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Abstract—Anomalies are patterns in data that do not conform
to a well-defined notion of normal behavior. Anomaly detection
has been applied to many problems such as bank fraud, fault
detection, noise reduction, among many others. Some approaches
to detect anomalies include classical statistical econometric meth-
ods such as AutoRegressive Moving Average (ARMA) and Au-
toRegressive Integrated Moving Average (ARIMA) approaches.
More recently, with the progress of artificial intelligence and more
specifically, machine learning, new algorithms such as one-class
support vector machines, isolation forest, gradient boosting, and
deep neural networks were applied to such tasks. This paper fo-
cuses on propose an anomaly detection framework for the Indice
da Bolsa de Valores de Sdo Paulo IBOVESPA). It is a major stock
market index that tracks the performance of around 50 most
liquid stocks traded on the Sao Paulo Stock Exchange in Brazil.
Exploring unsupervised autoencoder neural network algorithms,
we compare the long short-term autoencoder, bidirectional long
short-term autoencoder, and convolutional autoencoder models,
aiming to explore the performance of these architectures for
anomaly detection. Due to the ability of autoencoders to learn
a compressed representation of their respective input, we train
these models with standard data by minimizing the mean absolute
error (MAE) loss function and evaluate them with anomalous
inputs. We set a reconstruction error threshold, and in case
that the reconstruction error of the test data sample is beyond
it, anomalies are detected. Our results show that these models
perform quite well and can be applied to real stock market data.

Index Terms—Anomaly Detection, Stock Markets, Deep Learn-
ing, Autoencoders, Financial Signal Processing

I. INTRODUCTION

Anomaly detection refers to the problem of finding patterns
in data that do not conform to expected behavior [1]. It has
been researched within diverse application domains such as in
industrial machine fault detection, financial fraud, and noise
reduction (e.g. [2]-[5]), because anomalies in data represent
significant information. Over the years, many anomaly detec-
tion techniques have been developed in several research com-
munities. Some approaches have been specifically developed
for certain application domains, while others are general. The

analysis of anomalies in time series data examines anomalous
behaviors across time. Many approaches for this particular
kind of data define a region representing normal behavior and
declare any observation in the data that does not belong to this
normal region as an anomaly.

The Indice da Bolsa de Valores de Sdo Paulo (IBOVESPA)
tracks the performance of around 50 most liquid stocks traded
on the Sdo Paulo Stock Exchange in Brazil. Its data contain a
highly non-linear and non-parametric behavior as a result of
a large amount of noise caused by exogeneous variables such
as financial or political events, psychology of the investors,
and other market influences [6]-[8], leading to a highly non-
stationary time series. In financial data, anomalies are often
not rare objects, but unexpected bursts in activity.

Aiming to detect these unexpected bursts in stock mar-
kets, many statistical and machine learning approaches were
proposed. Traditional statistical methods focus on develop-
ing autoregressive models, such as AutoRegressive Integrated
Moving Average (ARIMA) [9], AutoRegressive Conditional
Heteroskedastic (ARCH), and generalized AutoRegressive
Conditional Heteroskedasticity (GARCH) to detect anomalies
[10]. ARCH is a method that explicitly models the change in
variance over time in a time series. Its extension, GARCH,
incorporates a moving average component together with the
autoregressive component. Finally, an ARIMA model is sim-
ilar to ARCH however, its CH” component models the
previously squared residuals at each previous point in time.

Machine Learning is an artificial intelligence subfield in
which studies computer algorithms that improve automatically
through experience and by the use of data. Classical machine
learning methods, such as K-Means Clustering — Subsequence
Time-Series Clustering, Isolation Forest, and Extreme Gra-
dient Boosting are widely applied to univariate time series
anomaly detection [11]-[13]. These algorithms have good
performance mainly in structured linear data. To overcome this
limitation, deep learning techniques have become popular over
the decades and have been extensively used to successfully



address a wide range of traditional applications due to the
ability to learn from nonlinear data. At its core, activation
functions decide as to whether or not to fire a neuron con-
cerning a particular input by creating the corresponding output
and nonlinearity. Recurrent, convolutional, and autoencoder
neural network architectures have been explored in many pub-
lications, proposing univariate time series anomaly detection
[14]-[17].

This paper proposes to use unsupervised autoencoder neural
networks to create a framework to detect anomalies in univari-
ate time series data. We build, evaluate and compare 3 distinct
autoencoder models. All of them are trained and tested in the
IBOVESPA stock market index. The main contributions of this
paper are:

o Propose and evaluate long short-term memory (LSTM),
bidirectional long short-term memory (BiLSTM), and
convolutional autoencoder neural networks to detect uni-
variate time series anomalies.

« Provide insights about anomalies in the IBOVESPA stock
market index and its correlations with exogeneous factors.

The remainder of this paper is organized as follows: In
Section II, a brief overview related to autoencoder neural
networks and the background of the proposed machine learn-
ing approaches are introduced. In Section III, the adopted
methodology and proposed approaches are detailed. Then, the
analysis of the results to anomaly detection are presented in
Section IV. Finally, the paper is concluded in Section V.

II. BACKGROUND

In this section, we briefly review some machine learning
algorithms that are necessary to build the proposed algorithm
for anomaly detection, including the LSTM and BiLSTM
architectures, the autoencoder network and the convolutional
neural network.

A. Long Short-Term Memory

Recurrent neural networks (RNNs) are a class of artificial
neural networks that allow previous outputs to be used as in-
puts while having hidden states. This class of neural networks
does not perform well on learning long-term dependencies
due to the vanishing gradient problem, where the contribution
of information decays geometrically over time. LSTM was
introduced to solve this problem [18]. The long short-term
memory is a special kind of RNN that allows a recurrent
system to learn over as many time steps as possible without
the loss of information. As shown in Figure 1, the LSTM
architecture is composed of gates that regulate the information
flow and turn long-term learning possible.

The forget gate f; takes the last output of the LSTM unit
hi¢—1, the current input X; and then combines them into a
single tensor [h;_1, X;]. Then, it applies a linear transfor-
mation with W; being the weights of the gate and by its
respective bias, followed by a sigmoid ¢ activation layer. Once
ft is calculated, the forget gate decides what parts to keep
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Fig. 1: Long Short-Term Memory

and to forget. The input gate i; takes the [h;—1, X¢] tensor
into a sigmoid function. A hyperbolic tangent tanh activation
function is also applied to [h;—1, X;]. Finally, the tanh output
is multiplied with the sigmoid output. The sigmoid output will
decide which information is important to keep from the tanh
output. W; represents the weights of the input gate and b;
its bias. The output gate o; also takes [h;—1, X¢] tensor and
applies it to a sigmoid activation layer as well as to a tanh.
Then, it multiplies the tanh output with the sigmoid output
to decide what information the hidden state should carry. Wy
represents the weights of the input gate and by its bias. The
forget, input, and output gates are given respectively by:

fr = o(Wilhi—1,x¢] + by) (H
iy = o(Wilhe—1, 24 + b;) )
o = o(Wolhe—1, x| + bo) 3)

B. Autoencoder Network

An autoencoder is an unsupervised deep learning model that
seeks to learn a compressed representation of its respective
input [19]. As shown in Figure 2, its architecture consists
of an encoder, code, and a decoder. The encoder component
takes the input data and compresses it as a compressed
representation in a reduced dimension. The input size of
an encoder network is larger than its output size. The code
contains the reduced representation of the input that is fed
into the decoder. It has a smaller dimensional value than
the input information. Finally, the decoder is responsible
for reconstructing the input back to the original dimensions
from the code. The autoencoder output is compared with the
initial data and the error that measures the quality of the
reconstruction, is backpropagated through the architecture to
update the weights of the network.

There are several types of autoencoders such as convolu-
tional autoencoder, denoising autoencoder and LSTM autoen-
coder. LSTM autoencoders refer to the autoencoder that both
the encoder and the decoder are LSTM networks. These types
of autoencoders are particularly suited for anomaly detection
in time series due to LTSM’s ability to learn temporal patterns
in data over long sequences. Convolutional autoencoders can
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Fig. 2: Architecture of the autoencoder neural network

learn spatial patterns through their convolutional kernels abil-
ity. Transforming time series data in “textures”, convolutional
neural networks aim to limit the number of inputs while
maintaining the strong “spatially local” correlation of the
images.

C. Bidirectional Long Short-Term Memory

BIiLSTM is an extension of the LSTM architecture [20].
This model overcomes the conventional LSTM by being able
to make use of the previous context. It achieves this through
processing the data in both directions with two separate hidden
layers, which are then fed to the same output layer. This means
that for every point in a given sequence, the BiLSTM has
complete sequential information about all points before and
after it. Figure 3 shows the BiLSTM architecture.
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Fig. 3: Bidirectional LSTM architecture

D. Convolutional Neural Network

A convolutional neural network (CNN) is a type of neural
network originally designed to process image data. Although
there are plenty of applications to work with two-dimensional
data, CNNs can be used to model univariate time series
forecasting and anomaly detection problems (e.g. [15], [21]).
At its core lies the convolutional layer, which applies the op-
eration called “convolution®. This linear operation represents
the multiplication of a set of weights with the input. Given
that the technique was designed for two-dimensional input, the
multiplication is performed between an array of input data and
a two-dimensional array of weights, called a filter or a kernel.
As shown in Figure 4, the architecture of convolutional neural

networks usually consists of convolutional layers, pooling lay-
ers, and fully connected layers. The purpose of the convolution
layer is pattern recognition, in other words, it is to extract
different features of the input, and more layers can iteratively
extract more complex features from the last feature. Pooling
layer aims to reduce dimensionality, Dense layers combine all
local features into global ones and it is utilized to calculate
the final result.
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Fig. 4: Convolutional neural network with LeNet framework

ITI. EXPERIMENTAL SETUP AND PROPOSED APPROACHES

In this section, we discuss the applied methodologies to
preprocess the IBOVESPA stock market index data and ex-
plain our approach to detect anomalies as well as our model
architectures. The proposed models were built in Keras, which
is an open-source software library that provides a Python
interface for artificial neural networks.

A. Dataset

The IBOVESPA index dataset was obtained through the
Yahoo Finance website. As shown in table 1, the original
dataset contains the following features: date, open, high, low,
close, adjusted close, and volume. The trade date is the day
that an order is executed in the market. Open feature stands
for the cash value of the 1% transacted stock when the market
opens. The closing price is the raw price, which is just the cash
value of the last transacted price before the market closes. The
adjusted closing price amends a stock’s closing price to reflect
that stock’s value after accounting for any corporate actions.
The high and low stands for respectively the highest and lowest
transacted price that the stock was daily traded. Lastly, volume
is the number of shares of a stock traded during a given period.

TABLE I: IBOVESPA Dataset.

Date Open High Low Close Adjusted Close ~ Volume

07/05/21 119922 122038 119922 122038 122038 8865100
10/05/21 122038 122772 121795 121909 121909 8219100
11/05/21 121904 122964 120145 122964 122964 7988600
12/05/21 122964 122964 119458 119710 119710 9405200
13/05/21 119711 121426 119711 120706 120706 9356200

In this study, we only consider date and close price features
to predict anomalies. The IBOVESPA closing prices feature
contains the total amount of 6937 samples that were daily
collected, during business days, between the periods of 1993
to 2021. Aiming to feed the data to deep learning models,
the time series samples were sliced respectively into the
percentage of 80% for training and 20% for testing. The



training dataset carries the interval between ~1993-04-28 -
2015-09-30”, whereas the test dataset holds data from ”2015-
09-30 - 2021-05-18”. Figure 5 shows the original, train and
test IBOVESPA close prices dataset.
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Fig. 5: IBOVESPA index preprocessed datasets

Before feeding the time series data to our models, the data
is standardized so that the mean of observed values is O
and the standard deviation is 1. In this paper, we adopt a
sequential prediction approach, in other words, we define the
LSTM autoencoder, BiLSTM autoencoder, and convolutional
autoencoder architectures expecting an input sequence with
30-time steps, containing the information of close prices
during 30 days.

B. Anomaly Detection Procedure

In this paper, we use unsupervised autoencoder deep learn-
ing models to detect anomalies, which are considered as close
prices data that the autoencoder models are struggling to
reconstruct. During the training phase, the period of ”1993-
04-28 - 2015-09-30” is adopted as input data to the encoder.
The code layer will learn the behavior of this period, which

represents 80% of the entire close price transactions of the
IBOVESPA index. Then, daily close prices from the ”2015-
09-30 - 2021-05-18” period will be fed into the model. We
hypothesize that if the close price data from the previous
mentioned period behaves differently from learned representa-
tion, the autoencoder will have difficulties in reconstructing it,
hence the model will result in a high reconstruction error value.
Having this procedure in mind, we set a threshold for the
reconstruction error to predict anomalies. Adopting the mean
absolute error (MAE) as the loss function, the train and test
loss distributions are generated and the reconstruction error
threshold is set as the maximum train loss value. Finally, if a
test loss error value is greater than the threshold adopted, then
it is labeled as an anomaly. Figure 6 shows the flowchart of
the aforementioned procedure.
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Fig. 6: Anomaly Detection methodology

C. Proposed Approaches

An LSTM autoencoder is an implementation of an autoen-
coder for sequential data using an encoder-decoder LSTM
architecture. In this structure, an encoder LSTM model reads



the input sequentially. Once read the entire input sequence,
the hidden state of this model stands for an internal learned
representation of the entire input sequence as a fixed-length
vector. The vector is then provided as an input to the decoder,
which interprets it and generates an output that maps back
from the internal learned representation to the input space.
We define an LSTM autoencoder architecture containing a
total of 4,385 trainable parameters. It expects input sequences
with 30-time steps, in other words, 30 days and one feature,
which is closing prices, outputting a sequence with the same
dimensions. The LSTM autoencoder contains in its structure
a Repeat Vector layer, which acts like a bridge between the
encoder and decoder modules, duplicating the LSTM cell
output 30 times. Moreover, it also contains Time Distributed
and Dense layers to generate the output. The Time Distributed
layer creates a vector of length equal to the number of features
outputted from the previous layer, in this case, the previous
layer outputs 128 features, therefore, the Time Distributed
layer creates a 128 long vector and multiplicates by 1, which
is the number of features (128;1). The Dense layer applies
a dot product between the output of the Repeat Vector layer
(30; 128) and the output of the Time Distributed layer (128; 1),
resulting in the same dimensional shape as the input of the
network (30; 1). The objective of fitting the network is to make
this output close to the input.

A BiLSTM autoencoder is an implementation of an autoen-
coder for sequence data using an encoder-decoder bidirectional
LSTM architecture. Similarly, as in LSTM autoencoder, the
input expects sequences with 30-time steps and one feature
and outputs a sequence same dimensions The model has a total
of 133,377 trainable parameters, containing the same structure
of the LSTM autoencoder, however, is replaced by BiLSTM
cells.

Lastly, the convolutional reconstruction autoencoder model
takes the input of shape with 30-time steps and one feature,
returning an output of the same shape. Containing a total
of 137 trainable parameters, its structure accommodates a
convolutional layer holding 8 filters and a kernel size of 1,
a max-pooling layer of pool size of 2, and a flatten layer. The
Repeat Vector layer duplicates the inputs 30 times. Finally,
Time Distributed and Dense layers are added at the end
to shape the final output. Due to its reduced number of
parameters compared to LSTM based autoencoders, convo-
lutional autoencoders consume less computational power than
the aforementioned models and takes less time to train.

D. Hyperparameters Tuning

Before training the adopted neural network architectures, the
number of hidden units, epochs, batch size, and learning rate
hyperparameters must be tuned. Hyperparameters are variables
that determine how the network structure is built and trained.
To tune the number of hidden units and epochs of each
model, the grid search technique was adopted. It performs
an exhaustive search between different values, attempting to
compute the optimum number that minimizes the train and
test loss values.

The grid search for the optimal hidden units value was
performed between 5 different numbers in both LSTM and
BiLSTM based models: 16, 32, 64, 128 and 256. Evaluated
with the lowest mean test loss value of 0.1875, the amount
of 32 hidden units was elected in the LSTM. Unlike the
previous model, the selected number of 128 hidden units
had the lowest test loss value of 0.1744. The grid search
for the optimal number of hidden units of the convolutional
autoencoder neural network was searched between 4, 8, 16,
32 and 64 values. The selected number of 8 hidden unit value
had the lowest mean test loss value of 0.1896.

Once selected the number of hidden units, the grid search
algorithm is performed to select the optimal number of epochs
to prevent overfitting. The LSTM based autoencoder search
had 5 different values: 15, 30, 45, 60, and 100. 60 epochs were
chosen as the optimal value, due to its lowest test loss value.
For greater values, the model starts to overfit. Containing the
greatest number of parameters compared to the remaining
models, the optimal value of 100 epochs was selected to the
BiLSTM. Lastly, the number of 45 epochs was selected in
the convolutional autoencoder neural network. The batch size
number was chosen as the 32 default number for all models.
The Adam optimization algorithm was the optimizer selected,
containing a learning rate of 0.001.

IV. RESULTS ANALYSIS

To assess the performance of the autoencoder models for
anomaly detection, the mean absolute error is adopted as the
loss function, which is given by:

N
1
MAE:—E oz 4
Nz:1|yl ] 4)

where N is the number of samples, y; is the predicted value
and x; is the true value. Table II and III contain the mean,
maximum and minimum train and test loss values in respect
to each model’s performance, as well as the adopted threshold
for anomaly detection.

TABLE II: Autoencoder Models Performance in Train Dataset

Train loss LSTM BiLSTM Convolutional
distribution values Autoencoder  Autoencoder  Autoencoder
Minimum 0.0052 0.0119 0.0203
Maximum (Threshold)  0.5438 0.5424 0.3972
Mean 0.0737 0.0779 0.0984

A. LSTM Autoencoder

Figure 7 shows the LSTM autoencoder train and test loss
histograms along with the respective kernel density estimate
(KDE) plots. Achieving a mean error value of 0.1875 in
the test loss, this model contains respectively a 1.12% lower
and 7.51% greater mean loss value than the convolutional
and BiLSTM autoencoders, scoring the 2" best performance



TABLE III: Autoencoder Models Performance in Test Dataset

Test loss LSTM BiLSTM Convolutional
distribution values  Autoencoder  Autoencoder  Autoencoder
Minimum 0.0238 0.0225 0.0271
Maximum 1.6959 1.6558 1.6653

Mean 0.1875 0.1744 0.1896
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Fig. 7: LSTM autoencoder train and test loss histograms along
with KDE plots in IBOVESPA index.

between the chosen neural networks. This distribution con-
tains the maximum error of 1.6959, resulting in a 211.86%
greater number compared to the achieved 0.5438 maximum
train loss value. This fact indicates that there are anomalous
points and the LSTM autoencoder is having difficulties in
reconstructing it. The train loss distribution is 2.2 right-
skewed. Skewness refers to an asymmetry that deviates from
the normal distribution. It also contains a 8.4 kurtosis, which
determines the heaviness of the distribution tails. As previously
mentioned, the maximum train loss error value generated
in the LSTM autoencoder is 0.5438, therefore, this is the
selected threshold number. The test loss distribution is also
right-skewed. Containing a 4.2 positive value, it is 90.91%
more asymmetrical than the train loss. Moreover, it contains a
25.8 kurtosis, indicating heaviness of the distribution tail, as
expected. Figure 8 shows the test loss distribution from 2015 to
2021, indicating the 0.5438 selected threshold in IBOVESPA
index.
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Fig. 8: LSTM autoencoder test loss distribution in IBOVESPA
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Ranging from 0.0 to approximately 1.7, there’s a clearly
indication of a loss peak in the year of 2020 and some

anomalous error values in 2021 as well. Figure 9 shows
the total of 36 anomalous daily close prices detected by the
LSTM autoencoder in the IBOVESPA index dataset. Through
its ability to learn temporal patterns, this model indicates
anomalous close prices in a 2020 dump from R$ 100,000
to approximately R$ 60,000. It also indicates an anomalous
behavior in a 2021 dump from approximately R$ 115,000 to
R$ 112,500.
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Fig. 9: Detected anomalous daily close prices in LSTM
autoencoder from 2015 to 2021 in IBOVESPA index.

B. Bidirectional LSTM Autoencoder

Figure 10 shows the BiLSTM autoencoder train and test loss
histograms along with the respective KDE plots. In regard to
the test loss, this model achieved the mean value of 0.1744.
In consequence, it is elected as the optimal autoencoder for
detecting anomalies between the proposed approaches, due to
its 7.51% and 8.72% lower test mean loss compared to the
LSTM autoencoder and convolutional autoencoder. In addition
to this fact, the same distribution achieved a maximum and
minimum error of 1.6558 and 0.0225 respectively.

Evaluated with maximum, minimum and mean values of
respectively 0.5424, 0.0119, and 0.0779, the train loss has
a 2.5 positive skewness and a 11.4 kurtosis. Therefore, it is
13.64% more asymmetrical and 35.71% heavier tailed than
LSTM’s autoencoder train loss distribution. In respect to the
test loss, this model has a 4.8 positive skewness value and
a 32.3 kurtosis, hence it is 14.29% more asymmetrical and
25.19% heavier tailed than LSTM’s autoencoder test loss.
Lastly, the selected threshold in this model is 0.5424. This is
0.26% lower compared to the previous autoencoder approach.
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Fig. 10: BiLSTM autoencoder train and test loss histograms
along with KDE plots in IBOVESPA index.



Figure 11 shows the test loss distribution during 2015 -
2021, indicating the 0.5424 selected threshold. Ranging from
0.0 to approximately 1.656, there is a clearly indication of a
loss peak in the year of 2020 and some anomalous behavior in
2021. Figure 12 shows the total of 32 anomalous daily close
prices detected by the BiLSTM autoencoder in the IBOVESPA
index dataset.
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Fig. 11: BiLSTM autoencoder test loss distribution in
IBOVESPA index during 2015 - 2021, containing the selected
threshold

Through BiLSTM’s ability to learn temporal patterns in
both directions, this model possesses a more robust approach,
indicating 4 fewer anomalous close prices compared to the pre-
vious model. BILSTM based autoencoder indicates anomalies
in a 2020 dump from R$ 100,000 to approximately R$ 60,000.
However, unlike the LSTM autoencoder, this model presented
one anomalous close price in a dump in the year of 2021,
however since it is a single mark, it may be considered as a
noisy event.
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Fig. 12: Detected anomalous daily close prices in BiLSTM
autoencoder from 2015 to 2021 in IBOVESPA index.

C. Convolutional Autoencoder

Figure 13 shows the convolutional autoencoder train and test
loss histograms along with the respective KDE plots. Achiev-
ing the mean test loss value of 0.1896, this model had the
worst performance in comparison to the proposed approaches,
due to its 1.12% and 8.72% greater test loss value compared to
the LSTM autoencoder and BiLSTM autoencoder. Moreover,
the same distribution achieved a maximum and a minimum
error of 1.6653 and 0.0271.

Evaluated with maximum, minimum and mean values of
respectively 0.3972, 0.0203, and 0.0984, the train loss distri-
bution is 1.8 right-skewed and contains a 6.4 kurtosis, hence
it is respectively 19.75% and 39.35% more symmetrical than
the LSTM and BiLSTM autoencoders’ distribution. Moreover,
it is respectively 29.96% and 77.72% more light-tailed than
the aforementioned models train loss. The selected threshold
value is 0.3972, hence it is 36.91% and 36.54% lower than
the LSTM and BiLSTM selected values.

The test loss is 4.2 positively skewed and contains a 25.3
kurtosis. This means that this distribution has approximately
the same asymmetry, from a normal distribution, compared to
the LSTM autoencoder and it is 14.29% more symmetrical
than BiLSTM’s autoencoder test loss. In addition to this
fact, the same distribution is respectively 1.98% and 27.84%
more light-tailed than the previous mentioned models’ loss
distributions.
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Fig. 13: Convolutional autoencoder train and test loss his-
tograms along with KDE plots in IBOVESPA index.

Figure 14 shows the test loss of the convolutional au-
toencoder from 2015 to 2021. Ranging from 0.0 to 1.75 as
well, this model presents 6 loss peak values intersecting the
threshold line. Anomalies are detected during the years of
2018, 2020, and 2021. Through the use of convolutional layers,
hence being able to learn spatial patterns, this model possesses
a greater volatility sensibility, which is the reason for the
lowest threshold value selected compared to the other proposed
approaches.
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Fig. 14: Convolutional autoencoder test loss distribution in
IBOVESPA index during 2015 - 2021, containing the selected
threshold.

Figure 15 shows the total of 91 anomalous daily close prices
detected by the convolutional autoencoder in the IBOVESPA



index dataset during 2015 - 2021. This model indicates anoma-
lous close prices in a 2018 dump from R$ 70,000 to R$ 65,000,
a 2020 dump from R$ 100,000 to approximately R$ 60,000,
and finally, a 2021 dump from approximately R$ 115,000 to
R$ 112,500. Some noisy points in the middle of 2019 and in
2020 are also detected. The convolutional autoencoder con-
tains 55 more anomalous close prices compared to the LSTM
autoencoder and 59 compared to the BILSTM autoencoder.
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Fig. 15: Detected anomalous daily close prices in convolu-
tional autoencoder from 2015 to 2021 in IBOVESPA index.

V. CONCLUSION AND FUTURE RESEARCH

In this work, we presented an anomaly detection framework
based on unsupervised autoencoder neural networks. The
obtained results have shown that these methods achieve a good
performance on the IBOVESPA stock market index dataset.
The collection of anomalous close price points detected are
highly correlated with the start of the COVID-19 pandemic
in Brazil, during March 2020. In March 2021, another cluster
of anomalous points is correlated with political events. These
anomalies emphasize that stock markets are highly influenced
by exogenous factors.

The LSTM, BiLSTM, and convolutional autoencoder per-
formances were evaluated showing respectively a test loss
mean value of 0.1875, 0.1744, and 0.1896. LSTM and BiL-
STM autoencoders tend to learn sequences by exploring tem-
poral features, whereas the convolutional autoencoder tends
to learn spatial patterns. The threshold value of these models
was selected by choosing the maximum train loss value of the
respective model. The LSTM and BiLSTM thresholds were
rated respectively at 0.5438 and 0.5424, representing a more
robust approach, whereas the convolutional threshold value
was 0.3972, indicating a higher volatility sensibility. These
models can be adjusted more precisely by fine-tuning the
threshold value. BiILSTM autoencoder was elected the optimal
neural network autoencoder to detect anomalies. This model
had respectively 7.51% and 8.72% lower mean test loss value
than the LSTM and convolutional autoencoders.

A future investigation should include hybrid approaches
such as LSTM-CNN autoencoder models in which explore
both temporal and spatial data patterns. In addition to this,
optimization algorithms could be explored such as Bayesian
optimization, aiming to check its performance in hyperparam-
eters tuning.
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