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Abstract—This paper proposes a method for asset allocation
based on partitional clustering. This method is different from the
approaches already proposed in the literature, which essentially
use either an optimization-based approach or a hierarchical
clustering algorithm to allocate resources in assets. After finding
the clusters, the method uniformly allocates the resources over
the clusters and then within the clusters, thus guaranteeing that
all assets are allocated. The method was tested using data from
the Brazilian Stock Exchange (B3) and the assets eligible to enter
the allocation were those that were part of the Ibovespa Index
at the time of portfolio rebalancing. The results were compared
with the Ibovespa index for different metrics, such as volatility,
return, sharpe ratio, turnover and drawdown. The proposed
approach illustrates the potential of machine learning techniques
in portfolio allocation.

I. INTRODUCTION

With the advances in computing, the evolution of internet
and the popularization of data-driven decision-making, the use
of algorithms in asset management by professional managers
has become common. Five of the six largest investment funds
in the world use computers for most or all of their decision-
making processes [1]. The rapid development and absorption
of Artificial Intelligence (AI) techniques has created increas-
ingly efficient mechanisms for portfolio selection or portfolio
optimization, in order to optimize (maximize or minimize) one
or more objectives [2], [3], such as the expected return, which
must be maximized, and the risk, which must be minimized.

The work of [2] is pioneer in the introduction of a mean-
variance model for the optimization of portfolios, assuming
that the diversification of assets allows to increase the portfolio
return whilst reducing its risk. Over time, several techniques
have been introduced to improve the portfolio allocation
process, such as the models proposed by [4] and [5], both
inspired by the optimization proposal of [2].

Portfolio optimization algorithms usually start from the
premise that it is necessary to incorporate the expected returns
and risks in the optimization process. A wrong estimate of
future return and risk leads to a non optimal portfolio as a
result of the optimization [5]. The existence of more than
one objective to be optimized simultaneously, as well as the
a priori ignorance of the problem’s decision surface, makes
the application of AI techniques very convenient for this task.

Among these, multi-objective evolutionary algorithms have
received a lot of attention from the community as efficient
tools for portfolio optimization [3].

The above methods have limitations, however, as they
depend on the future values of return and risk, which can
compromise the result of the optimization if the estimates
are wrong. There is also an algebraic constraint in which
increasing the size of the correlation matrix implies an increase
in the matrix conditioning number, causing numerical errors
that make the matrix unstable [6]. Given the problems men-
tioned above, portfolio allocation techniques known as risk
parity have become popular, in which allocations are made
based on the expected risk without the need to incorporate
expected future returns [7]. In [6] the authors noted that, in
these methods, the inversion of the positive-definite covariance
matrix that can lead to numerical errors and instability is still
necessary. Thus, he proposed a technique called ”Hierarchical
Risk Parity” (HRP) for asset allocation, which uses a hierar-
chical clustering algorithm to perform the allocation.

While a hierarchical clustering performs a hierarchical de-
composition of the dataset, a partitional clustering method
performs a division of data into partitions. Based on López
de Prado’s proposal [6] for the application of hierarchical
clustering for asset allocation, [8] proposed and tested the use
of other hierarchical clustering algorithms for asset allocation.

Inspired by the HRP approach, this paper presents a method
based on a partitional clustering algorithm, known as k-
medoids, for asset allocation [9]. The allocation using parti-
tional clustering allows flexibility in the portfolio construction,
as both the intragroup and intergroup information allow the
allocation in different ways, according to the portfolio that is
sought.

Therefore, the objective of this work is to propose a port-
folio allocation approach based on the k-medoids partitional
clustering algorithm, testing different values for k (number
of groups). The assets used will be stocks traded in the
Brazilian stock market (B3), and the assets eligible to form
the clusters are the same as those that comprise the theoretical
portfolio of the Ibovespa index in the respective rebalancing
date. All assets that pass through the clustering algorithm will
be allocated forming long-only portfolios. The allocation is



tested between 2009-2017 with monthly rebalancing.
The paper is organized as follows. Section 2 introduces

clustering and discourses about the most recent and most
important applications of clustering for asset allocation. Sec-
tion 3 introduces the asset allocation method proposed based
on partitional clustering. Section 4 presents the experimental
results obtained and discusses its performance. The paper is
concluded in Section 5 with a general discussion and trends
for future research.

II. CLUSTERING AND ASSET ALLOCATION

Clustering is a term used to designate numerical methods
of multivariate data analysis for the purpose of discovering
homogeneous groups of data [10]. It can be defined as the
organization of a set of objects into groups based on their
similarity. Put another way, clustering is the process of parti-
tioning a dataset into subsets so that the objects in each group
share common characteristics, usually proximity, based on
some measure of similarity or distance. A group can be defined
according to the internal cohesion and external isolation of its
objects [10].

The concept of natural cluster was introduced by [11] and
defines that natural clusters are those that share continuous,
relatively dense and object-populated regions of the space,
surrounded by relatively empty regions.

Most clustering algorithms focus on obtaining k groups of
n similar objects according to some pre-established criteria.
Finding an optimal clustering solution is considered an NP-
hard problem, since the number of clusters in a dataset is
not known a priori and not all datasets have natural cluster
separations [12]. Furthermore, different initializations of the
clustering algorithms may result in different performances.

Most clustering methods assume, as a starting point for
grouping, an array X of size n × M , X ∈ Rn×m, which
represents n objects with m attributes each. Another data
structure widely used to perform clustering is a distance
matrix, D, with dimension n × n, D ∈ Rn×n, where each
element of D corresponds to a quantitative measure of distance
between all objects.

Clustering algorithms can be roughly divided into: parti-
tional, hierarchical, density-based, and graph-based [13]. The
most well-known hierarchical algorithms are single-link and
complete-link, and both can be implemented in various forms.
The minimum spanning tree is an implementation used for
graph-based clustering solutions, and can be seen in [10].

Recently, some contributions were made in the field of asset
allocation and clustering. In [6] the authors proposed the use
of machine learning for portfolio allocation using a technique
called hierarchical risk parity, which uses a hierarchical
clustering algorithm to perform the allocation based on the
clustering result.

In [14] the authors noted that, although portfolio optimiza-
tion is conceptually simple, involving the creation of efficient
frontiers, the solutions are complex. Usually, this problem is
solved with quadratic parametric programming, which uses the
inverse matrices for its solution [15], [14].

In portfolio optimizers, as assets are added to this matrix
used for the optimization of a portfolio, the matrix condition-
ing number increases, making the inverse calculation unstable
[6]. The method proposed by López de Prado does not need
an inverse matrix, since the allocation process is performed
by the clustering algorithm based on the covariance matrix.
Inspired by the work of López de Prado, [8] explored asset
allocation using the main hierarchical clustering algorithms.

The most commonly used algorithms for partitional cluster-
ing are k-means, k-medoids and variations of both [10]. This
paper presents the use of a k-medoids partitional algorithm,
in its variation known as Partitioning Around Medoids (PAM)
[16]. The application of k-medoids is due to the fact that the
distance matrix is obtained from the correlation matrix. Thus,
the distance between the objects (assets) and a prototype that
is not another data object does not exist and, therefore, the
prototype (medoid) must be a data object (asset). Since the k-
medoids algorithm operates by receiving an already calculated
distance matrix as input, this algorithm is suitable to be applied
to this task.

III. ASSET ALLOCATION BASED ON PARTITIONAL
CLUSTERING

The method proposed here contains five steps, as follows:
A) calculate the correlation matrix between assets and, then,
determine their distance matrix; B) apply the k-medoids parti-
tional clustering algorithm; C) perform intragroup allocation;
D) perform intergroup allocation; and E) evaluate perfor-
mance. Each of these steps will be detailed in the following
sections.

A. Calculating the Correlation and Distance Matrix

To perform clustering in financial time series, it is necessary
to perform some transformations in the series. According to
[17], a technique for time series clustering was defined by [18]
for hierarchical clustering and has been widely adopted ever
since. The technique can be defined as follows:

• Let N be the number of assets to be clustered.
• Let Pi(t) be the price of asset i at time t, where 1 ≤ i ≤
N .

• Let ri(t) be the return in time t of asset i, where:

ri(t) = logPi(t)− logPi(t− 1). (1)

• For each pair of assets i, j, the correlation ρi,j is calcu-
lated:

ρi,j =

∑
(ri − ri)(rj − rj)√∑

(ri − ri)
√∑

(rj − rj)
(2)

• The correlation coefficients ρi,j are converted into dis-
tance di,j :

di,j =
√
2(1− ρi,j) (3)



B. Partitional Clustering

After the distance matrix is calculated, clustering is per-
formed using a partitional clustering algorithm, more specif-
ically the k-medoids in its PAM variation, as will be briefly
reviewed in the following.

The k-medoids algorithm is a partitional clustering method
similar to k-means, but whose prototype, that is the cluster
center, is always an object from the dataset, and not a
hypothetical object like in k-means. While k-means is sensitive
to noisy and discrepant data objects, because of the average
measure that the algorithm uses to define and update the
cluster centroids (prototypes), k-medoids is more robust to
both problems, because instead of using the average of the
group to represent its center, k-medoids uses an object from
the cluster itself to represent the center. The prototypes in
k-medoids are named medoids and represent the most central
objects in each cluster based on the minimum sum of distances
for the other objects in the cluster [19].

A common implementation found in the literature for k-
medoids is called partitioning around medoids (PAM), pro-
posed by [16]. PAM consists of selecting k objects to be the
initial medoids. Then, each object is associated with the cluster
whose medoid is the closest. Repositioning of the medoids is
performed by minimizing the objective function, which is the
sum of the distances of objects from the cluster to the medoid.
Following the repositioning of the medoids, the process of
assigning the objects to the clusters and recalculating the
medoid placement is performed iteratively until the algorithm
has converged and no further medoid and cluster updates hap-
pens [19]. The k-medoids algorithm pseudocode is presented
in Algorithm 1. PAM operates by minimizing the intracluster
distance [20] and most partitioning clustering algorithms aim
to minimize the quadratic error between objects in a cluster
and their prototype (intracluster distance).

In the k-medoids algorithm there is no need to recalculate
the distance between objects and the prototype at each iter-
ation, since distances are already calculated in the distance
matrix, significantly reducing the computational cost when
compared to k-means [21].

Algorithm 1 k-medoids PAM Algorithm Pseudocode

def kmedoids ( k , d a t a ) :
medoids = s e l e c t m e d o i d s ( k , d a t a )
medoids copy = medoids
whi le not medoids == medoids copy :

g r ou ps = c a l c g r o u p s ( da t a , medoids , k )
medoids copy = upda t e medo ids (

groups , medoids )
medoids = medoids copy

re turn g r ou ps

In general, the k-medoids algorithm is sensitive to the initial
medoids, i.e., different initializations result in different data
partitions [22]. By always selecting the same initial medoids,

we eliminate the stochastic factor of the algorithm and all
runs will have the same result. In spite of using a random or
a single initialization of the medoids, it is still necessary to
choose the data objects that will serve as initial prototypes.
To do so, we propose the following heuristic: assets with
high or low volatility will be used as the initial prototypes
for the cluster search. It is expected that the clusters found
have medoids whose assets have high or low volatility, or that
the medoids have a low dissimilarity with the initial search
medoids, thus creating clusters whose medoids represent high
or low volatility assets.

After the clusters are determined by the partitional cluster-
ing algorithm, it is necessary to define the weight of each asset,
allocating resources within each group (intragroup allocation)
and over the groups (intergroup allocation). The approach to
be proposed here is based on the work of [23], who showed
that optimization-based approaches are not consistently better
than a naive 1/N (uniform) allocation.

C. Intragroup Allocation

The intragroup allocation is responsible for calculating the
weight for each asset in a group and here we use the naive
diversification, as explored by [23]. When using this form of
allocation, each asset will have the same weight:

wi,j =
1

Nj
, (4)

where wi,j is the weight to each asset i in the group j, and
Nj is the number of objects in cluster j.

D. Intergroup Allocation

After the weight is defined with intragroup allocation, it is
necessary to calculate the final weight considering the number
of clusters. To do so, we use the same naive approach of [23]:

wf i,j =
wi,j

k
, (5)

where wi,j is the weight defined during intragroup allocation,
k is the number of clusters and wf i,j is the final weight.

E. Performance Measures

To assess the proposed method, the following performance
measures will be used:

• Annualized Return: This is the rate of return scaled to
one year.

R =
p(t)

p(i)

(1/n)

− 1 (6)

where p(t) is the accumulated value of the portfolio at
the observed time, p(i) is the initial value and n is the
number of years.

• Annualized Volatility: This is a statistical measure of
the dispersion of returns.

σp = σdaily ∗
√
252 (7)

where σp is the volatility of the series in the period, σdaily
is the standard deviation of the series of daily returns in



the period. This measure informs the realized portfolio
volatility.

• Sharpe Ratio: This is a measure that indicates the risk-
adjusted return on investment [24]:

SR =
µ− rf
σ

, (8)

where µ is the return of the portfolio, rf is the risk-free
rate and σ is the portfolio volatility.

• Turnover Ratio: This is the measure that indicates the
portfolio change with each rebalancing.

TR =

N∑
i=1

wi(t)− wi(t− 1) (9)

where wi(t) is the weight of the asset in the current month
and wi(t − 1) is the weight of the asset in the previous
month.

• Maximum Drawdown: This is the number that indicates
in percent the greatest fall from peak to valley in the
return series.

• Sum of Squared Portfolio Weights: This is a measure
that indicates the level of diversification of an equity
portfolio [25]:

SSPW =

N∑
i=1

w2
i (10)

This measure indicates how concentrated a portfolio is,
from 0 (less) concentrated to 1 (most) concentrated.

IV. PERFORMANCE ASSESSMENT

The partitional clustering approach proposed here has five
sequential phases, namely:

1) Calculate the correlation and distance matrix between
assets;

2) Apply the partitional clustering algorithm;
3) Perform intragroup allocation;
4) Perform intergroup allocation;
5) Evaluate performance.
To make the asset allocation, it will be used assets traded in

the Brazilian stock exchange (B3) and which are part of the
Ibovespa index in the respective rebalancing. The method was
tested between 2009-2017. The correlation coefficients will be
determined according to Equation 2, and the distance will be
calculated according to Equation 3. The partitional clustering
algorithm with the initilization heuristic based on the volatility
of assets is then applied. Intragroup and intergroup allocation
are performed using the naive approach of [23] and the perfor-
mance considers the measures presented in the Performance
Measures subsection.

A. Experimental Methodology

The portfolio allocation process using partitional clustering
is executed monthly, with rebalancing in the first business day
of each month. To calculate the correlation matrix, it will
be considered the closing price information in the previous

12 months. In each rebalancing, a set of assets is needed
to calculate the correlation between the assets and then to
perform the clusterings.

Two test scenarios were made. In the first scenario the
experiments were performed using low volatility stocks as the
initial medoids for the partitional clustering algorithm, and in
the second scenario high volatility stocks were selected as the
initial medoids.

As it is not possible to know a priori the ideal number
of groups in partitional clustering, as previously mentioned,
portfolio allocations will be performed using values of k
between 3 and 20. The assets that will be part of each
rebalancing are those that compose the theoretical portfolio of
the Ibovespa index in the respective month of the rebalancing
assessment.

B. Results for Scenario 1: Initialization with Low Volatility
Assets

Table I summarizes the results obtained by the proposed
approach with the partitional clustering method initialized
with low volatility stocks and compares it with the Ibovespa
index for different values of k ranging from 3 to 20. It is
possible to observe that for all values of k the proposed method
outperforms the index in terms of return, volatility, drawdown
and sharpe. For some values of k, for instance k = 12, 15
and 16, the sharpe ratio provided by the method introduced is
better than that of the Ibovespa Index.

The k-medoids algorithm is sensitive to the initial medoids,
and tends to find clusters with low dissimilarity in relation to
the initial medoids. It is possible to observe, from the results
of Table I, where the initial medoids were the low volatility
assets, that this happens because the resulting portfolios have
lower volatility and smaller drawdowns when compared to the
Ibovespa index.

C. Results for Scenario 2: Initialization with High Volatility
Assets

Table II summarizes the results obtained by the proposed
approach with the partitional clustering algorithm initialized
with high volatility stocks and compares it with the Ibovespa
index for different values of k ranging from 3 to 20.

It is possible to note that the algorithm also found clusters
with low dissimilarity with the initial clusters, as they resulted
in more volatile portfolios, with larger drawdowns and a worse
risk-return ratio.

V. CONCLUSIONS AND FUTURE RESEARCH

This paper proposed the use of a partitional clustering
method, more specifically, the k-medoids algorithm, with an
initialization heuristic based on volatility, to allocate resources
to a set of assets. The clustering method is responsible for
finding clusters of assets based on their distance obtained
from their price correlations. After segmenting the assets into
clusters of similar assets, the resources are uniformly divided
within the clusters and then among clusters.

The method was tested with stocks traded in the Brazilian
Stock Exchange (B3) and which are part of the Ibovespa index



TABLE I
COMPARING THE STRATEGY PERFORMANCE FOR EACH EVALUATION METRIC OVER A CORRELATION WINDOW OF 12 MONTHS WITH THE PROPOSED

PARTITIONAL CLUSTERING METHOD INITIALIZED WITH LOW VOLATILITY STOCKS.

k Return Volatility Turnover Drawdown Sharpe SSPW
3 3.3% 20.9% 48.0% -48.1% -0.4 0.04
4 4.0% 20.3% 55.0% -43.3% -0.3 0.04
5 4.5% 19.4% 59.7% -40.1% -0.3 0.05
6 6.0% 19.3% 56.7% -40.9% -0.3 0.05
7 6.3% 19.0% 60.4% -39.4% -0.2 0.05
8 7.8% 18.4% 57.7% -31.2% -0.2 0.05
9 8.1% 18.2% 55.2% -33.8% -0.2 0.05
10 9.4% 18.1% 56.7% -33.5% -0.1 0.05
11 10.5% 17.7% 56.4% -30.6% -0.0 0.05
12 11.3% 17.3% 48.4% -31.8% 0.0 0.05
13 8.9% 17.3% 44.9% -35.6% -0.1 0.04
14 9.9% 17.4% 43.9% -34.3% -0.1 0.04
15 11.2% 17.4% 42.3% -32.6% 0.0 0.04
16 11.2% 17.3% 40.3% -31.6% 0.0 0.04
17 10.5% 17.3% 38.3% -29.9% -0.0 0.04
18 9.8% 17.4% 39.1% -29.8% -0.1 0.04
19 9.4% 17.4% 37.6% -30.1% -0.1 0.03
20 8.6% 17.4% 37.5% -31.1% -0.1 0.03
Ibovespa 1.4% 22.7% – -48.6% -0.4 0.05

TABLE II
COMPARING THE STRATEGY PERFORMANCE FOR EACH EVALUATION METRIC OVER A CORRELATION WINDOW OF 12 MONTHS WITH THE PROPOSED

PARTITIONAL CLUSTERING METHOD INITIALIZED WITH HIGH VOLATILITY STOCKS

k Return Volatility Turnover Drawdown Sharpe SSPW
3 4.1% 23.1% 57.7% -54.3% -0.3 0.06
4 -1.2% 23.0% 57.5% -63.8% -0.5 0.05
5 2.5% 24.0% 61.9% -63.0% -0.4 0.05
6 3.0% 24.7% 59.5% -58.8% -0.3 0.05
7 -0.3% 25.4% 59.6% -66.4% -0.4 0.05
8 1.7% 25.8% 59.2% -63.6% -0.4 0.05
9 -0.5% 25.8% 59.0% -65.5% -0.4 0.05
10 -1.9% 25.5% 56.6% -70.4% -0.5 0.04
11 -1.9% 25.8% 55.3% -70.2% -0.5 0.04
12 -0.0% 26.1% 54.9% -66.1% -0.4 0.04
13 2.4% 26.5% 54.0% -64.0% -0.3 0.04
14 1.4% 26.5% 49.9% -66.2% -0.4 0.04
15 2.2% 26.3% 48.9% -66.4% -0.3 0.04
16 2.4% 26.1% 48.1% -65.0% -0.3 0.04
17 4.2% 26.0% 46.3% -60.6% -0.3 0.03
18 3.7% 26.0% 46.4% -61.7% -0.3 0.03
19 4.9% 26.1% 45.1% -59.3% -0.2 0.03
20 5.2% 25.9% 42.5% -58.0% -0.2 0.03
Ibovespa 1.4% 22.7% - -48.6% -0.4 0.05

over the period from 2009 to 2017. The performance was
measured in terms of return, volatility, sharpe ratio, turnover,
drawdown and portfolio diversification.

From the results observed, it is possible to note that the
portfolios found presented the expected results, that is, when
the medoids were initialized with low volatility assets, the
resulting portfolio presented low volatility, and vice-versa.
This behavior is similar to the effect discussed by [26].

The results obtained presented in Table I showed that our
approach is superior to the Ibovespa index in all measures. The
poor sharpe ratio can be explained by the poor performance of
the Brazilian stock market during the period and by the high
brazilian risk-free rate, which was 10.9% annualized during
the period.

As future work, it is possible to explore the use of evaluation

metrics for machine learning algorithms, both in assessing
the quality of the clusters created in relation to the portfolio
performance, and in the application of other techniques to re-
alize intragroup and intergroup allocation. Another possibility
for future work is the application of the statistical framework
proposed by [27] to analyze which is the most suitable time
series period for the application of the partitional clustering.
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