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Abstract— In this paper, a performance comparison between 
the Marine Predators Algorithm (MPA), a metaheuristic 
paradigm, and two other designed variants for the tuning of a 
fractional proportional-integrative-derivative (PID) controller 
in a multiple-input multiple-output (MIMO) application is 
presented. The practical system plant corresponds to a ball mill 
pulverizing system, whose structure presents two inputs and two 
outputs. To encounter the optimal response on the MIMO 
control of this system a MPA approach applied to PID tuning is 
suitable, as it presents both the capability to diversify the search 
space (exploration) and to improve the quality of current 
solutions (exploitation) in search space. The MPA is a 
metaheuristic inspired by the extensive hunting strategy of 
ocean predators called Lévy and Brownian movements, it 
focuses on an optimal confront rate procedure in natural 
interaction between predator and prey in the marine ecosystem. 
The original MPA itself presents a satisfactory performance, in 
terms of statistical metrics. Nevertheless, it can be improved 
through the modification and addition of distinct techniques. In 
order to achieve those modifications, three variants are 
implemented exploring different procedures namely the 
oppositional-based learning and application of quantum 
mechanics. The optimal parameter values for the PID controller 
are analyzed by minimizing the integral time squared error 
(ITSE) index of the system's response.  The simulations are 
performed using the SIMULINK/MATLAB computational 
environment. Statistical measures including best, mean, median 
and standard deviation of the system response error for the 
tuned controllers are evaluated and compared over fifty runs. 
The obtained results suggest that the use of the mentioned 
proposals has an advantage in enhancing the tuning efficiency 
of the MPA in this application. 

Keywords—fractional proportional-integrative-derivative 
control, marine predators algorithm, evolutionary computation, 
swarm intelligence, multiple-input multiple-output application 

I. INTRODUCTION 

The proportional-integral-derivative (PID) is the most 
widely used feedback controller industrially since its 
proposition in 1910, this fact is due to its clear functionality, 
applicability, and efficiency [1]. Robust systems are those 
which cope with errors during its executions, and most robust 
performance systems, however, are currently achieved by 
fractional-order PID controllers [2], which were first 
introduced by Podlubny in 1994 [3]. The greatest difference 
between the classic and the fractional PID is the number of 
parameters, the last one has two more parameters as compared 
to the classical PID controller, which means a more 
challenging work in the tuning process [4]. 

The goal of a PID controller is to decrease the error value 
between a required setpoint and the real measured process 

variable as close to zero as possible. This operation is 
influenced by the input parameters, which are preset before 
the actual control activity [5]. During the tuning process, the 
optimal values for these parameters are achieved, and similar 
to the classical PID controller, common methods for this 
process in a fractional PID include Ziegler-Nichols and 
Cohen-Coon methods [3], artificial neural networks [6], 
fuzzy-based approaches [7], neuro-fuzzy [8], evolutionary and 
swarm intelligence-based algorithms [9]. 

Evolutionary algorithms (EAs) and swarm intelligence 
(SI) approaches are metaheuristics paradigms. They have 
methods capable of achieving a reasonable solution in a better 
computational time when compared to the other approaches 
mentioned [10]. They are known for using the knowledge of 
the problem to solve it. The Marine Predators Algorithm 
(MPA) [11] is based on the Lévy flight pattern, which consists 
of numerous small steps associated with longer relocations, 
extracted from a probability distribution with a power-law tail. 
This search strategy is used by many marine predators 
including sharks, tunas, and swordfishes in searching for prey 
[12]. 

The contribution of this paper is to compare the 
performance of two MPA variants, such as the use of 
oppositional-based learning and the application of quantum 
mechanics, in the tuning process of a fractional PID controller 
for a ball mill pulverizing system, which is a process defined 
as a multiple-input multiple-output (MIMO) system. 
Although other metaheuristics are used in the same 
application, the aim of the paper is to compare a single 
metaheuristic with its variants and prove that optimal values 
can be achieved when enhancing the MPA by its variants. 

The remaining paper is organized as follows. Section II 
reviews the fundamentals of a fractional PID controller, its 
tuning process, as well as a description of the MPA. The third 
section explains the methodology used in this case study. 
Sequentially, the results are discussed in Section IV. Finally, 
the last section includes the final scopes and conclusion. 

II. BRIEF REVIEW OF THEORICAL FUNDAMENTALS 

A classical PID controller is composed of proportional KP, 
integrative KI, and derivative KD factors, which are used in the 
general controller structure is given by 

 𝐶(𝑠) =  𝐾 +  


௦
+  𝐾𝑠  

The first factor in Eq. (1) represents a proportional action 
in the error between the setpoint and the output, whereas the 
integrative one decreases the steady-state error of the system 



response. The last factor, however, enhances the transient 
response [13]. 

The understanding of fractional calculus embodies the 
theory of derivatives and integers of approximate numbers. 
Furthermore, it has the advantage of exposing both short- and 
long-term memory. The first one consisting of the distribution 
of time constants, while the second one leads to a dearth of a 
specific timescale [14].  

There are many definitions of fractional calculus, but the 
most common two used in the area of control systems are the 
Grünwald–Letnikov (GL) definition and the Riemann–
Liouville (RL) definition, both of which are expressed in Eqs. 
(2) and (3) respectively in which  
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ቃ is the integer part, being a and t the limits of the 

operator. n is the integer value that satisfies the condition n − 
1 < α < n. Also, Γ(∙) is Euler’s gamma function. 

A fractional PID controller, also called PIλDµ, firstly 
proposed by Podlubny [3] is an extension of the classical PID 
controller, whose difference lays in the addition of an 
integrator of order λ and a differentiator of order µ [15].  The 
PIλDµ controllers achieved, according to [3] a better response 
when compared to the classical PID controller, since it is less 
susceptible to alterations of parameters of a controlled system. 
The generalized transfer function of a fractional PID 
controller is given by 

 𝐶(𝑠) =  𝐾 +  


௦ഊ +  𝐾𝑠ఓ , (𝜆, 𝜇 ≥ 0)  

Traditional PID controller cases occur when λ and μ are 
equal to one, as can be seen in Fig. 1 [16].  Generally, the range 
of fractional order is considered between zero and two. 

 
Fig. 1. Fractional PID controller operation region. 

Fig. 2 shows the general structure of a closed-loop control 
system, in which a fractional PID controller is adopted, in 
which e(t) is the error, i(t) the input variable (setpoint) and y(t) 
the output variable. 

 
Fig. 2. General block diagram of PIλDµ controller. 

As it can be noted, the PIλDµ controller has two extra 
parameters compared to the classical one, consequently, more 
conditions need to be met, improving the system’s 
performance. Therefore, the tuning of a fractional PID 
controller is of great importance in the controller’s design [2], 
which can be done via metaheuristics optimization processes. 

A. Marine Predators Algorithm 

The MPA mimics the behavior of marine predators 
searching for their prey, while the prey itself is also searching 
for food. Therefore, the MPA is a metaheuristic influenced 
by the survival of the fittest strategy [11]. Those predators use 
the Lévy and Brownian movements as the most effective 
hunting mechanism, which is, as most foraging tactics, a 
stochastic strategy, thus the consecutive location of the 
animal relies on the current one and the probability transition 
to that point. The Lévy approach is used in areas with less 
crowd of prey, while the Brownian movement is more related 
to places with an abundance of prey [17]. And to swap the 
two approaches the prey and predator ratio velocity v is used. 
A small value of v (around 0.1) means the occurrence of the 
Lévy or exploitation phase, regardless of the prey. A grater v 
(around 1) represents a predator in Brownian movements if 
the prey is moving according to Lévy steps. Ultimately, when 
v is greater than ten, that means the prey will come, 
representing the exploration phase [18].  

Hence, the MPA has three distinct phases, and the 
predators' velocity is the key to the difference among the 
phases.  The first phase represents the initialization of the 
population. In this phase, the predator is moving faster than 
the prey. During the exploration phase, the best strategy for 
the predator is not to move. The mathematical model of this 
phase, which occurs in the first third of the maximum number 
of iterations is given by 

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 0.5 ∙ 𝑟𝑎𝑛𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ ⊗ 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗   

where i = 1, 2, 3, …, n. 

 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝑅
ሬሬሬሬሬ⃗ ⊗ ൫𝐸𝑙𝚤𝑡𝑒ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑅
ሬሬሬሬሬ⃗ ⊗ 𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯  

In those equations, 𝑅
ሬሬሬሬሬ⃗  and 𝑟𝑎𝑛𝑑ሬሬሬሬሬሬሬሬሬሬ⃗  are vectors containing 

random numbers based on a normal distribution, the first one 
represents the Brownian motion. The symbol ⊗ shows entry-
wise multiplications. The multiplication of  𝑅

ሬሬሬሬሬ⃗   by the prey 
simulates its movement. The vector Elite represents the best 
predators.  

The second phase occurs in the middle third of the 
algorithm, and it represents the stage when exploration is 
becoming exploitation. The mathematical model for the first 
half of the population is given as: 

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 0.5 ∙ 𝑟𝑎𝑛𝑑ሬሬሬሬሬሬሬሬሬሬ⃗ ⊗ 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗   



 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝑅
ሬሬሬሬ⃗ ⊗ ൫𝑅

ሬሬሬሬ⃗ ⊗ 𝐸𝑙𝚤𝑡𝑒ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯  

And for the second half: 

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝐸𝑙𝚤𝑡𝑒ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 0.5 ∙ 𝐶𝐹 ⊗ 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗   

 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝑅
ሬሬሬሬሬ⃗ ⊗ ൫𝐸𝑙𝚤𝑡𝑒ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑅
ሬሬሬሬሬ⃗ ⊗ 𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯  

where similar to  𝑅
ሬሬሬሬሬ⃗ , 𝑅

ሬሬሬሬ⃗  is a vector containing random values 
generated according to the Lévy approach. In this phase, the 
prey moves both with exploitation and exploration steps. CF 
is a flexible parameter to control the step size, and its 
mathematical formula is given by Eq. (11), where t represents 
the current iteration, and T is the maximum number of 
iterations. 

 𝐶𝐹 =  ቀ1 −  
௧

்
ቁ

ଶ 


  

The third and last phase represents the stage of complete 
exploitation. The mathematical behavior can be formulated 
as 

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝐸𝑙𝚤𝑡𝑒ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 0.5 ∙ 𝐶𝐹 ⊗ 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗   

 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝑅
ሬሬሬሬ⃗ ⊗ ൫𝑅

ሬሬሬሬ⃗ ⊗ 𝐸𝑙𝚤𝑡𝑒ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯  

In nature, the behavior of predators is affected by the 
environment, and the Fish Aggregating Devices (FADs) have 
an important matter of change in it. As seen in [11], sharks, 
for instance, spend 80% near FADs searching for prey, and 
the rest of the time they tend to explore other environments 
with another prey distribution. The FADs [19] process is 
based on 

𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ =  

⎩
⎪
⎨

⎪
⎧𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 𝐶𝐹 ൣ𝑋ప
ሬሬሬሬሬሬሬሬሬ⃗ + 𝑅ሬ⃗  ⊗ ൫𝑋௫

ሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑋ప
ሬሬሬሬሬሬሬሬሬ⃗ ൯൧ ⊗ 𝑈ሬሬ⃗

𝑖𝑓 𝑟 ≤ 𝐹𝐴𝐷𝑠

𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ + [𝐹𝐴𝐷𝑠(1 − 𝑟) + 𝑟]൫𝑃𝑟𝑒𝑦ଵ

ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ − 𝑃𝑟𝑒𝑦ଶ
ሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ൯

𝑖𝑓 𝑟 ≥ 𝐹𝐴𝐷𝑠

 

  

where 𝑈ሬሬ⃗   is of zeros and ones, it is created by generating a 
random number between 0 and 1, if the generated number is 
greater than 0.2, then 𝑈ሬሬ⃗   is set to 0, otherwise it is set to 1. 
FADs is equal to 0.2 and represents its effect on optimization. 
The indexes r1 and r2 are a random selection of the prey 
matrix. 𝑅ሬ⃗   and r are a random vector and a constant, 
respectively, uniformly distributed between 0 and 1. 

Marine predators remember places which they had 
successful foraging, meaning they have a good memory, 
which is simulated by memory saving in MPA. After each 
interaction, the fitness value is compared to its previous 
equivalent, and the more fitted one is preserved. Fig. 3 shows 
the pseudocode for the MPA.    

 
Fig. 3. Pseudocode for MPA. 

B. Quantum Matrix Marine Predators Algorithm  

Quantum Marine Predators Algorithm (QMPA) is based 
on quantum mechanics, characteristically it utilizes the same 
strategy present in the Quantum Particle Swarm Optimization 
(QPSO), therefore it is based on a quantum delta potential 
well model, along with the mean best solution in the 
population [20]. 

This quantum strategy is implemented in all three phases 
of the algorithm, by modifying the Eqs. (5), (7), (9) and (12), 
the ones responsible for changing the particle's position. The 
step size vector in each phase continues to be the same. 

The strategy consists in the fact that in each phase, for 
every solution being modified, a random number q is 
generated. If this number is greater than or equal to 0.5, the 
quantum portion of the equation is summed, otherwise it is 
subtracted from the particle’s current position. 

The Brownian motion equation presented in phase 1 and 
in the first half of the population in phase 2, changes to Eq. 
(15) if q is greater than or equal to 0.5. In this case,  

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ = 𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 0.5 ∙ 𝑟ଵ ⊗ ห𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ หlog (
ଵ

మ
) 

where r1 and r2 are random numbers uniformly distributed 
between (0,1). If q is lower than 0.5, the prey's position is 
modified by  

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ = 𝑃𝑟𝑒𝑦ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 0.5 ∙ 𝑟ଵ ⊗ ห𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ หlog (
ଵ

మ
) 

The Lévy motion present in phase 3 and in the second 
half of the population in phase 2 changes to Eq. (17) if q is 
greater or equal to 0.5 where 

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝐸𝑙𝚤𝑡𝑒ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ + 0.5 ∙ 𝐶𝐹 ⊗ 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ∙ log (
ଵ

భ
)  

If q is lower than 0.5, then the equation representing the 
population changes to Eq. (18) 

 𝑃𝑟𝑒𝑦ప
ሬሬሬሬሬሬሬሬሬሬሬ⃗ =  𝐸𝑙𝚤𝑡𝑒ప

ሬሬሬሬሬሬሬሬሬሬሬ⃗ − 0.5 ∙ 𝐶𝐹 ⊗ 𝑠𝑡𝑒𝑝𝑠𝚤𝑧𝑒పሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ∙ log (
ଵ

భ
)  

C. Oppositional Matrix Marine Predators Algorithm 

The probability theory stands that 50% of the time a 
supposition is further from the solution than its opposite 



estimate [21]. Every time a new solution is generated, 
oppositional-based learning generates its opposite and takes 
only the best one. Mathematically, for a solution vector X, the 
opposite solution would be calculated by the opposite 
solution OX as defined by 

 𝑂𝑋௧ = 𝐿𝐵 + 𝑈𝐵 − 𝑋௧    

where LB is the lower boundary and UB is the upper 
boundary.  

The oppositional MPA (OMPA) generates the opposite of 
every newly generated vector X in the algorithm, as well as 
the randomly made initial solutions. It compares both 
solutions and keeps the one with the best fitness function 
value as the new solution. The rest of the process is 
maintained. 

D. Ball Mill Pulverizing System 

The system used to test the efficiency of each variant of 
the MPA was a ball mill, a complex object with pure delay, 
close coupling, multi-variable, non-linear, slow time-varying 
[22]. The system has three inputs (speed of coal feeder, 
opening of recycling air, opening of hot air) and three outputs 
(differential pressure, negative inlet pressure, outlet 
pressure). However, this system can be reduced to two inputs 
and two outputs, if the vertical vibration signal of the front of 
the bearing of the ball mill represents coal loading [23]. 

This allows for the system to have the transfer function 

 𝐺(𝑠) =  
𝐺ଵଵ 𝐺ଵଶ

𝐺ଶଵ 𝐺ଶଶ
൨ =  

ଷ.ହ

(଼∙௦ାଵ)య

ି,ଵସ

(∙௦ାଵ)మ

ିଶ

(଼∙௦ାଵ)మ

ି.ଵ଼

(ଵ∙௦ାଵ)

   

which is not diagonally row dominant. A steady-state 
decoupler can be used to reduce interactions among variables, 
having as transfer function [24] 

 𝐷(𝑠) = 𝐺ିଵ(0) =  ቂ
0.1378 −0.1538

−2.1978 −3.8462
ቃ      (21) 

The system’s structure is fully shown in Fig. 4. 

 
Fig. 4. System structure of the ball mill pulverizing system. 

III. METHODOLOGY 

Each candidate solution X in the MPA has ten values, 
represented by the vector in Fig. 4. The first five values 
correspond to the values for the first fractional PID controller 
and the last five represent the values for the second one. The 
lower and upper limit values for the chromosomes are 0 and 
50 for the proportional, integral, and derivative gains, and the 
integrator and differential orders stay between the limits 0 and 
1 in each PID. 

 

Fig. 5. Structure in the MPA population. 

The objective function used was experimentally tested and 
developed. It is defined by a sum of the Integral Time Squared 
Error (ITSE) and the maximum output values of the system 
response, as presented in Eq. (20): 

 𝐹𝑂𝑏𝑗(𝑋) =  𝑤ଵ ∙  ∑ ቀ∫ 𝑡 ∙ 𝑒
ଶ(𝑡)𝑑𝑡

்

௧ୀ
ቁଶ

ୀଵ + 𝑤ଶ(max(𝑌ଵ) +

𝑤ଷ ∙ max (𝑌ଶ))   

where x is the evaluated solution, t and T are the current and 
maximum simulation time, e(t) is the error, and y1 and y2 are 
the system’s first and second output. The variables w1, w2 and 
w3 are weights experimentally found to give the objective 
function the capacity to select the solutions with the best 
responses. That is, with low ITSE and low overshoot, 
especially low overshoot in the second output, which may rise 
to undesirable levels. The best weight values were found as 
0.3, 0.7 and 3 for w1, w2 and w3, respectively. 

The simulations are run with a population size of 50, and 
100 as the number of generations. The tool used to run the 
simulations was the MATLAB-SIMULINK computational 
environment, and the hardware is an Intel(R) Core (TM) i7-
7700HQ central processing unit (CPU) @ 2.80GHz 2.81 GHz, 
and 8GB random access memory (RAM). To validate the 
methods used and to be able to compare the results in each 
algorithm, the algorithms were run 40 times, and mean, 
median and standard deviation for the objective function 
values in each run were computed. 

IV. RESULTS AND DISCUSSION 

The error values are present in Table I. As it can be seen, 
the original MPA had the smallest fitness function value. 
However, the statistical measures showed that both MPA 
variants were capable of maintaining smaller values 
throughout the 40 runs, evidenced by the lower mean, median 
and standard deviation values from OMPA and QMPA. 

TABLE I.  STATISTICAL RESULTS FOR THE OPTIMIZERS 

Method MPA OMPA QMPA 

Minimum 414.10 419.04 414.70 

Maximum 670.65 575.78 458.41 

Mean 454.89 443.80 429.23 

Median 432.68 427.21 425.56 

Standard 
deviation 

73.00 37.85 10.47 

This shows that the generated variants are more stable and 
should be chosen in situations where it is fundamental for the 
controller to present a steady response in repetitive runs, 
making them more reliable, with a more concise output, as 
proven by the smaller standard deviation when compared to 
the original one. 

The system responses for the solutions with the smallest 
fitness values in each method are shown in Fig. 6 and 8, 
respectively. Fig. 7 and 9 are an expended view of Figures 5 
and 7. 



 
Fig. 6. System response for the first output. 

 
Fig. 7. Expanded view of system response for the first output. 

 
Fig. 8. System response for the second output. 

 
Fig. 9. Expended view of the system response for the second output. 

For the first output, the system response has a smaller 
overshoot in the created variants, being more stable. In the 
second output, the MPA has higher rising and settling times, but 
less overshoot compared to the variants. The best solutions in 
each algorithm, that is, the ones with the smallest fitness 
function values are presented in Table II. 

TABLE II.  BEST SOLUTIONS FOR EACH OPTIMIZER 

Parameter MPA OMPA QMPA 

KP1 0.1 0.002 0.01 

KI1 0.3 0.03 0.03 

KD1 50 50 49.99 

λ1 0.99 1 0.99 

μ1 0.45 0.46 0.46 

KP2 25.92 44.63 21.94 

KI2 0.67 1.16 2.05 

KD2 49.97 50 50 

λ2 0.95 0.96 0.85 

μ2 0.99 1 1 

The statistical values for the time taken (in seconds) to be 
able to complete a run are shown in Table III. As it can be 
observed, the OMPA takes much longer to run, due to its 
oppositional nature. The original MPA takes the least time to be 
able to finish, with the QMPA coming close. The QMPA has the 
best cost-benefit if the time is taken into account, seeing that it 
maintains a great statistical result for the fitness values, while at 
the same time not having an increasing time duration. 

TABLE III.  PROCESSING TIMES 

Method Min Max Mean Median Std 

MPA 3980 9245.2 6400.8 6592.9 1237.1 

OMPA 6552 16711.7 11979.5 12284.7 2708.4 



QMPA 4180 9649.0 6198.0 5851.9 1248.5 

V. FINAL CONSIDERATIONS 

In this paper, a fractional order PID controller is studied in 
a practical system plant corresponding to a ball mill 
pulverizing system, whose structure presents two inputs and 
two outputs. As is known, each metaheuristic algorithm is 
predisposed by the problem in question and its available 
information. Even though the MPA algorithm is a relatively 
new method when compared to other algorithms, it has proven 
to be capable of tuning a fractional PID controller for a MIMO 
plant effectively, as well as its two created variants. The 
created variants all showed to be more concise when 
compared to their original algorithm, even though the original 
MPA had achieved the minimal value. They have proved to 
be more reliable, allowing for better results in situations where 
there are repetitive experiments in the plant. The QMPA with 
the smallest mean, median and standard deviation was the 
most efficient one. Further research may be motivated in 
improving the efficiency of the algorithms, as well as 
developing new variants. 
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