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Abstract—Dengue is considered a public health problem in
tropical regions, periodically affecting an increasing number of
citizens. Consequently, the development of efficient models is
essentials to short and long-term forecasting, supporting health
care officials to optimally disseminate available resources in
the dengue-prone areas. Hybridization of two or more models
is a common solution to this problem where one can take
advantage of diversity among models to reduce both the bias
and variances of the prediction error obtained using single
models. Fortunately, the use of ensemble approaches becomes
attractive. In this paper, we propose a novel ensemble learning
approach combining the eXtreme Gradient Boosting (XGBoost)
and Coyote Optimization Algorithm (COA) to capture the non-
linearity in a dataset and perform dengue cases forecasting.
The performance of the XGBoost model depends upon the
appropriate choice of its hyperparameters. In this study, COA
has been employed to tune the XGBoost hyperparameters. The
proposed hybrid COA-XGBoost model is applied to predicting
dengue time-series dataset from Parana, Brazil. Averages of
precipitation, temperature, thermal amplitude, relative humidity,
and previous dengue cases are considered as input variables
as well as dengue cases are used as output variables. The
performance of the proposed COA-XGBoost model has been
compared with XGBoost when hyperparameters are obtained
using other optimization techniques like Differential Evolution,
Genetic Algorithm, Cuckoo Search Optimization, Grey Wolf
Optimizer, and Firefly Algorithm. The results indicate that
the proposed COA–XGBoost can be competitive model when
compared to other classical techniques.

Keywords—Ensemble learning, time series forecasting, dengue,
metaheuristics.

I. INTRODUCTION

Dengue is considered a public health problem in tropical
regions, periodically affecting an increasing number of cit-
izens. Consequently, the development of efficient models is
essentials to short and long-term forecasting, supporting health
care officials to optimally disseminate available resources in
the dengue-prone areas. In 2020 in Brazil, there were 979,764

probable cases reported (incidence rate of 466.2 cases per 100
thousand inhabitants) [1].

Several studies have already been developed aiming to ob-
tain efficient forecasting systems for epidemiological context,
especially for dengue outbreak control. Indeed, Guo et al. [2]
used an ensemble learning model to forecast weekly dengue
incidence and detect outbreak occurrence defined using differ-
ent cutoffs, during the periods of 2011–2016 in Guangzhou,
South of China. Proposed ensemble model provided near-
real time estimates of dengue incidence, and captured the
fluctuations of dengue dynamics. Liebig et al. [3] proposed
an epidemiological model to forecast model the probability
of local dengue outbreaks in Queensland, Australia. As re-
sult, the authors revealed the airports where dengue infected
travelers are most likely to arrive and geographic locations
associated with high outbreak probabilities. Abualamah et al.
[4] adopted seasonal autoregressive integrated moving average
model (SARIMA) to forecast the morbidity and mortality of
dengue fever in the Kingdom of Saudi Arabia. The authors
observed that the seasonal association of dengue fever during
May to September and its relation to air temperature should
be communicated to all stakeholders. Mussumeci and Coelho
[5] evaluated the predictive performance of Long-Short-Term-
Memory (LSTM), random forest regression (RF), and least
absolute shrinkage and selection operator (LASSO) model
to forecast weekly dengue incidence (four-weeks-ahead) in
790 cities in Brazil using multivariate predictors. The authors
argued that LSTM can achieve better performance, in terms of
mean prediction errors in quantile scale, than RF and LASSO
models.

Notably there is a great attention give to the development of
efficient forecasting models in the context of dengue disease.
Indeed, a class of models usually employed to achieve high
accuracy in the forecasting field is the ensemble learning



method. An ensemble learning approach is a set of combined
(weak or base) models that learn different data patterns and
thus when results of each model are aggregated an efficient
model can be obtained [6]. In this respect, we can highlight the
use of the eXtreme gradient boosting (XGBoost) model [7],
an ensemble learning model which uses an iterative process
for training sequential decision trees, where the objective is to
prevent overfitting and optimize the available computational
resources. However, to achieve high forecasting performance,
the most suitable set of hyperparameters must be defined, and
metaheuristics can be used for this purpose, as observed in
some fields such as train arrival delay prediction [8], predict
a cumulative abnormal return of stocks following earnings
release [9], and reservoir production [10].

In this paper, we present an exploratory study is performed
to evaluate the viability of using a recently proposed meta-
heuristic named Coyote Optimization Algorithm (COA) [11]
to tune the XGBoost hyperparameters. Then the performance
of COA–XGBoost is evaluated in the task of forecasting
dengue cases multi-month-ahead (one, two, and three-months-
ahead) in Parana (PR) state, Brazil. These two approaches
were selected due to having already performed well in time
series forecasting [12] and the optimization approach is rela-
tively novel and efficient to global optimization [13] and it is
expected to perform optimally.

This paper introduces as the main contribution, the study of
the effectiveness of COA–XGBoost compared to well know
metaheuristics Differential Evolution (DE), Genetic Algorithm
(GA), Firefly Algorithm (FFA), Cuckoo Search Optimiza-
tion (CSO), and Grey Wolf Optimizer (GWO) to obtain the
XGBoost hyperparameters by the root mean squared error
(RMSE) minimization. Moreover, the mean absolute percent-
age error (MAPE), improvement percentage (IP), RMSE,
Friedman and Nemenyi hypothesis tests are used to evaluate
the compared approaches. This paper represents a contribu-
tion to the epidemiological field and time series forecasting
combining ensemble learning method and a metaheuristic
algorithm, as well as, presenting the importance of some
predictive variables on the appearance of dengue cases.

The remainder of this paper is structured as follows: Section
II-A presents the data sets adopted in this paper. Section II-B
describes the methods employed in this paper. Section III
presents the data modeling steps. Section IV shows the results
and discussions. Finally, Section V concludes this paper and
presents the proposals for future research.

II. MATERIAL AND METHODS

In this section, the data as well as the adopted methods used
in this paper are presented.

A. Material

The dataset used in this paper refers to monthly dengue
cases registered in Paraná (PR) state, Brazil. It is chosen
because there is a high incidence of dengue as well as due
to the subtropical and tropical climate. For adopted series,
information between the years 2007 and 2017 are available on

the Department of Informatics of the Unified Health System
(Departamento de Informática do Sistema Único de Saúde,
DATASUS, in Portuguese) database [14]. In this case, 70% of
the data (first 93 observations) is used as a training set and
30% is adopted as a test set (last 39 observations).

In Figures 1 and 2 are presented the the cases of dengue
in PR state and the partial autocorrelation function (PACF),
respectively.
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Fig. 1. Dengue cases over the time for PR state.

Exogenous variables such as precipitation, maximum and
minimum temperature, humidity, thermal amplitude [15] and
previous dengue cases (lagged on one up to three months)
are used as inputs of the XGBoost model. Table I shows
the statistical indicators for the observed data and climatic
features.

TABLE I
SUMMARY OF THE STATISTICAL INDICATORS OF DATASET.

Variable Dataset Statistical Indicator
# Samples Minimum Median Mean Maximum

Dengue Cases
Whole 132 23 308 2287 20380
Training 92 23 292 2061 20380
Test 40 59 322 2806 19237

Precipitation
(mm)

Whole 132 2.92 142.47 147.56 342.20
Training 92 7.06 128.48 142.09 326.49
Test 40 2.92 159.76 160.14 342.20

Maximum
Temperature
(°C)

Whole 132 19.62 26.59 26.10 30.80
Training 92 20.00 26.28 25.98 30.80
Test 40 19.62 27.06 26.37 30.58

Minimum
Temperature
(°C)

Whole 132 8.34 15.41 14.96 20.18
Training 92 8.34 15.16 14.68 19.82
Test 40 8.95 15.83 15.60 20.18

Humidity
(kg/m3)

Whole 132 60.93 79.87 78.96 90.06
Training 92 68.16 80.18 79.23 90.06
Test 40 60.93 78.77 78.34 86.15

According to the Augmented Dick-Fuller test the dengue
cases time series is stationary (DF = -5.35, p-value < 0.05).
Aiming at evaluating the presence of seasonality within the
data, the Kruskal-Wallis test is performed. In this case, there
is evidence of monthly seasonality (χ2

11 = 68.04, p-value >
0.05) [16].

B. Methods

1) Extreme Gradient Boosting: The boosting approach
proposed by [17] consists of finding an additive model that
minimizes a loss function for a weak model (decision tree).
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Fig. 2. PACF analysis.

Giving the residual of the previous model, a new model is
fitted to minimize the loss function. The current model is
added to the previous model, and the procedure continues until
convergence criterion is met. The XGBoost is an extension
of this approach, which objective is to prevent overfitting
and optimize the available computational resources. In this
approach through the use of a regularization term added to
the loss function, the model’s complexity is controlled [7].
The mathematical formulation can be stated as follows:

Fobj(θ) = L(θ) + Ω(θ), (1)

where L(θ) = l (ŷi, yi) and Ω(θ) = γT + 1
2λ‖w‖

2, Fobj(θ)
is the objective function, θ = [γ, T, w, λ, ŷi], L(θ) is the loss
function between prediction ŷi and real value yi, Ω(θ) is the
regularization term, γ is the learning rate, T is the number of
leaves in the tree, λ is the regularization parameter, and w is
the weights of the leaves.

2) Coyote Optimization Algorithm: Every time series has
its characteristics, thus hyperparameters that allow for the
model to have a good generalization capacity and therefore
achieve accurate results in out-of-sample data are desirable. To
achieve the promising results in dengue case data, a suitable
set of hyperparameters was obtained using the COA. The COA
is a population-based approach and it considers the social
relations inside the packs of the Canis latrans species. The
population of coyotes is divided into Np packs with Nc coyotes
each, where the number of coyotes is the same for all packs.
This algorithm is classified as both swarm intelligence and
evolutionary metaheuristic and it is inspired by the coyotes’
behavior [11].

The main steps of COA are described in the sequence,
and the mathematical formulation is omitted, which can be
found in [11]. The optimization process starts when the global
population of coyotes is defined (all candidate solutions). In
the sequence, the coyotes’ adaptation in the current social
condition (set of decision variables, or in this case, current
hyperparameters value) is evaluated using the objective func-
tion (in this paper the RMSE - described in Subsection III).
In it is turning, the alpha coyote of the pack is defined and

the social tendency is stated. For each coyote, based on social
tendency, the social condition is updated, evaluated and its
adaptation verified. Taken into account of biological events
of life, the birth and death of coyotes are stated. After this,
the transition between packs and coyotes’ age (in years) is
updated. The process ends when the best coyote (solution) is
selected.

C. Hypothesis tests

In this paper, the Friedman is used to verify if at least two
of the models represents different results. The statistic of the
test is stated according to,

FD =
12n

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 ∼ χ2
k−1, (2)

where is distributed according to chi-squared distribution with
k − 1 degrees of freedom, with n observations and k groups,
R2
j is the squared rank of j-th compared approach. Under the

null hypothesis, there is no difference between results from
different groups.

In the sequence, according to [18], if Friedman’s null
hypothesis is rejected, it is necessary to apply a post-hoc test
to find which groups have different results. Hence, a multiple
comparison test of Nemenyi can be applied. In this approach,
a threshold is obtained by

CD =
q∞,k,α√

2

√
k(k + 1)

6
, (3)

where CD being the critical difference to assume that there
is a difference or not in the measures of groups, q∞,k,α is
the studentized range statistic, k the number of algorithms, at
α significance level, and n number of samples. If the critical
differences of the rank sum |Ri−Rj | is greater than CD, there
is a difference between results from algorithms i and j [19].
Therefore, these two approaches are applied to compare the
errors from all proposed algorithms.

III. METHODOLOGY

The forecasting and optimization results presented in this
paper were developed in R software by using caret [20]
and metaheuristicOpt [21] packages, respectively.

For each optimization method, a set of decision variables is
initialized, then the XGBoost (linear booster) architecture is
trained, and the optimization is performed. Cross-validation for
time series using sliding window is employed in training set.
The models’ structured to one, two, and three-months-ahead
forecast are presented in Eq. (4), and computed as follows,

ŷ(t+h) =


f̂
{
y(t+h−1), y(t+h−2), y(t+h−3), x(t+h−1)

}
if h = 1,

f̂
{
ŷ(t+h−1), y(t+h−2), y(t+h−3), x(t+h−2)

}
if h = 2,

f̂
{
ŷ(t+h−1), ŷ(t+h−2), y(t+h−3), x(t+h−3)

}
if h = 3.

(4)

In fact, f is a function that maps the observed data, ŷ(t + h)
is the forecast dengue case in forecasting horizon h = 1, 3 at time



t (1, . . . , 132), y(t + h − 1), ŷ(t + h − 2), y(t + h − 3) are the
previous observed and predicted dengue cases, X(t + h − nx) is
the inputs vector composed by average relative humidity, maximum
and minimum temperatures, precipitation and thermal amplitude at
the maximum lag of inputs (nx = 1, 2, 3).

The XGBoost hyperparameters (a linear booster) and search space
are shown in Table II.

TABLE II
THE XGBOOST HYPERPARAMETERS, DESCRIPTION, LOWER AND UPPER

BOUNDARIES.

Parameter Description Lower boundarie Upper boundarie
T Boosting iterations Number of base learners 1 300
α L1 regularization Equivalent to Lasso Regression on weights 0.0001 1
λ L2 regularization Equivalent to Ridge Regression on weights 0.0001 1
η Shrinkage Learning rate applied to base learner expansion 0.001 0.3

The RMSE minimization starts when each method initializes the
set of hyperparameters according to the boundaries shown in Table
II. In the sequence, the predicted values are obtained and the RMSE
is calculated according to (5) and the optimization algorithm is
executed. Indeed, the RMSE is computed according to (5) as follows,

RMSE =

√√√√ 1

n

n∑
i=1

[yi − ŷi]2, (5)

Moreover, the MAPE and IP are adopted to evaluate the accuracy
of each forecasting model and are computed according to,

MAPE = 100×
n∑

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (6)

IP = 100× Mp −Mc

Mc
, (7)

where n represents the number of observations of the training and
test sets, yi is the i-th observed value and ŷi is the i-th predicted
value obtained by XGBoost. Also, the Mc and Mp represent the
performance measure of compared and proposed model, respectively.
Besides, the optimization process starts and ends when the number
of generations or iterations is met. To check the robustness of
each optimization approach, 30 runs are conducted. Therefore, the
statistical indicators such as minimum, median, arithmetic average,
maximum, standard deviation (Std), and trimmead average (arithmetic
average without 10% of bigger and lower values) are computed.

In Figure 3 is depicted the proposed methodology.
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Fig. 3. Flowchart of proposed methodology.

The following metaheuristics were tested and compared in the
XGBoost tuning: CS, DE, FFA, GA, and GWO. The optimizers com-
pared with COA were of CRAN library given in https://cran.r-project.

org/web/packages/metaheuristicOpt/metaheuristicOpt.pdf with stan-
dard settings, and are presented in Table III.

TABLE III
PARAMETERS OF EACH ADOPTED OPTIMIZER.

Method Parameter Value
CS Population Size 25

Abandoned Fraction 0.5
COA Number of Packs 10

Number of Coyotes 8
DE Population Size 25

Mutation Factor 0.8
Crossover Ration 0.5

FFA Population Size 25
Attractiveness Firefly 1
Light Absorption Coefficient 1
Randomization Parameter 0.2

GA Population Size 25
Mutation Probability 0.5
Crossover Probability 0.8

GWO Population Size 25

In Table IV are showed the hyperparameters (for a linear booster)
selected by each optimization algorithm.

TABLE IV
XGBOOST HYPERPARAMETERS SELECTED BY EACH METAHEURISTC.

Method Statistical
Indicator

Hyperparameter
# Boosting
Iterations

L1
Regularization

L2
Regularization

Learning
Rate

COA Average 141.3179 0.7588 0.5268 0.1661
Std 56.2504 0.2026 0.2845 0.0824

CS Average 145.8778 0.6817 0.5161 0.1442
Std 79.5053 0.2063 0.2931 0.0827

DE Average 171.3180 0.6258 0.4306 0.1372
Std 103.9385 0.2327 0.2861 0.0905

FFA Average 183.9358 0.6521 0.4372 0.1554
Std 90.8867 0.2538 0.2868 0.0956

GA Average 138.2354 0.7623 0.4810 0.1371
Std 86.7825 0.1463 0.2941 0.0818

GWO Average 153.8231 0.7205 0.4691 0.1736
Std 82.1156 0.2191 0.2541 0.0804

The results presented in Section IV are generated using the proces-
sor Intel(R) Core(TM) i5-4200U central processing unit of 1.6Hz, 8
gigabyte of random access memory in Windows 10 operating system.
The R software [22] is adopted to perform the modeling.

IV. RESULTS

The effectiveness of the proposed ensemble, COA-XGBoost, is
measured in terms of RMSE and MAPE. Table V presents statistical
indicators such as minimum, median, arithmetic average, maximum,
Std, and trimmed average (arithmetic average without 10% of bigger
and lower values) for each optimization method. For each statistic,
the best results are presented in bold.

To forecast dengue cases one month ahead, the COA outperforms
the compared methods in terms of RMSE for minimum, arithmetic
average, and trimmed average. In fact, the IP ranges between 0.09%
- 1.06%, 0.05% - 2.22%, and 0.38% - 4.27% for minimum, arith-
metic average, and trimmead average, respectively. When the MAPE
criterion is adopted, similar results are achieved for median and
trimmead average. Regarding the remaining measures, competitive
results are achieved when results are compared with GA and GWO
metaheuristics.

Concerning the two-month-ahead forecasting horizon, for RMSE
and MAPE analysis, COA outperforms compared metaheuristics
in most of the indicators, except in minimum and maximum for



TABLE V
RESULTS OF THE OPTIMIZED XGBOOST MODEL IN TERMS OF RMSE AND MAPE (30 RUNS) TO FORECAST DENGUE CASES ONE UP TO

THREE-MONTHS-AHEAD.

Forecasting
Horizon

Statistical
Indicator

COA CS DE FFA GA GWO
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

One-Month-Ahead

Minimum 1713.02 0.84 1731.29 0.89 1731.15 0.86 1729.77 0.90 1714.62 0.78 1729.11 0.90
Median 1766.03 0.95 1789.70 1.05 1804.11 1.10 1794.90 1.09 1775.90 0.98 1764.10 1.04
Arithmetic Average 1781.11 1.04 1822.97 1.07 1867.30 1.10 1838.31 1.01 1782.03 1.03 1798.53 1.05
Maximum 2324.51 1.37 2367.71 1.32 2469.16 1.33 2365.05 1.33 1952.43 1.31 2027.33 1.32
Std 106.51 0.16 125.53 0.14 169.64 0.15 158.45 0.16 48.44 0.15 88.34 0.12
Trimmead Average 1771.63 1.03 1806.79 1.07 1850.67 1.10 1823.37 1.10 1778.35 1.03 1792.84 1.05

Two-Months-Ahead

Minimum 2137.04 1.66 2134.07 1.76 2119.51 1.77 2149.11 1.67 1972.87 1.47 2148.96 1.67
Median 2255.32 2.01 2308.71 2.08 2359.21 2.11 2342.11 2.05 2267.86 2.03 2285.98 2.06
Arithmetic Average 2304.89 2.01 2414.14 2.12 2452.36 2.16 2482.09 2.09 2325.46 2.05 2470.95 2.12
Maximum 2579.12 2.35 3459.93 2.83 3485.67 2.89 3524.81 2.90 2578.88 2.36 3521.92 2.90
Std 122.48 0.18 314.00 0.23 363.39 0.28 356.59 0.27 145.87 0.18 424.53 0.36
Trimmead Average 2301.09 2.01 2386.79 2.10 2427.34 2.15 2456.74 2.08 2329.00 2.06 2444.91 2.11

Three-Months-Ahead

Minimum 4648.69 3.94 4359.29 3.12 4481.53 3.44 4329.44 2.88 4098.81 3.90 4712.15 3.92
Median 4716.16 6.19 4807.40 5.09 4944.75 5.34 4925.31 5.27 4794.93 6.14 4912.82 5.79
Arithmetic Average 4837.34 5.93 4886.85 5.45 4968.31 5.62 4965.94 5.50 4841.11 5.87 5001.54 5.86
Maximum 5128.22 7.56 5744.22 7.55 5781.80 7.96 5828.92 7.55 5198.96 8.01 5787.45 7.62
Std 119.14 1.32 268.26 1.45 286.06 1.37 306.57 1.36 201.01 1.42 319.13 1.27
Trimmead Average 3577.82 3.90 3630.58 3.68 3687.54 3.80 3706.88 3.71 3579.39 3.88 3711.34 3.92

RMSE, and minimum for MAPE. For RMSE, the IP ranges between
0.55% - 4.40%, 0.88% - 6.72%, 16.03% - 66.29%, and 1.20% -
6.34% for median, arithmetic average, Std, and trimmead average,
respectively. For MAPE, 1.10% and 4.90%, 2.11% - 6.90%, 0.70% -
19.08%, 1.22% - 48.72%, and 2.54% - 6.34% for median, arithmetic
average, maximum, Std, and trimmead average, respectively. For this
forecasting horizon, GA is the optimizer which the most similar
performance of COA.

Looking for three-months-ahead, for RMSE, similar results of one
and two-month-ahead are obtained. However, in terms of MAPE,
COA is outperformed by CS, GWO, and FFA metaheuristics. In a
broader perspective, considering RMSE for all forecasting horizons,
the COA reaches better accuracy in 66.67% of the comparisons, while
for MAPE, in 38.89% of the cases. The ranking of metaheuristics
is composed of COA, GA, CS, GWO, FFA, and DE to tune the
XGBoost hyperparameters and forecasting dengue cases for the PR
state. The aforementioned ranking is due to the performance of each
approach evaluated for all forecasting horizons and criteria.

In Figure 4 are showed the observed and predicted number of
dengue cases for one up three-months-ahead. For the first two
forecasting horizons, the COA–XGBoost learns data behavior, in
most of the cases, which allows predictions compatible with the
observed values. There is a challenge in the three-months-ahead
forecast task, once the recursive method accumulates the errors of
previous forecasts to the next. Moreover, in this forecasting horizon,
in the ups and downs, the forecasting model has difficulty in capturing
the data variability.
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Fig. 4. Forecasts and observed dengue cases.

In Figure 5 is presented the importance of each adopted input

to forecasting dengue cases. These scores are computed using the
properties of the base learners used by the XGBoost method.
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The proposed ensemble COA-XGBoost showed that dengue previ-
ous cases exert greater importance in predicting future cases, followed
by, minimum and maximum temperature, precipitation, humidity, and
thermal amplitude, in this order.

Considering Friedmann’s test of the RMSE and MAPE over 30
runs for the adopted metaheuristics, there are statistically different
results to at least two metaheuristics at 5% level (χ2

5 = 478.03 -
485.37, p-value < 0.05). In Figures 6 and 7 are showed the CD plot
based on Nemenyi test.

Fig. 6. Critical distance plot for RMSE.



Fig. 7. Critical distance plot for MAPE.

Those metaheuristics that are not joined by a line can be regarded
as different. The CD to consider the errors statistically different are
0.79 in both cases. In both cases, the COA achieved the best ranking,
followed by GA, CS, FFA/GWO, and DE metaheuristics.

V. CONCLUSION

In this paper, a novel combination of COA and XGBoost has been
proposed to forecast dengue cases one and three-month-ahead, in
PR state, Brazil. The importance of average precipitation, maximum
and minimum temperature, thermal amplitude, and humidity were
evaluated. The COA was employed to obtain a set of XGBoost
hyperparameters by minimizing the RMSE. The performance of the
proposed XGBoost model using COA was compared with XGBoost
coupled with DE, CS, COA, DE, FFA, GA, and GWO for hyperpa-
rameters tuning. Regarding accuracy (average of RMSE and MAPE,
over 30 runs), the proposed COA-XGBoost outperforms compared
approaches.

Even with good results achieved in terms of evaluated criteria, this
study has the following limitations: (i) The spatio-temporal analysis
was didn’t perform to taking account the most affected locations,
the proposed model was not able to perform well for three-months-
ahead, the parameters of COA optimizer were selected by trial and
error. The proposed ensemble learning approach based on XGBoost
and COA got the most suitable set of hyperparameters in a shorter
time when compared to other optimization approaches. Fortunately,
the COA-XGBoost is an efficient tool for dengue cases forecasting
helping health managers in the decision-making process. As future
research is intended to perform signal decomposition, considering
converge analysis of the optimizers, comparisons of other forecasting
models such as random forest and artificial neural networks, to adopt
optimization approaches for feature engineering and selection, and
other evolutionary and swarm intelligence algorithms, such as particle
swarm optimization, owls [23] and falcon [24].
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