the last column the PDTX predictions.
The first row shows that the predicted class was 0 (0.556)
corresponding to the same one made by the PDTX. Adding
0.1 to each of the attributes x1 and x2, separately, we obtain an
increase in the classification probability for Class 0, described
in rows 2 and 3. It is noteworthy that this impacts more x2
than x1, that is, adding 0.1 in x1 the probability of prediction
for Class 0 varies from 0.556 to 0.633, while adding 0.1
in x2 increases this probability from 0.556 to 0.688. This
effect was expected since the importance of x2 is greater than
x1, as shown in Figure 8. By adding 0.1 on both attributes
simultaneously, the black-box’s probability of ranking to Class
0 increases to 0.753. On the other hand, points outside the
region determined in the explanations change the classification
to Class 1, as shown in the rows 5 and 6. Lastly, row 7
exemplifies another region that Class 0 is also obtained (which
corresponds to the yellow region of Figure 6 and it follows
the rules on the right side of the tree of Figure 7). An example
of a point in this region is the point [−3, 1.5].

TABLE I
CHECKING THE LOCAL APPROXIMATION

Vicinity of x Probability PDTX predictionClass 0 Class 1
[0, 0] 0.556 0.444 Class 0
[0.1, 0] 0.633 0.367 Class 0
[0, 0.1] 0.688 0.312 Class 0
[0.1, 0.1] 0.753 0.247 Class 0
[−0.2, 0] 0.395 0.605 Class 1
[−0.1, 0] 0.416 0.584 Class 1
[−3, 1.5] 0.576 0.424 Class 0

For sake of simplicity, an overview of the PDTX explainer
is shown in Figure 9.

IV. EXPERIMENTAL METHODOLOGY

A. Datasets

For this work, we used ten datasets from Penn Machine
Learning Benchmarks (PMLB) [22] repository, which provides
a set of curated benchmark datasets for evaluating and compar-
ing the supervised ML algorithms. This selection was based on
the variability of the number of features, samples, and classes.

TABLE II
CLASSIFICATION DATASETS

Datasets Features Samples
Breast 10 699
Car 6 1728
Diabetes 8 768
Ecoli 7 327
Glass 9 205
Hill Valley without noise 100 1212
Iris 4 150
Ionosphere 34 34
Phoneme 5 5404
Wine recognition 13 178

B. Black-box Machine Learning Models

As previously explained, a model is considered a black
box when there is no logical/mathematical correlation between
input and output. In this paper, we used: Support Vector
Machines (SVM), Random Forest (RF), and Artificial Neural
Networks (ANN) of the type Multilayer Perceptron (MLP).
There is a vast of works in the literature that show promising
results with these methods, see for instance [4].

C. Competing Explainers and Quality Measure

The competing methods are the traditional Decision Tree
and LIME [9]. They were chosen for their simplicity and for
being widely used in the literature. In DT, each node represents
a feature, each branch is a decision, and the leaf nodes are the
classes of the classification problem. The path from the root
node until the leaf provides an interpretation for the prediction
made. Following this path, it is possible to obtain the logical
interpretation for the instance analyzed. LIME, in its turn,
uses a linear local interpretable model in the vicinity of the
predicted instance. This approach is a local surrogate model
that generates an explainer worth of resources based on a linear
least-squares method with l2-norm regularization [9], [11].

We are going to use the fidelity of the model as a quality
measure. Fidelity, in this case, is understood as the accuracy
obtained by the approximation method with the black-box,
as described in Equation (3). Each explainer has its own
approximation method, which is: Linear approximation in the
case of LIME, PDT in the case of the proposed PDTX and
the DT is itself.

acc(f) =
1

|η|
∑
si∈η

h(si) (3)

where,

h(si) =

{
1 if f(si)) = g(si)
0 if f(si)) 6= g(si)

(4)

where h represents the result of the prediction from the
approximation method.

The process for evaluating each method is described in
Section IV-D. The steps are done for the PDT and competing
methods, which aim to approximate the black-box methods.

D. Experimental setup

Here is presented the experimental setup used to compare
the proposed explainer PDTX, with the competing DT and
LIME. The assumed configurations are listed below:

1) The aforementioned datasets are normalized (z-score)
and divided into training and test data, in the proportion
of 80% and 20%, respectively.

2) The black-box models are employed in the training data;
3) A random sample (to be explained) is selected from the

test set. A noise set is created in the vicinity of this
instance and the predictions from the black-box model
are obtained.



Black-box
model

ExplainerPDT + JSO

Fig. 9. Overview of the proposed PDTX considering the (i) generation of a vicinity around a noise sample to be explained, (ii) to obtain the predictions from
the ML black-box model for the noise set, and (iii) approximation of the PDT predictions with the jSO. With this tree, it is possible to explain the test case.

4) Apply the explainer methods, which are PDTX, LIME,
and DT, to get their predictions. Since we are using 10
datasets, 100 samples, 3 ML black-box models, and 3
explaining methods, we have nine thousand predictions.

The noise set was generated using Numpy library [23],
centered in a sample selected randomly from the test set and
covariance calculated in the training set. For the black-box
models, it was used the Sklearn [21], with the following setup:
(i) Random Forest: number of trees in the forest equals 100;
Iii) SVM: “sigmoid” kernel; (iii) ANN: max iter equal 3000.
(iv) Default values for another parameters.

Finally, the experimental setup applied to PDTX and the
competing methods was: (i) Stop criteria: Maximum number
of objective function evaluated equal 2000; (ii) Population
size: 150 individuals; (iii) Depth of tree: 5; (iv) To define the
tree weights by JSO: adaptative rate of mutation and crossover,
as defined in JSO work [18]; (v) To define the tree leaves:
random configuration with mutation rate chosen randomly
between 0.6 and 1 and local search for 10% of individuals
in each generation; (vi) Search interval: [−100, 100].

Also, for LIME and DT, the rest of the configurations
were kept the default values. For statistical analysis, each
experiment was run 30 times.

V. RESULTS AND DISCUSSION

The PDTX was employed in the 10 datasets previously
mentioned and the average accuracy for the approximation are
summarized in Table III.

As can be observed, the PDTX obtained the best results
for the majority of the experiments regarding all the black-
box methods (MLP, RF, and SVM). To verify if the observed
differences are statistically significant, the Wilcoxon Signed-
Rank test [24] was performed and the p-values described in
Table IV confirm the differences.

The good performance of the PDTX may be due, mainly, to
the linear combination of all attributes. The DT, for instance,
takes into consideration only the most important feature per
node, based on a cost function (usually entropy), to do the
split. This method has simplicity in a logical interpretation,

TABLE III
AVERAGE ACCURACY FOR THE APPROXIMATION OF THE PROPOSED PDTX

AND THE COMPETING METHODS (DT AND LIME)

Model Dataset PDTX DT LIME
MLP Breast 0.979± 0.018 0.500±0.141 0.336±0.260
MLP Car 0.857 ± 0.082 0.794±0.103 0.044±0.044
MLP Diabetes 0.931 ± 0.045 0.572±0.095 0.343±0.246
MLP Ecoli 0.843 ± 0.077 0.655±0.148 0.278±0.249
MLP Glass 0.713 ± 0.078 0.424±0.148 0.495±0.195
MLP Iris 0.907 ± 0.051 0.872±0.074 0.346±0.136
MLP Wine rec. 0.893 ± 0.052 0.789±0.127 0.280±0.211
MLP Ionosphere 0.890 ± 0.054 0.686±0.165 0.538±0.286
MLP Phoneme 0.895 ± 0.062 0.656±0.106 0.232±0.150
MLP Hill V. 0.780 ± 0.105 0.772±0.099 0.577±0.217

MLP Mean 0.869± 0.076 0.672±0.141 0.347±0.158
RF Breast 0.978 ± 0.014 0.834±0.063 0.426±0.297
RF Car 0.853± 0.099 0.881± 0.061 0.029±0.024
RF Diabetes 0.918 ± 0.050 0.640±0.101 0.307±0.218
RF Ecoli 0.851 ± 0.097 0.729±0.099 0.237±0.227
RF Glass 0.767 ± 0.114 0.677±0.151 0.545±0.226
RF Iris 0.907± 0.049 0.924± 0.049 0.324±0.088
RF Wine rec. 0.888 ± 0.049 0.816±0.104 0.448±0.323
RF Ionosphere 0.879 ± 0.083 0.743±0.107 0.475±0.319
RF Phoneme 0.865 ± 0.070 0.696±0.077 0.281±0.183
RF Hill V. 0.759± 0.076 0.850± 0.055 0.601±0.163

RF Mean 0.867±0, 066 0.792±0.095 0.367±0.167
SVM Breast 0.976 ± 0.019 0.484±0.144 0.405±0.272
SVM Car 0.842 ± 0.089 0.539±0.139 0.010±0.025
SVM Diabetes 0.867 ± 0.052 0.527±0.097 0.395±0.222
SVM Ecoli 0.879 ± 0.086 0.339±0.271 0.202±0.218
SVM Glass 0.787 ± 0.069 0.328±0.183 0.385±0.226
SVM Iris 0.901 ± 0.070 0.306±0.270 0.285±0.162
SVM Wine rec. 1.000 ± 0.000 0.541±0.268 0.364±0.306
SVM Ionosphere 0.887 ± 0.053 0.634±0.111 0.624±0.241
SVM Phoneme 0.881 ± 0.072 0.525±0.073 0.268±0.207
SVM Hill V. 0.830 ± 0.106 0.536±0.268 0.741±0.273

SVM Mean 0.885±0, 064 0.475±0.111 0.409±0.224

Overall Mean 0.873±0, 067 0.642±0.171 0.374±0.181

but it can vary depending on the depth of the tree. The higher
the number of features, the deeper the DT is. In datasets with
many features, the visualization can be affected. In PDT, the
depth is fixed. In our empirical experiments, it showed good
results with a fixed height of 5. The LIME, in its turn, is well
known in the scientific community, easy to apply, and may



TABLE IV
RESULTS FOR THE WILCOXON SIGNED-RANK TEST

Competing Models p-value
PDTX vs. DT 6.654e-06
PDTX vs. LIME 1.824e-06
DT vs. LIME 8.070e-06

be one of the pioneers in the context of local explanation.
However, the method requires careful application on complex
real data, see for instance the discussion presented in [25].

The good performance of PDTX concerning DT and LIME
is expected since the complexity of the former is greater than
these both competitors. Thus, the great advantage of the PDTX
over them is that it achieves high fidelity to the black-box
models while maintaining its explanatory potential.

VI. CONCLUSION

The massive use of computational intelligence tools in
diverse areas of knowledge, together with the new regulations
for human rights regarding automatic decisions which can
affect our lives, increases the need for explainable methods. It
allows the analyst to better understand the black-box models
and taking decisions based on these explications.

In this context, we presented a new method for local
interpretability focused, at this time, in classification tasks,
based on PDT. The PDTX enables the users to collectively
analyze the features of the problem. This explainer is model-
agnostic, which allows it to be used with any ML method
with structured data. Besides that, it combines the advantages
of the traditional DT and LIME. It presents a tree structure
similar to a flowchart, being easy to read and understand and
providing information from the general equation of a hyper-
plane. Different from global explainer models, local ones aim
to rather explain single predictions by interpretable models
than the whole black box model at once.

The experimental setup performed resulted in a general
measure of fidelity of 87.34% for PDTX, 64.23% for tradi-
tional DT, and 37.44% for LIME. This work contributes by
providing a new method that has a better approximation to a
black-box model and gives robust local explanations. Future
works include the extension to regression methods and deep
learning methods.
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